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Spin-orbit coupling in graphene induced by adatoms with outer-shell p orbitals
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Many of the exotic properties proposed to occur in graphene rely on the possibility of increasing the spin-orbit
coupling (SOC). By combining analytical and numerical tight-binding calculations, in this paper we study the SOC
induced by heavy adatoms with active electrons living in p orbitals. Depending on the position of the adatoms
on graphene, different kinds of SOC appear. Adatoms located in a hollow position induce spin-conserving
intrinsiclike SOC, whereas a random distribution of adatoms induces a spin-flipping Rashba-like SOC. The
induced SOC is linearly proportional to the adatom concentration, indicating the nonexistent interference effects
between different adatoms. By computing the Hall conductivity, we have proven the stability of the topological
quantum Hall phases created by the adatoms against inhomogeneous spin-orbit coupling. For the case of Pb
adatoms, we find that a concentration of 0.1 adatoms per carbon atom generates SOC’s of the order of ∼40 meV.
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I. INTRODUCTION

Research on graphene, a two-dimensional crystal of carbon
atoms, has led to the discovery of a large number of interesting
electrical, magnetic, mechanical, and optical properties [1,2].
The small atomic number of carbon implies that electrical
carriers in graphene have an extremely weak spin-orbit (SO)
coupling [3,4]. This property in combination with the large
graphene electron mobility makes graphene a very good
candidate for using in spintronics [5,6].

On the other hand, some proposals of exotic topological
phases in graphene rely on the possibility of increasing the
SOC. Because of the graphene lattice symmetry, there are
two types of spin-orbit coupling in graphene, intrinsiclike,
where the ẑ component of the electron spin is a good quantum
number and Rashba-like, which mixes spins and appears in
the absence of mirror symmetry [7]. In graphene, the intrinsic
SOC opens a gap, and the system becomes a quantum spin-Hall
insulator, with gapless edge states able to transport spin and
charge [8,9]. Nontrivial topological phases may also occur
in multilayer graphene [10]. Quantum anomalous Hall effect
was predicted to occur in bilayer and monolayer graphene
in the presence of Rashba SOC and an exchange field or
magnetic impurities [11,12]. The experimental realization of
these topological phases requires a large SOC, and therefore
there is considerable interest [13–22] in increasing the SOC
and clearing the way to the study of exotic topological phases
in graphene. Experimental reports on enhancement of SOC
in graphene by weak hydrogenation [17], gold hybridization
[23], or proximity with WS2 [19] indicate that it is possible
to increase the SOC in almost three orders of magnitude.
Recently, it has been reported that graphene grown on Cu
shows a SO splitting around 20 meV [24]. Intercalation of Au
atoms in graphene grown on Ni produces a SO splitting of
near 100 meV [23]. Similarly, the intercalation of Pb atoms
in graphene grown on an iridium substrate seems to produce
a giant SOC [18]. Theoretically, it has been proposed that
hydrogenated [25] or fluorinated [26,27] graphene can get
a large induced SOC. It has also been proposed that heavy
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adatoms with partially filled p shells, deposited on symmetric
positions of the graphene lattice, could induce large intrinsic
SOC [28].

In this paper we study the SOC induced by heavy adatoms
with active electrons living in p orbitals; in particular we con-
sider Pb atoms that have been proven to induce large SO effects
in graphene [18]. The physical picture is the following: The
tunneling of an electron between two carbon atoms through
the adatom p orbitals opens additional channels for hopping
in graphene. The SOC between the adatom p orbitals makes
that the tunneling channels can conserve the spin inducing
an intrinsic SOC or can flip the spin inducing a Rashba-like
SOC.

By combining analytical calculations, perturbation theory,
and tight-binding-based numerical simulations, we study the
type of SO coupling induced by adatoms residing in different
positions of the graphene unit cell. In addition, we study how
a finite density of adatoms, in different distributions, affects
the induced SO couplings. The main conclusions of our paper
are the following:

(i) Adatoms located in hollow positions, see Fig. 1, induce
intrinsic SOC. A finite density of adatoms in hollow positions
randomly distributed opens an energy gap at the Dirac points
that increases linearly with the adatom concentration. This
gapped phase is a quantum spin-Hall state. The simulations
indicate that, even for high adatom coverage, there are not
interference effects between the adatoms, and the gap only
depends on adatom density. In the case of Pb atoms we find
gaps of the order of 50 meV for a concentration of 0.1 adatom
per carbon.

