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We show that any heat definition expressed as an energy change in the reservoir energy plus any fraction
of the system-reservoir interaction is not an exact differential when evaluated along reversible isothermal
transformations, except when that fraction is zero. Even in that latter case the reversible heat divided by
temperature, namely entropy, does not satisfy the third law of thermodynamics and diverges in the low temperature
limit. These results are found within the framework of nonequilibrium Green functions (NEGF) using a single
level quantum dot strongly coupled to fermionic reservoirs and subjected to a time-dependent protocol modulating
the dot energy as well as the dot-reservoir coupling strength.
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I. INTRODUCTION

The nature of heat is one of the most fundamental
questions which has been driving research in thermodynamics
since its origins. Nowadays, establishing a thermodynamically
consistent notion of heat for open quantum system is of
crucial importance for mesoscopic physics and for the study
of energy conversion in small devices. This issue has direct
implications on defining meaningful notions of efficiency in
thermoelectricity or photoelectricity for instance.

For systems weakly interacting with their reservoirs the
situation is rather clear [1–7]. The heat flux is defined as minus
the energy change in the reservoir and can be directly related to
the system energy changes since the system-reservoir coupling
energy is negligible. This definition has been extensively used
to study the performance of a broad range of nanodevices (see,
e.g., [8–20]).

The situation is also clear in the strong coupling regime, as
long as the system operates in a steady state [21–23] (see
also, e.g., [24,25]). Indeed attributing the coupling energy
to the system or to the reservoirs is equivalent in this case
since net changes in the coupling energy are zero. The first
law reduces to Kirchhoff’s law for heat fluxes crossing the
system and the second law reduces to the nonnegativity of
−∑

ν Q̇ν/Tν � 0, where Q̇ν is the heat entering the system
from reservoir ν and Tν is the temperature of that reservoir.
This result can easily be shown using scattering theory or
nonequilibrium Green functions (NEGF) approaches. Many
performance studies have thus considered steady state setups
(see, e.g., [26–32]).

However, the situation is very different when considering
strong coupling setups where the system is driven by a
time-dependent process since in this case changes in the
coupling energy must be accounted for. Few studies have
considered them because the dynamics typically becomes
difficult to solve. These setups are important for instance to
study any kind of stroke engine or the thermodynamic cost
for turning on or off the interaction between a system and its
reservoirs. They are also indispensable to consider reversible
transformations which play a central role in thermodynamics.

Indeed, thermodynamics predicts that the heat produced along
a reversible transformation, when divided by the reservoir
temperature, is the change of a state function called entropy.

In this paper we use the framework of NEGF to show that
any attempt to define heat as the energy change in the reservoir
energy plus any nonzero fraction of the system-reservoir
interaction is not an exact differential when evaluated along
reversible isothermal transformations. We also find that the
state function entropy obtained for zero fraction does not
satisfy the third law of thermodynamics and diverges in the
low temperature limit.

The plan of the paper is as follows. Heat notions including
different fractions 0 � α � 1 of the system-reservoir interac-
tion energy are defined in Sec. II. The model system used for
their explicit evaluation is presented in Sec. III. Their reversible
expressions and their thermodynamic consistency is discussed
in Sec. IV. Their first irreversible correction is given in Sec. V.
The special case of no driving in the coupling and wide band
approximation is discussed in Sec. VI. Conclusions are drawn
in Sec. VII.

To highlight the physical content of our paper, the technical
parts have been relegated to Appendixes. Expressions for the
energy and matter current in terms of NEGF are given in
Appendix A. The gradient expansion technique needed to
consider slow transformations is described in Appendix B.
It is used for our model system in Appendix C to calculate the
reversible heat (C 1), its first correction (C 2), and to show that
in absence of driving in the coupling and in the wide band limit
our NEGF treatment becomes equivalent to that of Ref. [33]
(C 3).

II. HEAT DEFINITIONS

The typical Hamiltonian of an open quantum system S

coupled to multiple reservoirs ν at temperatures Tν and
chemical potentials μν is

Ĥ (t) = ĤS(t) +
∑

ν

[Ĥν + V̂ν(t)], (1)
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where ĤS (Ĥν) denotes the system (reservoir ν) Hamiltonian
and V̂ν is the system-reservoir interaction.

We start by introducing the class of all possible heat
definitions expressed as the change in the quantum expectation
value of the reservoir Hamiltonian plus a fraction 0 � α � 1 of
the system-reservoir coupling energy (we set � = e = kB = 1
throughout the paper)

Q̇ν,α = Jν,α − μνIν, (2)

where the matter and heat currents entering the system from
reservoir ν are given by

Iν = − Tr{N̂ν dt ρ̂} = −dt 〈N̂ν〉, (3)

Jν,α = − Tr{(Ĥν + αV̂ν

)
dt ρ̂}, (4)

and ρ̂(t) is the density matrix of the total system. The heat flux
definition most commonly used in the literature corresponds
to the choice α = 0 and can be expressed in terms of the rate
of change in the number operator N̂ν and in the Hamiltonian
Ĥν of the reservoir ν, since Jν,0 = −dt 〈Ĥν〉 [25,34–39]. The
choice α = 1 was considered for instance in Ref. [40] and the
choice α = 1/2 in Ref. [33].

