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We study the electronic and transport properties of a topological insulator nanowire including selective
magnetic doping of its surfaces. We use a model which is appropriate to describe materials like Bi,Se; within a
k - p approximation and consider nanowires with a rectangular geometry. Within this model the magnetic doping
at the (111) surfaces induces a Zeeman field which opens a gap at the Dirac cones corresponding to the surface
states. For obtaining the transport properties in a two terminal configuration we use a recursive Green’s function
method based on a tight-binding model which is obtained by discretizing the original continuous model. For
the case of uniform magnetization of two opposite nanowire (111) surfaces we show that the conductance can
switch from a quantized value of ¢?/h (when the magnetizations are equal) to a very small value (when they are
opposite). We also analyze the case of nonuniform magnetizations in which the Zeeman field on the two opposite
surfaces change sign at the middle of the wire. For this case we find that conduction by resonant tunneling through
a chiral state bound at the middle of the wire is possible. The resonant level position can be tuned by imposing
an Aharonov-Bohm flux through the nanowire cross section.
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I. INTRODUCTION

In some narrow gap semiconductors containing heavy
atoms, the strong spin-orbit coupling induces an inversion of
the energy bands with respect to their customary energetic
ordering. These materials are named topological insulators
(TIs) [1-3]. When in contact with vacuum, the electronic
bands should recover their natural energy ordering and as a
result a two-dimensional electron gas appears at the surface of
the TI. These surface states are governed by a massless Dirac
Hamiltonian and have a conical dispersion centered at a time
reversal invariant point in momentum space. Angle-resolved
photoemission spectroscopy experiments have established the
occurrence of these conical surface states in some topological
materials of the family of Bi,Se; [4,5].

Because the Dirac cone is located at a time reversal symme-
try invariant point, only perturbations that break this symmetry
can open a gap in the surface states. Apart from external
magnetic fields, two methods can be used for opening gaps at
the Dirac cone: doping the surface with magnetic impurities or
putting in contact the TI surface with a ferromagnetic material
that induces an exchange field [6]. In the Bi;Se; family of
materials, the effective Hamiltonian for the electronic states of
the (111) surface (hereafter denoted z surface) takes the form
hvp(scky, — syky), where sy, sy, and s, are the electron spin
Pauli matrices. An exchange field pointing in the z direction
opens a gap in the Dirac cone of the surface bands. This
gapped state is a nontrivial insulator and it is characterized
by a half-integer anomalous Hall conductivity o, = +e?/2h,
where the orientation of the exchange field determines the sign
of the conductivity [7,8].

In real samples a surface is unavoidably connected with
other surfaces and this prevents the observation of the
half-integer quantized anomalous Hall effect. Experimental
observation of the quantum Hall effect (QHE) requires the
existence of edge channels. Each edge channel crossing
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the Fermi energy sums a contribution ¢?>/h to the Hall
conductivity, and therefore only integer QHE is expected to be
observed. Topological insulator slabs with same sign exchange
fields on top and bottom z surfaces support chiral edge states
connecting opposite surfaces and permit the observation of
integer anomalous quantum Hall effect, o, = e?/h [9-11].
In other combinations of exchange fields or for other surface
orientations, the lack of current carrying chiral edge modes
makes the observation of anomalous QHE impossible [11-13].

Within this context, the case of TI nanowires has recently
generated much interest [14,15]. In these systems the surface
state contribution could be more easily extracted in transport
experiments, as demonstrated by the observation of conduc-
tance oscillations associated to an Aharonov-Bohm flux pierc-
ing the nanowire [14,16] and by magnetoresistance measure-
ments [17]. The possibility to induce a magnetization of the
surface states of a TI nanowire by selective magnetic doping
has generated a number of theoretical studies [11,13,18]. These
studies, however, have been mainly restricted to translational
invariant geometries. Additionally, there are several studies
of transport properties in hybrid TI systems [19-29], but
mainly considering infinite slabs or edges instead of finite
nanowires.