(ii) For adatoms placed in top positions, see Fig. 1, the
tunneling from graphene to the adatom and back induces a
Rashba-like spin-flip hopping between the underneath C atom
and its first neighbors and an intrinsiclike spin-conserving
second neighbors tunneling between the carbons surrounding
the underneath carbon atom. The intrinsiclike SOC induced by
adatoms in top positions has opposite sign from that induced
by adatoms in hollow geometry. The Rashba SOC has the
same sign independently of the sublattice of the underneath
carbon.

(iii) A finite density of adatoms randomly distributed on
graphene induces a finite Rashba SOC linearly proportional
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FIG. 1. (Color online) Schematic representation of the effective
hopping between carbon atoms induced by an adatom with active
electrons in outer p shells. Vertical H and T lines indicate the hollow
and top positions, respectively.

to the density of adatoms. For a random distribution of
adatoms, the resulting intrinsiclike SOC vanishes, because
contributions from different locations of the adatoms have
opposite signs. Similar results are obtained when the adatoms
form an array commensurate with a large graphene supercell.
By computing the Hall conductivity, we have obtained that a
random distribution of adatoms on graphene in the presence of
an exchange field is a quantum anomalous Hall system. When
the adatom is Pb, we obtain that the Rashba SO coupling can
be as large as 35 meV for a concentration of 0.1 Pb per carbon
atom.

The rest of the paper is organized in the following way: In
Sec. II we introduce the graphene and adatom Hamiltonians,
and in Sec. III we describe the hopping between graphene
carbon atoms and the adatom p orbitals. In Sec. IV we present
the perturbation theory for describing the adatom mediated
effective hopping between carbon atoms. The knowledge of the
effective hopping between carbon atoms allows us to obtain,
in Sec. V, analytical expressions for SOC induced by adatoms
located in top and hollow positions. Section VI presents tight-
binding-based numerical simulations for studying the effect
that a random or commensurate distribution of adatoms have
on the induced SOC. In Sec. VII we calculate the topological
properties of graphene doped with adatoms. We close the paper
with a summary of the results.

II. PRELIMINARIES

A. Graphene Hamiltonian

In graphene, carbon atoms crystallize in a triangular
lattice of primitive translation vectors a = (0,a) and b =
(
√

3/2,1/2)a, where a = 2.46 Å is the lattice constant. The
positions of the triangular lattices are Ri . There are two
atoms per unit cell located at positions dA = (0,0) and dB =
(a/

√
3,0) that define sublattices A and B in graphene. Covalent

sp2 bonds between carbon atoms stabilize this honeycomb
lattice whereas the tunneling between pz orbitals is the origin
of the low energy active conduction and valence π bands.
The band structure is rather well described by a tight-binding
model with hopping t ∼ 2.7 eV between first neighbors carbon

pz orbitals,

H0 = −t
∑

〈iA,iB 〉,σ
(|Z,iA,σ 〉〈Z,iB,σ | + H.c.). (1)

Here the sum runs over first neighbor pairs, and |Z,iα,σ 〉
represents the wave function of an electron at position Ri + dα

occupying a carbon pz orbital with z component of the spin
σ . The energy of the pz carbon orbital is chosen as the zero of
energies.

In graphene the intrinsic SOC has a chiral structure of the
form

HI
SO = λSO

∑
〈iα,jα〉,σ

(
iσ

(
ûiα × ûjα

)
z
|Z,iα,σ 〉〈Z,jα,σ | + H.c.

)
,

(2)

where the sum runs over second nearest neighbor carbon
atoms, and ûiα is a unit vector parallel to Ri + dα . Note
that the intrinsic SOC conserves spin, and it is not associated
with broken mirror symmetry. On the contrary, Rashba SOC
appears because of broken mirror symmetry, in particular due
to the substrate, and induces a coupling between first neighbors
with opposite spin of the form

HR
SO = iλR

∑
〈iA,jB 〉,σ,σ ′

((σ × ûiAjB
)z|Z,iA,σ 〉〈Z,jB,σ ′| + H.c.),

(3)

where ûiαjβ
is a unit vector parallel to Rj + dβ − Ri − dα and

σ the electron spin Pauli matrices.
In the absence of SO couplings the conduction and valence

bands touch at two inequivalent points of the Brillouin zone
K = (0, 4π

3a
) and K′ = (0, − 4π

3a
) which are the celebrated Dirac

points. Near these points the low energy physics is described
by the Dirac equation

H0 = �vF (kxσ0 ⊗ τx + skyσ0 ⊗ τy), (4)

where the moment k is measured with respect to the Dirac
points, s = 1 and −1 stand for K and K′, respectively, and
τ are the Pauli matrices acting on the spinor defined by the
amplitude of the wave function on sublattices A and B. In the
previous equation σ0 represents the unity matrix in the spin
sector. The Fermi velocity is related to the hopping through
the relation �vF =

√
3

2 ta. In this continuum approximation,
and neglecting higher order terms in momentum k [29], the
SO terms get the form

HI
SO = 3

√
3λSOsσz ⊗ τz (5)

HR
SO = 3

2
λR(σy ⊗ τy + sσx ⊗ τx). (6)

B. Adatom Hamiltonian

We consider heavy atoms with the active electrons living
in p orbitals. The Hamiltonian describing the electrons in the
adatom contains a spin-orbit coupling part and a crystal field
HCF term. In the basis{|px ↑〉,|py ↑〉,|pz ↑〉,|px ↓〉,|py ↓〉,
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|pz ↓〉} the Hamiltonian reads

Hp = �SOL · σ + HCF

= �SO

2

⎛
⎜⎜⎜⎜⎜⎝

0 −i 0 0 0 1
i 0 0 0 0 −i

0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

εx 0 0 0 0 0
0 εy 0 0 0 0
0 0 εz 0 0 0
0 0 0 εx 0 0
0 0 0 0 εy 0
0 0 0 0 0 εz

⎞
⎟⎟⎟⎟⎟⎠. (7)

Here �SO is the spin-orbit coupling parameter, and L and σ are
the usual angular momentum and spin operators. Nonspherical
effects occurring in the geometry produce a crystal field that
splits the energies of the p orbitals. For adatoms deposited on
planar graphene, we expect that εx = εy 
= εz.

III. TUNNELING BETWEEN AN ADATOM AND A
CARBON Z ORBITAL

We consider an adatom placed at position r = (x,y,h),
where h is the vertical distance between graphene and the
adatoms, Fig. 2. The tunneling amplitudes between a carbon
orbital located at position Ri = (Xi,Yi,0) and the adatom px ,
py , and pz orbitals are

〈Z,i,σ |T̂ |px,σ 〉 = 1
2 cos φ sin 2θ (Vppσ (d) − Vppπ (d))

〈Z,i,σ |T̂ |py,σ 〉 = 1
2 sin φ sin 2θ (Vppσ (d) − Vppπ (d))

〈Z,i,σ |T̂ |pz,σ 〉 = cos2 θVppπ (d) + sin2 θVppσ (d), (8)

where θ = tan−1 h√
(x−Xi )2+(y−Yi )2

, φ = tan−1 y−Yi

x−Xi
, and Vppσ

and Vppπ are the Slater-Koster hopping parameters be-
tween the pz graphene orbital and the heavy adatom p

orbitals. The hopping parameters depend on the distance
d =

√
(x − Xi)2 + (y − Yi)2 + h2 between the atoms that we

parametrize in the form Vppσ (π)(d) = Vppσ (π)(d = h)e−β(d−h),
with β = 3 [30] and Vppσ (π)(h) obtained from density func-
tional calculations [18]. Note that in the tunneling process the

θ
φ

FIG. 2. (Color online) Geometry of an adatom located at a
distance h of the graphene layer. The angles θ and φ and the distance
d define the spherical coordinates of the adatom with respect to a
carbon atom.

carrier spin is conserved. Because of the symmetry of the p

orbitals, the hopping amplitude between a carbon pz orbital
in graphene and the px and py adatom orbitals have opposite
sign depending on whether the adatom is deposited on the top
or bottom of the graphene sheet. On the contrary, the hopping
between z orbitals is independent of the position of the adatom
with respect to the graphene layer.