In this work we study the transport properties of selectively
magnetically doped topological insulator quantum wires. We
study a rectangular wire along the y direction connected to
metallic leads, as schematically depicted in Fig. 1. Both, top
(T) and bottom (B), z surfaces are divided into two equal
left (L) and right (R) parts. At each sector there is an exchange
field applied on the surface pointing in the Z direction. The wire
is characterized by the exchange fields (Ary,Apr,Arr,ApR)
and we study the electronic transport through wires with differ-
ently oriented local exchange fields. In particular, we focus on
the transport between regions with opposite exchange fields.

Because the considered geometries are not translational
invariant, we compute the conductance of the system using
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FIG. 1. (Color online) Schematic representation of the topologi-
cal insulator nanowire (TINW) connected to metallic electrodes. The
wire is directed along the y direction, and on the top and bottom
z surfaces there are applied exchange fields, Ar;, Ap;, Arg, and
A BR-

recursive Green’s function techniques. The electronic structure
of the TI is calculated with a tight-binding (TB) Hamiltonian
that is obtained by discretizing the k - p Hamiltonian that
describes the band structure of Bi,Se; near the band gap en-
ergy [30]. The results obtained numerically with tight-binding
calculations are discussed in terms of the two-dimensional
Dirac-like effective Hamiltonian that controls the midgap
states that appear at the surfaces.

One of the main results of our work is to demonstrate that
these devices can behave as a conductance switch controlled
by the surface magnetization. Moreover, almost 100% spin-
polarized currents could be generated for certain magnetic
configurations. On the other hand, we show that for an
antisymmetric magnetic configuration a bound state confined
in the middle of the wire appears. The system thus behaves as
a “quantum dot” with a resonant level that can be controlled
by a magnetic flux.

The paper is organized in the following way: after the
Introduction we devote Sec. II to describe the model and the
method for calculating the electronic and transport properties
of the TI wire. In Sec. III we present and discuss the main
results. We conclude the paper in Sec. IV with a summary of
the main results.

II. MODEL AND METHOD
A. k- p model

In materials of the family of Bi,Se; the low-energy and
long-wavelength properties may be described quite accurately
by the projection of the total Hamiltonian in a basis of four
states, |1) = [+,1), [2) = —i|+.1), [3) = |+.]), and |4) =
i|—,|), which are combinations of p, orbitals of Bi and Se
with even + and odd — parities and spin up 1 and down |.
The 4 x 4 k - p Hamiltonian [30] gets the form

P = M®0)T ® I + Akt @ 5. + Aslky e + ky 7)) © 514,
(1
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where M(K) = M,y — Bz(k2 + kz) — B k ; Ty, Ty, and T, are
Pauli matrices acting on the parity of the states, and [ is
the unity matrix. In Hamiltonian (1) we have neglected a
k-dependent diagonal term that only alters the band curvatures
without modifying the properties associated with topology.
For a given topological insulator of the BiySe; family the
Hamiltonian parameters are obtained from ab initio electronic
calculations [31]. In the case of Bi,Se; the k-p parameters
are [30,31] M0_028 eV, A; _22eVA Ay =4.1eVA,

B, =10 eV A , and B, = 56.6 eV A . The spin operators
written in the basis of Hamiltonian (1) have the form [32]

S;=17,®s8:,, S§=1,0s,, 5;=1Q®s,. 2)

Because of the nontrivial topology of Hamiltonian (1),
surface states in the bulk gap will appear for any surface
termination. The bands of these states are represented by
Dirac-like Hamiltonians with the general form [11,31-33]

HYo= (0 x k), withk = (Asky, Acky,Arks),  (3)

where v indicates the direction normal to the surface. The
matrices o act on the basis of the surface Hamiltonian, which
depends on the surface orientation [11], and only coincides
with the electron spin operator for surfaces perpendicular to
the z direction. For z surfaces, an exchange field A directed
in the v direction introduces a term Ao, in the surface
Hamiltonian and therefore only an exchange field pointing
in the z direction opens a gap at the Dirac point. The matching
conditions between states of different surfaces have the

form
"
c, Cu
( U) B MU,M( M)’ (4)
C'U CU
where (c,,cy) is the spinor eigenstate of the Dirac equation

corresponding to surface v, and explicit forms of the matrices
M, , are given in Ref. [11]. For this work, the relevant
connecting matrices are

Ay 1 1 —1
2_142<_1 1)a MX,Z_M)_(,Z_MZ,X .

B. Tight-binding Hamiltonian

The band structure and topology of Hamiltonian (1) can
also be described by a TB model. We consider a simple cubic
crystal, such that each point of the lattice is characterized by
an index i = (iy,iy,i;). At each lattice point we associate four
orbitals corresponding to positive and negative parity and spin
up and down. We obtain the tight-binding hopping parameters,
by considering the k - p Hamiltonian as a long-wavelength
expansion of the the tight—binding model, i.e., sin(ka) — ka
and cos(ka) — 1 — (k“) , a being the lattice parameter. Finally,
for the cubic lattlce we relate cosk,a and sink,a with
the sum and subtraction, respectively, of the Bloch phases
between a site and its two first neighbors in the v direction.
Therefore the cosine is related with a real hopping parameter
and the sine with a pure imaginary hopping. Taking these
considerations into account, the tight-binding Hamiltonian
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B,
HTB — Z {MO . ®I¢ — ?[(c;r — ¢ )T ® T (¢ — €iy2)]

i

B
- a—j[(ci+ — ¢ )T ® (G —cive) + (6 — ¢ ) T ® 1 (ci — ciyyg)]

A] L4
— —i(¢; Ty ® 5, Cits
2a

+
— € Ty ® 5, C)

o oot et oot ' 6
2al(ci Ty @ Sy Cits ci+j Ty & Sx C1+Ci Ty® Sx City ci+§~ Ty & Sx cl) ’ ( )

where ¢; = (¢j4,4,—1Ci,— 1,Ci+,.iCi— ), and the operator
ciz.s annihilates an electron at site i with parity v and spin
S.

In order to check the adequacy of the tight-binding
Hamiltonian for describing the low-energy properties of TI,
we calculate the band structure of a TI quantum wire with
rectangular cross section. The wire has N, and N, sites along
the x and z axes, respectively, and we take it infinitely long
in the J direction, so that k, is a good quantum number. In
Fig. 2, we plot the band structure obtained by diagonalizing the
tight-binding Hamiltonian with the parameters corresponding
to Bi;Se; and a lattice parameter ¢ = 1 nm. In Bi,;Se; the bulk
energy gap is 0.56 eV, therefore the bands shown in Fig. 2
should correspond to midgap surface states. We verify this by
computing the energies of the surface states of the quantum
wire using the effective Hamiltonians of the different surfaces
of the wire, Eq. (3), and the matching conditions Egs. (4)
and (5). For this quantum wire geometry the surface states
have an analytical expression [11],

+ . [(Agk,)? + A4, T’ 7)
€nk, = : r— 2 (2],
&y e AL, + AsL, 2

withn = 1,2,3. ... Analogous expression have been obtained
for TI wires with cylindrical geometry [34,35]. In Fig. 2

150 W
100 W
s

ol
50 M
-100 M

ettt

E (meV)

-150

-0.2 -0.1 0.0 0.1 0.2
k, (1/nm)

FIG. 2. (Color online) Band structure of a quantum wire along
the 9 direction of Bi,Se; obtained from solving the TB Hamil-
tonian (6) (crosses) and by matching surface states, Eq. (7). The
dimensions of the wire are N, = N, = 15 and the lattice parameter
of the lattice isa = 1 nm.