IV. TUNNELING BETWEEN CARBON ATOMS MEDIATED
BY AN ADATOM

The spin-orbit coupling in the adatom located at r =
(x,y,h) allows an extra path for tunneling between two carbon
atoms located at Ri and Rj with spin σ and σ ′, respectively.
In second order perturbation theory a single adatom produces
a coupling between the carbon atoms of the form

γiσ,jσ ′ =
∑

l

〈Z,i,σ |T̂ |p̃l〉〈p̃l|T̂ |Z,j,σ ′〉
ε̃l

, (9)

here |p̃l〉 and ε̃l are the eigenfunctions and eigenvalues
of Hamiltonian Eq. (7). Because of the form of spin-orbit
coupling in the adatom outer p shell, the induced hoppings
satisfy the following relations for i 
= j ,

γiσ,j−σ = −γ ∗
i−σ,jσ

γiσ,jσ = γ ∗
i−σ,j−σ (10)

γiσ,jσ ′ = γ ∗
jσ ′,iσ ,

and for i = j ,

γ iσ,iσ = γi−σ,i−σ (11)

γ iσ,i−σ = 0. (12)

The adatom gives rise to two kind of SO assisted tunneling:
(i) spin-conserved tunneling events of the form

|Z,i,σ 〉 T̂−→ |px(y)σ 〉 Hp−→ |py(x)σ 〉 T̂−→ |Z,j,σ 〉 (13)

that are pure imaginary and change sign when reversing spin.
Following the standard notation we call it intrinsic spin-orbit
coupling. This tunneling amplitude behaves as sin2(2θ ); it
is zero when the adatom is in the graphene sheet, being
independent on the top or bottom position of the adatom with
respect to the graphene layer.

(ii) nonconserving spin processes of the form

|Z,i,σ 〉 T̂−→ |pzσ 〉 Hp−→ |px(y) − σ 〉 T̂−→ |Z,j, − σ 〉
(14)

|Z,i,σ 〉 T̂−→ |px(y)σ 〉 Hp−→ |pz − σ 〉 T̂−→ |Z,j, − σ 〉.

These terms get origin on the lack of mirror symmetry in the
hopping between z orbitals, and we refer to this tunneling con-
tribution as Rashba SOC. This tunneling amplitude behaves as
sin(2θ ) and changes sign when the adatom is located on the
top or the bottom of the graphene layer.
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V. EFFECTIVE HAMILTONIANS FOR HOLLOW
AND TOP POSITIONS

When the adatoms are located at high symmetry points
of the graphene lattice, it is possible to write down analytic
expressions for the effect that the SO induces on the graphene
low energy band structure. The procedure consists of project-
ing the perturbation created by the adatom on the atomic Bloch
states at the K and K′ Dirac points,


A,s,σ = 1√
N

∑
i

eisKRi |Z,iA,σ 〉


B,s,σ = 1√
N

∑
i

eisKRi |Z,iB,σ 〉, (15)

where N is the number of unit cells in the crystal. These Bloch
states are the eigenstates of the Dirac Hamiltonian, Eq. (4)
for k = 0. When the adatoms form a periodic array with a
reciprocal lattice vector equal to an integer number of K − K′,
there is a non-negligible coupling between states coming from
different Dirac cones [31]. We avoid this situation by choosing
appropriate coverages for which the valleys are separated in
reciprocal space [31]. Under this condition, it is appropriate
to assume that the adatoms do not induce coupling between
states coming from different Dirac cones.

A. Adatom in hollow position

In the hollow geometry the adatom is located on top of
the center of a hexagon of the graphene lattice at a height
h, see Fig. 1. We consider SO induced tunneling up to
third neighbors; tunneling between more distant atoms can
be neglected because of the exponential decrease of the
tunneling amplitude with the distance. Coupling between
Bloch wave functions of different sublattices involves first
and third neighbor hopping and gets the form

〈
A,s,σ |VH |
|B,s,σ ′ 〉 = 1

N

∑
iA,jB

γiAσ,jBσ ′eisK(Rj −Ri ), (16)

where iA (jB) runs over the vertices, of sublattice A (B),
of the hexagon surrounding the adatom. VH represents the
perturbation created by the adatom in the hollow position.

The coupling between Bloch states of the same sublattice
involves second neighbor tunneling and gets the form

〈
A,s,σ |VH |
|A,s,σ ′ 〉 = 1

N

∑
iA 
=jA

γiAσ,jAσ ′eisK(Rj −Ri ). (17)

A similar expression applies for 〈
B,s,σ |VH |
|B,s,σ ′ 〉. The
adatom also induces diagonal self-energies that for the adatom
in the hollow position are equal for both Dirac points, spin
orientation, and graphene sublattices.