(

we plot the quantum wire surface band structure, Eq. (7),
as function of the wavenumber k, for L, = L, = (N, + 1)a.
The agreement between both calculations indicates that the
tight-binding Hamiltonian (6) describes very accurately the
surface states of a nanowire.

C. Conductance

For computing the conductance of a two terminal geometry
like the one depicted in Fig. 1, described by a tight-binding
Hamiltonian, we use a recursive Green’s function method. The
rectangular wire is defined along the $ direction and connected
to normal metallic leads at both ends. The lateral dimensions
are N, = N, sites, and the number of layers along the wires
is Ny, = 2N, + 1, with the first and last layers corresponding
to the metallic leads. These leads are described by constant
imaginary self-energies X", = &iy P g, where P are
projectors on the sites of the first and last layer respectively.
The energy dependent conductance of the system is [36]

4¢? A A PN
G(E) = %Tr[n G p(E) P G4, (B, ®)

where [y = ImX%{ , and QZZ(E) are the 16NN, x
16N, N, matrix elements of the Green’s function operator,

-1
zer), ©)
connecting the outermost layers of the wire. To calculate these
quantities we use conventional recursive Green’s function
techniques (see, e.g., Refs. [37-39]).

ga,r(E) — (E _ HTB _ EZV —

III. RESULTS AND DISCUSSION

A. Uniform magnetization

We first consider systems with uniform magnetization on
top and bottom surfaces, i.e., geometries with exchange fields
(A7 ApArAg). In the tight-binding formalism, the exchange
fields act as a Zeeman coupling on the lattice surface sites. In
these calculations we fix the lateral dimensions of the wires to
N, = N, = 15, and the length of the wiresis N, = 59. We take
a lattice parameter a = 1 nm, large enough to avoid the direct
coupling between surface states of opposite surfaces. The
choice of the size of the exchange fields requires some analysis.
Common materials to be used for this purpose include EuO,
EuS, and MnSe. While calculated values for the exchange
fields range from 8.5 to 54 meV [40-42], some evidence of
induced gaps as large as 90 meV has been reported for MnSe
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FIG. 3. (Color online) Schematic representation of the edge
charge carrying channels in the (a) (AAAA) and (b) (AAAA)
configurations. The red dashed lines represent nonchiral states
confined on the laterals +x surfaces. In (b) the continuum blue lines
indicate chiral edge states. In (c) we plot the conductance as a function
of energy for the (AAAA) (blue) and (AAAA) (red) configurations.
The peak in the conductance at ~45 meV (~32 meV) in the equal
(opposite) magnetization cases corresponds to the lowest nonchiral
energy confined state on the lateral surfaces. The insets in (c) show
the band structure for the (A AAA) (left panel), and (AAAA) (right
panel) cases. The dimensions of the wire are N, = N, = 15 and

N, = 59. The lattice parameter is @ = 1 nm and the exchange field
A =90 meV.

films expitaxially grown on Bi2Se3 [43]. In our calculations
we fix the magnitude of the exchange field to this 90 meV
value. Although this is somewhat larger than the commonly
expected values, the results that we present below do not
depend qualitatively on the size of this parameter.

In Fig. 3 we plot the results for the equal (AAAA)
and opposite (AAAA) configuration cases. In both cases
the z surfaces are gapped and should have a half-integer
anomalous Hall conductivity. In the equal magnetization case,
there are midgap energy chiral edge states [see inset of
Fig. 3(c)] with wave functions that decay exponentially in
the z surfaces and are constant in the lateral x surfaces [11].
Mathematically these solutions appear when matching the
surface states determined by Eq. (3) for x and z surfaces using
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FIG. 4. (Color online) (a) Schematic representation of the charge
carrying channels in the (AOAOQ) configuration. The red lines
represent the lowest energy states confined along the £x surfaces
and —z surfaces. This state is not chiral and is spin polarized. In (b)
the red lines around the surface on a x-z cross section indicate the
region where these states have a significant weight. Finally, in (c) we
plot the conductance as a function of energy for this configuration.
The inset in (c) shows the corresponding band structure for an infinite
wire. Due to the exchange field in the top layer, the lowest energy
confined states are spin polarized. The wire dimensions and other
parameters as in Fig. 3.

the connecting matrices of Eq. (5). Physically, the existence
of the chiral edge states indicates that the wire behaves as
an integer anomalous quantum Hall system. In the opposite
magnetization case, it is not mathematically possible to match
the midgap states in top and bottom surfaces through the lateral
x-surface chiral states, and the wire as a whole behaves as
a normal insulator. These results indicate that the (AAAA)
configuration preserves time reversal symmetry. In the equal
polarization configuration the existence of chiral edge states
quantizes the conductance of the system to e?/h [Fig. 3(c)].
On the contrary, when the exchange field has opposite sign
on opposite surfaces the chiral modes are absent and only a
residual conductance G(E) ~ exp —LA /hvp, with L = N_.a
appears at low energies due to evanescent modes. In both
configurations, for larger absolute values of the chemical
potential, higher energy lateral confined states yield an extra
2¢%/ h contribution to the conductance.

In Fig. 4 we show the conductance for a TI wire with
an exchange field applied uniformly just on the +z surface,
i.e., for a (AOAO) configuration. In this geometry only the
top surface has a half-integer quantized Hall conductivity.
In absence of electron-electron interaction chiral edge states
carry an integer charge, and therefore it cannot be possible
to observe a half-integer QHE. This is consistent with the
impossibility of matching the midgap energy solutions of the
surface Hamiltonians (3) corresponding to this configuration.
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The lowest energy confined state is nonchiral and corresponds
to a wave function confined along the bottom and lateral
surfaces [see Fig. 4(b)]. The exchange field on the top surface
makes the low-energy confined states spin polarized; this
results in a shoulder in the conductivity at 2/ and peaks
at 2¢?/ h and 3¢?/ h as a function of energy.

B. Nonuniform magnetization

In this section we consider geometries where the magneti-
zation in one or in both z surfaces is not uniform. When joining
two surfaces with different quantum Hall conductivities some
chiral bound modes should appear at the junction [1,44].
Similar states have been predicted to appear at p-n junctions
in the presence of a magnetic field [45,46]. The number of
chiral modes is equal to the change in Chern number when
traversing the junction. In two dimensions this is equivalent to
the difference in Hall conductivities in units of e?/h. The
charge current direction of this chiral bound mode should
be appropriated to preserving current conservation [1,47].
In a magnetically doped z surface the Hall conductivity
is quantized to 4e?/2h, with the sign depending on the
orientation of the magnetization. Therefore, at the junction
between two regions of a z surface with opposite exchange
field, a single chiral bound mode should appear.

In Fig. 5 we plot the conductance for a wire with the bottom
surface uniformly magnetized in the z direction, whereas the
left and right parts of the top surface are polarized in the
positive and negative direction, respectively, i.e., a (AAAA)
configuration. In this geometry an edge channel appears at the

(a) — _
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FIG. 5. (Color online) (a) Schematic representation of the charge
carrying channels of a TI wire in the (AAAA) configuration.
The red dashed lines represent nonchiral states confined along the
£x surfaces. The continuum blue lines indicate lateral chiral edge
states. The green dashed line represents a chiral bound mode
separating regions with opposite magnetization in the top surface.
In (b) we plot the conductance as a function of energy. The wire
dimensions and other parameters as in Fig. 3.
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FIG. 6. (Color online) (a) Schematic representation of the charge
carrying channels of a TI wire in the (AAAA) configuration.
The red dashed lines represent nonchiral states confined along the
+x surfaces. The continuum blue lines indicate lateral chiral edge
states. The green dashed (vertical) lines represent a chiral bound mode
separating regions with opposite magnetization in the top (bottom)
surface. In (b) we plot the conductance as a function of the Fermi
energy of the wire. The wire dimensions and other parameters as in
Fig. 3.

middle of the top surface. At low energy, this state produces a
perfect backscattering of the current carried by the chiral state
confined in the x surface through the chiral edge state in the —x
surface. The shoulder at e?/  that appears in the conductance
for energies near 30 meV corresponds to the coupling between
the incoming chiral edge mode with the nonchiral confined
state in the (A A A A) configuration of the right part of the wire
(see Fig. 3).