In the hollow geometry and for σ ′ = −σ , it is possible to
sum the six terms, Eq. (14), that contribute to spin-flip effective
tunneling, and we get

γiσ,j−σ = −σ tR(e−iσφj − e−iσφi ), (18)

tR being a constant that depends on the carbon to adatom
tunneling parameters, Eq. (8). Using this expression and
relations Eq. (10), we obtain that in the hollow position an

adatom with outer shell p orbitals does not induce momentum
independent nonconserving spin tunneling and therefore does
not induce Rashba-like SOC in graphene.

For spin-conserving SO induced tunneling, the sum of the
two processes described in Eq. (13) gives a hopping,

γiσ,jσ = iσ tso sin(φi − φj ), (19)

where tso is a constant that depends on the distance between
the adatom and the graphene sheet. When introducing this
hopping and applying the symmetries Eq. (10), we obtain
that the coupling between Bloch states of different sublattices
and same spin cancels identically. On the contrary the spin-
conserving coupling between same sublattice Bloch functions
gets a finite value that changes sign when changing spin,
sublattice, or Dirac cone,

〈
τ,s,σ |VH |
τ,s,σ 〉 = 1

N
3
√

3tsoσsτ. (20)

This term has the same form as the Hamiltonian Eq. (5), and
we conclude, in agreement with Ref. [28], that a heavy adatom
with electrical active p orbital in a hollow position on top of
graphene induces an intrinsiclike SOC.

B. Adatom in top position

In this geometry the adatom is located vertically on top
of a carbon atom at a height h. This configuration privileges
the sublattice A of the underneath carbon atom. In the top
arrangement the carbon pz orbital is orthogonal to the px

and py orbitals of the adatom located on top of it. Therefore
the processes contributing to first neighbor spin-conserving
tunneling are zero by symmetry, Eq. (13). However, an adatom
on top of a carbon of a given sublattice induces spin-conserving
tunneling between carbon atoms of the opposite sublattice,

〈
B(A),s,σ |VTA(B) |
B(A),s,σ 〉 = τA(B)
3
√

3

N
tsoσs, (21)

where VTA(B) represents the perturbation created by the adatom
on top of atoms belonging to sublattice A(B). Therefore
adatoms in top positions induce intrinsiclike SO coupling,
although it is important to note that the sign of this conserving
tunneling is opposite to that induced by an adatom in the
hollow position, Eq. (20).

Because of the symmetry of the orbitals, only one of the
mechanisms described in Eq. (14) contributes to spin-flip
tunneling between first neighbors,

γiσ,j−σ = −σ tRe−iσφj , (22)

where tR is a constant that depends on carbon to adatom
tunneling parameters. Adding the contributions from the three
first neighbors of the underneath C atom, we get the following
contribution to the low energy Hamiltonian,

〈
A,s,σ |VTA(B) |
B,s,−σ 〉 = 1

N
3tRs

(1 + σs)

2
. (23)

This Rashba-like SOC has the same form and sign indepen-
dently on the sublattice where the adatom is placed. The
Rashba term gets its origin in the broken mirror symmetry
produced by the adatoms, and this is reflected in that tR changes
sign depending on whether the top adatoms are located on the
top or bottom of the graphene layer.
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VI. NUMERICAL RESULTS

Adatoms deposited on graphene should be placed at mini-
mum energy equilibrium positions. The adsorption geometry
depends on the particular heavy adatom [28], being one of the
more interesting in that the adatoms place in hollow positions.
When the adatoms are intercalated between graphene and the
substrate, the adatoms form a superlattice commensurate with
the graphene honeycomb lattice [18]. It is also plausible to
expect that low energy injected adatoms become deposited in
random positions.

In this section we show numerical results of the electronic
structure of graphene doped with heavy outer shell p-orbital
adatoms in three particular cases: (i) the adatoms are randomly
distributed in hollow positions, (ii) the adatoms form a
commensurate supercell with the graphene lattice, and (iii)
the adatoms are fully randomly distributed on the graphene
sheet. In the numerical calculations, we consider a periodic
rectangular graphene supercell of dimensions Lx = Nx

√
3a

and Ly = Nya, defined by the lattice vectors A = Nya and
B = Nx(2b − a). In these expressions, Nx and Ny are integer
numbers. The unit cell contains 4NxNy carbon atoms located
at the graphene lattice positions {Ri + dα}. The adatoms are
located at positions {ri}. The concentration of adatoms, x, is
given by the ratio of the number of adatoms to the number of
carbon atoms.