Chiral bound states also occur when the left and right parts
of the TI wire have opposite sign Hall conductivity. In Fig. 6(b)
we plot the conductance for the (AAA A) configuration. Here
the top and bottom left surfaces have a positive exchange field
and globally a positive integer quantum Hall conductivity. In
the right part of the wire the orientation of the exchange fields
and, accordingly, the sign of the Hall conductivity are reversed.
As a consequence, at the junction between left and right parts,
two chiral edge modes, carrying charge in the same direction,
appear at the junction. One of these modes is located in the top
surface, whereas the other is located in the opposite one. The
chiral bound states reflect the incident current perfectly and
at low energy the conductance is negligible. At E ~ 55 meV
the conductance jumps to 2¢?/h due to the contribution of
the lateral confined nonchiral state, in agreement with the
band structure for the equal magnetization case illustrated in
Fig. 3. It should be mentioned that this geometry is somewhat
equivalent to the p-n device proposed in Ref. [28]. In our
case, the jump in the magnetization plays the role of change
from p to n doping in the device of Ref. [28]. A similar
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FIG. 7. (Color online) (a), (b) Schematic representation of the
charge carrying channels of a TI wire in the (AAAA) configuration.
The red dashed lines represent nonchiral states confined along the
+x surfaces. The green and black dashed lines indicate chiral
edge bound states in the & surfaces. In (b) the continuous blue
lines represent chiral edge bound states in the £x surfaces. The
continuum blue lines indicate lateral chiral edge states. The green
dashed (continuous) line represents a chiral bound mode separating
regions with opposite magnetization in the top (bottom) surface. In
(c) we plot the conductance as a function of energy for N, = N, = 15
and N, = 59. (d) Conductance as a function of energy for N, = 90,
N, =15, and N, = 59. (e) Energy of the lowest confined state as a
function of a magnetic flux applied parallel to the . In (f) we plot the
energy of the lowest confined state, obtained from the tight-binding
calculation and from Eq. (10) as a function of N, for N, = 15. All
other parameters as in Fig. 3.

configuration of interference paths chiral bound states at the
interface appears in both cases. Therefore, we have checked
that the present geometry exhibits a similar interference pattern
in the conductance as a function of the magnetic flux across
the wire cross section as the one reported in Ref. [28].

C. Bound states in the antisymmetric (AAAA) configuration

An interesting situation occurs when the chiral edge bound
states on top and bottom surfaces have opposite velocities. This
case happens in the (AAAA) geometry, where the exchange
fields change sign when going from left to right and from
bottom to top of the wire. In this configuration, at the junction
between left and right parts of the £z surfaces there appear
opposite directed chiral bound states (see Fig. 7). Because the
magnetization on top and bottom layers has opposite directions

PHYSICAL REVIEW B 92, 235445 (2015)

there are no chiral states in the lateral +x surfaces. However,
in this geometry there are chiral bound states at the junction
between the left and the right parts of the wire. The wave
functions in the +x surfaces are confined by the exchange
gaps in the =z surfaces. The magnetization has opposite sign
on the left and right parts of the TI wire, and therefore the
wave function corresponding to the lowest positive (highest
negative) energy state in the right (left) part of the x surface
coincides with the wave function of the highest negative
(lowest positive) energy state in the left (right) part of the
sample. This crossing of the positive and negative energy
states when crossing the junction between left and right parts,
justifies the existence of a chiral bound mode in the x surface.
With the same arguments we expect a chiral bound state in the
—x surface pointing in the opposite direction.