The electronic structure is obtained by diagonalizing the
Hamiltonian,

H = H0 +
∑

i,j,σ,σ ′
γiσ,jσ ′ (|Z,i,σ 〉〈Z,j,σ ′| + H.c.), (24)

where H0 is the pristine graphene Hamiltonian, Eq. (1), and the
second term describes the adatom induced hopping between
carbon atoms. Because of the periodic boundary conditions,
the electronic structure is described using Bloch’s theorem, so
that the electronic states are characterized by a band index and
wave vectors kx and ky that are defined in the interval [− π

Lx
, π
Lx

]
and [− π

Ly
, π
Ly

], respectively. In this geometry and for Ny not
being a multiple of three, the Dirac cones occur at wave vectors
K = (0, 2π

3Ly
) and K′ = (0, 4π

3Ly
). For Ny being a multiple of

three, the two Dirac cones overlap at the � point. This overlap
does not imply coupling between electronic states in different
Dirac cones, provided the adatoms are randomly distributed
in the supercell [31]. In order to simplify the analysis of the
results, in this work we always consider supercells with no
overlapping Dirac cones.

Recent experiments seems to indicate that Pb on graphene
can induce a large SOC, therefore in the numerical calculations
we chose Pb as the adatom, and we use the tight-binding
parameters obtained in Ref. [18] for Pb atoms on graphene,
h = 0.27 nm, Vppσ (h) = 0.4 eV, Vppπ (h) = −0.6 eV, εx =
εy = 1.65 eV, εz = 1.38 eV, �SO = 0.9 eV, and t = 2.7 eV.

A. Adatoms in hollow positions

In this subsection we analyze supercells with different
sizes and forms and with different concentrations of adatoms
randomly distributed but always located in hollow positions.
In Fig. 3 we show an example of supercell of size Nx = 5,
Ny = 7 with 17 adatoms deposited in a random way in

FIG. 3. (Color online) Graphene supercell with Nx = 5 and
Ny = 7. Black small circles represent carbon atoms. Larger red
circles indicate the position of the adatoms. The adatoms are located
in hollow positions, and in this figure we plot a particular random
realization of disorder. In this figure the number of adatoms per
carbon atoms is x = 17/140.

hollow positions. In the inset of Fig. 4 we plot a typical band
structure obtained for an adatom concentration x = 0.25. The
adatoms open a gap at the Dirac points and, in agreement
with the results presented in Sec. V A, the band structure
corresponds to a Dirac equation in the presence of an intrinsic
SOC, Eqs. (4) and (5). In our numerical calculations we
obtain that for adatoms adsorbed in hollow positions, and
for the parameters corresponding to Pb, the band structures
for different adatom configurations are practically the same,
independent of supercell size and form. Therefore there is
not dispersion in the value of the energy gap obtained in the
numerical simulations. In our numerical calculations we obtain
that for atoms adsorbed in hollow positions, the band structure
always has this form, independent of supercell size and form

Number of Pb atoms per Carbon atom.
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FIG. 4. (Color online) In the inset we plot a band structure of a
rectangular graphene supercell with x = 0.25 Pb atoms per carbon.
The Pb adatoms induce a gap at the Dirac points (0, 2π

3Lx
) and (0, 4π

3Lx
).

As commented on in the text, the band structure is practically
independent of the supercell size, and the gap only depends on the
concentration of Pb atoms. In the main figure we plot the gap at
the Dirac points as a function of the Pb atoms’ concentration. The
parameters used in the calculations are taken from Ref. [18].
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or disorder realization. The SOC depends only on the heavy
atoms’ concentration. In Fig. 4 we plot the energy gap as a
function of the adatom concentration x.

Using Green function techniques we infer that the linear
dependence of the gap with the density of adatoms implies
a negligible interference between adatoms. The low energy
properties of an electron are described by the Dirac equation
�vF σ0(skxτx + kyτy), and the corresponding Green function
is

G0(k,ω) = 1

�ω − H0

= σ0

�ω2 − �v2
F k2

(
ω vF keiθk

vF ke−iθk ω

)
. (25)

Here θk = tan−1 ky

skx
. An adatom located in a hollow position,

at ri , produces a scattering potential of the form sσzτzδ(r − ri).
In the presence of a density x of adatoms in hollow positions
and neglecting multiple scattering, the Green function of the
total Hamiltonian is [32]

G(k,ω) = G0(k,ω) + x�sσzG0(k,ω)τzG(k,ω). (26)

Inverting this equation we get

G(k,ω) = 1

�2ω2 − �2v2
F k2 − x2�2

×
(

�ω + x�sσz �vF keiθk

�vF ke−iθk �ω − x�sσz

)
(27)

that corresponds to the virtual crystal Hamiltonian H = H0 +
x�sσzτz, describing graphene in the presence of an intrinsic
SOC of magnitude x�.

B. Commensurate array of Pb atoms on graphene

Graphene grown on Ir(111) forms a 9.3 × 9.3 moiré
superstructure with a ∼25 Å periodicity [33]. When Pb atoms
are intercalated under the graphene monolayer, the Pb atoms
form a rectangular lattice commensurate with Ir. Therefore
the honeycomb graphene lattice and the array of Pb atoms
commensurate in a large moiré supercell [18].

In this subsection we study the spin-orbit effects induced
by a rectangular array of Pb atoms of dimensions lx × ly
commensurate with a large rectangular graphene supercell of
dimensions Lx × Ly , see Fig. 5(a). In the inset of Fig. 5(b) we
plot, for the geometry shown in Fig. 5(a), the electronic states
obtained with the tight-binding parameters corresponding to
Pb. The band structure coincides with the eigenvalues of the
Dirac equation in the presence of a Rashba-like spin-orbit
coupling. The intensity of the SO coupling is proportional
to the energy gap between the second conduction band and
the second valence band. We find that this gap increases
linearly with the Pb concentration x and only depends on the
concentration of Pb atoms being independent of geometrical
details. In Fig. 5(b) we plot the energy gap as a function of x

for a graphene supercell characterized by Nx = 10 and Ny = 5
and different combination of ix and iy . We obtain the same
linear dependence for larger graphene supercells.

These results indicate that Rashba couplings induced from
different adatoms do not interfere, and the total Rashba
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FIG. 5. (Color online) (a) Graphene supercell with Lx = 10
√

3a

and Ly = 5a. Black small circles correspond to the positions of the
carbon atoms. Larger red circles represent adatoms. The adatoms
form a rectangular lattice commensurate with the graphene supercell.
In the figure the dimensions of the adatom cell are lx = Lx/9 and
ly = Ly/3. (b) Inset: band structure for the geometry presented in (a).
Main figure: dependence of the energy gap, as defined in the inset, as a
function of the Pb atoms’ concentration. Black points are obtained in
the graphene supercell fixing the dimension ly = Ly/3 and changing
lx . Red points are obtained fixing lx = Lx/9 and changing ly . The
parameters used in the calculation are taken from Ref. [18].

coupling is just the sum of the different contributions. The
Rashba SO coupling induced by Pb adatoms always have the
same sign, dictated by the broken mirror symmetry, and the
linear behavior reveals that in the commensurate phase, the
adatoms average all possible locations in the graphene unit
cell. On the contrary, the absence of a gap at the Dirac points
indicates that the contribution to intrinsic SOC from adatoms
located in different places sums zero. This occurs because the
sign of the intrinsic SOC induced by adatoms depends on its
location. A particular example is the case of the intrinsic SOC
induced by adatoms in the hollow position, Eq. (20), that has
opposite sign from that induced by adatoms located in the top
positions, Eq. (21).

C. Random positions

Finally we compute the SO induced in graphene by
a concentration of Pb adatoms randomly distributed. We
study large graphene unit cells, Fig. 6(a), with different
concentrations of adatoms. The main results of the simulations
are that there is not a band gap at the Dirac points of the band
structure, Fig. 6(b), and the Rashba-like SOC increases linearly
with the concentration of Pb atoms, Fig. 6. These results are
independent of the disorder realization and size and form of
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FIG. 6. (Color online) (a) Graphene supercell with Lx = 7
√

3a

and Ly = 13a. Black small circles correspond to the positions
of the carbon atoms. Larger red circles represent adatoms. The
concentration of adatoms is x = 0.2, and they are located in a random
way. (b) Inset: band structure for the geometry presented in (a). Main
figure: dependence of the energy gap, as defined in the inset, as a
function of the Pb atoms’ concentration. The energy gap only depends
on Pb concentration and is independent of geometry or disorder
realization. The parameters used in the calculation are taken from
Ref. [18].

the unit cell. The dependence of the SOC on Pb concentration
is the same as in the case of commensurate supercell. This,
and the absence of intrinsiclike SOC, indicate that in both
cases, commensurate order and random positions, there are
not interference effects between adatoms, and the resulting
SOC is just the sum of the contributions from adatoms placed
in different positions.