In Fig. 7(c) we plot the conductance as a function of energy
for a wire with magnetization (AAAA) and N, = N, = 15
and N, = 59. There is a well defined peak with a maximum
value of e¢?/h that indicates resonant tunneling through a
confined state. When the perimeter of the wire increases,
the energy of the confined state decreases and more confined
states appear in the gap energy [see Fig. 7(d)]. In addition,
the energy of the lowest confined states is half the energy
separation between higher confined states. This suggests that
these states embrace the wire and are formed by matching the
four one-dimensional bound chiral modes in the +x and +z
surfaces [11].

The wave function of these chiral confined modes in the £z
surfaces can be approximately obtained by using the surface
Hamiltonians, Eq. (3). For the £z surfaces the wave function
has the form ¥*2(x,y) = (1, — i) e* ¥ e=AD1 with k, > 0.
These states are bound near y = 0 and have opposite velocities
on opposite surfaces. Their spin is, however, well defined
along the y direction. An adequate description of the chiral
bound modes in the +x surfaces requires a basis of electronic
states larger than that used with the surface Hamiltonians.
However, an approximate ansatz for these wave functions is
provided by ¥ (y,z) = (i,1)T e¥kZe=2 with k, > 0 and
A the effective gap in the % surfaces. When an electron moves
enclosing a loop around the TI wire, the matching of the wave
function, Egs. (4) and (5), gives the quantization condition,

_ A1A2(l’l + %)7‘[

y = , n=01,.... (10)
AZLZ + Ale

The 7 /2 that appears in the quantization energy occurs due
to the helical nature of the carriers; when the electrons wind
around the TI wire, the expectation value of the Pauli matrices
that appear in the surface Hamiltonians rotate by 27, and the
electron wave function acquires a phase of & [48]. This shift
in the quantization condition agrees perfectly with the fact that
the energy of the lowest confined state is half the separation in
energy of other confined states. In Fig. 7(e) we plot the energy
of the confined states as a function of the lateral size of the wire
N, for N, = 15. The agreement between the results obtained
with the tight-binding calculations and Eq. (10) is good at
larger values of N,; this reflects the fact that there is a gap in
the +x surfaces induced by the the top and bottom surfaces.
Finally, to check that the confined states correspond to a
wave function encircling the wire, we have added a magnetic
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flux, ®, through the wire cross section. The bound states should
evolve according to

A1A2(n + % + c%)7‘!’
A2Lz + Ale
where @ is the flux quantum. In Fig. 7(e) we plot the energy of
the first confined state obtained from tight-binding calculations
as a function of the magnetic flux. As can be observed, the

energy of this resonant level follows closely the analytical
prediction of Eq. (11) and vanishes as expected at ® = @ /2.

E (D)=

; 1

IV. CONCLUSIONS

In this work we have analyzed the electronic structure
and the conductance of a TI nanowire with uniform and
nonuniform magnetization on its surfaces. For the uniform
case with equal polarization on the £z surfaces, conduction
through chiral states propagating along the =+x surfaces
yields a quantized e?/h conductance at low energies. The
conductance could be almost fully suppressed by reversing
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the magnetization on one of the surfaces or on one half of
the wire, thus providing a switching mechanism. On the other
hand, for the nonuniform case in the antisymmetric (AAAA)
configuration, chiral bound states appear at the center of the
wire, leading to resonant tunneling with a conductance raising
up to e/ h for symmetric coupling to the left-right leads. The
energy of these states is well described by a simple analytical
expression, showing that it depends on the wire perimeter and
can be controlled by a magnetic flux through its cross section.
The magnetically doped nanowires thus provide a physical
realization of a highly tunable spin-polarized quantum dot.
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