VII. TOPOLOGICAL PROPERTIES

In the previous sections we have obtained that a graphene
layer doped with adatoms placed in hollow positions has a
gapped energy band structure similar to that obtained from
the Dirac equation with an intrinsic SOC. On the contrary,
adatoms randomly or commensurately distributed on graphene
generate a gapless band structure that remind us of graphene
with Rashba SOC. In this section we check that both adsorption
geometries, hollow and random, have the same topological
properties of the Dirac equation plus intrinsic and Rashba
SOC, respectively. In order to know the topological properties,
we compute the spin-resolved Hall conductivity of the system,

σσ
xy = −2

∑
n,n′,k

Im(〈nk|vxP̂σ |n′k〉〈n′k|vyP̂σ |nk〉)
(εn,k − εn′,k)2

, (28)

where |nk〉 and εnk are the eigenfunction and eigenvectors,
respectively, of the supercell Hamiltonian Eq. (24); in the
sum the index n and n′ run over occupied and empty states,
respectively, vν = − 1

�

∂H
∂kσ

is the velocity operator in the ν

direction, and P̂σ projects the wave function in the subspace
of spin σ .
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FIG. 7. (Color online) (a) Band structure of a graphene supercell
(Nx = 5, Ny = 7) with a concentration x = 0.25 of adatoms ran-
domly located in hollow positions. (b) Partial section of the Brillouin
zone showing in green the regions that contribute to the spin-up
Hall conductivity σ ↑

xy for the case in (a). (c) Same as (a) for a fully
random distribution of adatoms and an exchange field of 18 meV. (d)
Partial section of the Brillouin zone showing in green the regions that
contribute to the total Hall conductivity σ ↑

xy + σ ↓
xy for the case in (c).

In the case of adatoms in hollow positions, we have obtained

σσ
xy = σ

e2

h

adatoms in hollow positions; that corresponds to a quantum
spin-Hall system [7]. The total Hall conductivity sums zero,
as it should be in a system with time reversal symmetry. The
main contributions to the Hall conductivity come from circular
regions centered at the Dirac points, Figs. 7(a) and 7(b).

Adatoms placed randomly on graphene do not generate
a gap in the band structure, and the Hall conductivity is
zero. However, in Refs. [11] and [12], it was proposed that
an exchange field applied to graphene in the presence of
Rashba SOC should open a gap, and the system would be
a nontrivial insulator characterized by a quantized anomalous
Hall effect. We have applied a uniform exchange field to the
randomly doped graphene, and we have obtained a gapped
band structure, Fig. 7(c), and a finite Hall conductivity

σxy = σ ↑
xy + σ ↓

xy = 2
e2

h

that proves that adatoms placed randomly on graphene
generate a Rashba SOC. In this case, and because of the form
of the bands, Fig. 7(c), the main contributions to the Hall
conductivity come from annulus centered at the Dirac points,
Fig. 7(d). The realization of the quantum spin-Hall effect
and quantum anomalous Hall effect for hollow and random
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adatoms, respectively, shows the stability of these topological
phases even for a nonuniform distribution of the adatoms.

VIII. SUMMARY

In this paper we have studied the spin-orbit coupling
induced in graphene by heavy adatoms with active electrons
residing in p orbitals. Depending on the location of the
adatoms, we find different induced SOC’s. Adatoms located
in hollow positions open a gap at the Dirac points and induce
an intrinsiclike SOC. However adatoms randomly placed or
commensurate with the graphene lattice maintain the system
gapless and induce a Rashba-like SOC. The adatoms only
perturb the pristine graphene band structure near the Dirac
points.

We find that the SOC induced by the adatoms is additive,
and there are not interference effects or multiple scattering.
The topological properties of graphene with hollow or random
adatoms are the same as those of the Dirac Hamiltonian in the
presence of intrinsic or Rashba SOC, respectively. The finite
value of the Hall conductivity of graphene doped in different
geometries indicates the robustness of the topological phases
against a nonuniform distribution of the spin-orbit coupling.
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