III. THE MODEL

The specific model that we consider consists of an exter-
nally driven level ε(t) bilinearly coupled to a single fermionic
reservoir R at equilibrium. Its Hamiltonian is given by (1),
where the level, the reservoir, and their coupling, respectively,
read

ĤS(t) = ε(t)d̂†d̂, ĤR =
∑

k

εkc
†
kĉk, (5)

V̂ (t) =
∑

k

[Vk(t)d̂†ĉk + H.c.]. (6)

Here d̂† (d̂) and ĉ
†
k (ĉk) create (annihilate) an electron in the

level of the system and in state k of the reservoir, respectively.
εk is the energy of the latter. We emphasize that the external
driving can modify the position of the level ε(t) as well as
the strength of the system-reservoir coupling Vk(t). Following
Ref. [41], we assume that this latter is of the form

Vk(t) = u(t) Vk, u(t) ∈ R. (7)

For the simulations presented in this paper, we will consider
the driving protocols

ε(t) = ε0 + �ε

2
(1 − cos ω0t), (8)

u2(t) = 1 + ��

2�0
(1 − cos ω0t). (9)

IV. REVERSIBLE HEAT

We now use the framework of NEGF to evaluate the
heat flux (2) along a reversible (very slow driving protocols)
isothermal transformation for our model. Details are provided
in Appendix A. The explicit expression of the heat flux in
terms of NEGF is given by (2) with the particle and energy
currents (A1) and (A2). In general a NEGF depends on

two times t1 and t2, but only depends on their difference
τ = t1 − t2 at steady state. If the driving acting on the system
is slow compared to the system relaxation time scale, after a
Fourier transform in τ → E, one can make use of the slow
time dependence of the resulting NEGF in t = (t1 + t2)/2 to
evaluate its equation of motion. This procedure is known as the
gradient expansion and is detailed in Appendix B. When using
it to evaluate the heat flux for our model (5)–(7) as shown in
Appendix C, we obtain to the lowest order which corresponds
to the reversible limit

Q̇(1)
α = d

dt

{∫
dE

2π
f A(0)[(E − μ) + (1 − 2α)(E − ε)]

}

−
∫

dE

2π
f {A(0) dtε + (1−α)[Re Gr(0) ∂t�+A(0) ∂t�]},

(10)

where f (E) = [e(E−μ)/T + 1]−1 is the Fermi-Dirac distribu-
tion in the reservoir, the zero order retarded Green function is
given by

Gr(0)(t,E) =[E − ε(t) − �(t,E) + i�(t,E)/2]−1 (11)

and A(0)(t,E) = −2 Im Gr(0)(t,E) is the system spectral func-
tion. The Lamb shift and broadening caused by the coupling
to the reservoir are taken as [34,42]

�(t,E) = u2(t) �0
1

2

(E − EB)WB

(E − EB)2 + W 2
B

, (12)

�(t,E) = u2(t) �0
W 2

B

(E − EB)2 + W 2
B

, (13)

where EB and WB are the center and width of the band,
respectively. To our knowledge (10) is the first explicit
expression for a reversible heat of the kind (2). We also
emphasize that this result is exact since the gradient expansion
is exact for reversible transformations. Two major results
ensue.

A. State function

A central requirement in thermodynamics is that the
reversible heat change is an exact differential. This implies that
mixed derivatives of the heat rate with respect to the driving
parameters ε(t) and u(t) should be equal to each other:

∂2Q(1)
α

∂ε ∂u
= ∂2Q(1)

α

∂u ∂ε
. (14)

Our first important result is that this property is only satisfied
for α = 0. For any other choice of α, the reversible heat is
not an exact differential and thus cannot be considered as a
thermodynamically consistent definition. This result can be
explicitly seen in Fig. 1 where two different reversible driving
protocols connecting the same initial and final point give rise
to different reversible heat except for α = 0.

B. Third law

Our second important result is that since the equilibrium
entropy is the state function whose differential is the reversible
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FIG. 1. (Color online) Difference between the reversible heat
produced along two different driving protocols denoted by A and
B and corresponding to (8) and (9) with parameters T = 10 K, ε0 =
−0.1 eV, �ε = 0.2 eV, �� = −1/6 eV, �0 = 0.5 eV, ω0 = 1013 s−1.
The band parameters are EB = 0 and WB = 5 eV and the Fermi
energy is EF = 0. The two protocols are shown in the left top inset
and the time dependence of the level position and coupling strength
corresponding to the protocols are given in the bottom right inset.

heat divided by temperature

dtS
eq = Q̇

(1)
0

/
T , (15)

by integrating the reversible heat rate (10) we are able to find
the equilibrium entropy up to a constant (see Appendix C 1 for
details)

Seq =
∫

dE

2π
A(0)

( − f ln f − [1 − f ] ln[1 − f ]
)

+
∫

dE

2π
A(0)f

(E − ε)

T

+
∫

dE

2π
A(0) ln[1 − f ]

(
∂E� + E − ε − �

�
∂E�

)
.

(16)

The first contribution has the appealing form of an energy
resolved equilibrium entropy. The second one is exactly half
of the equilibrium expectation value of the coupling energy
divided by temperature, namely 〈V̂ν(t)〉eq/(2T ). The third one
is due to the energy resolution of the Lamb shift and broadening
and thus vanishes in the wide-band limit when � → 0 and
� does not depend on energy. In the low temperature limit
T → 0, the first terms goes to zero as expected by the third
law of thermodynamics, but the other two terms diverge,
casting doubts on the thermodynamic relevance of the heat
definition Q̇0. The weak coupling limit resolves the divergence
problem and thus satisfies the third law because the coupling
strength is taken to zero before taking the low temperature
limit. Indeed, in this case the first term becomes the weak
coupling Shannon entropy and the last two vanish. While one
may have expected that the finite coupling can create a finite
entropy in the system at low temperature, justifying a divergent
entropy is more difficult and seems pathological. Figure 2
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FIG. 2. (Color online) Reversible heat, Eq. (10), as function of
temperature for simultaneous driving (8) and (9) at t = 0.4 π/ω0.
The parameters are the same as in Fig. 1.

shows the temperature dependence of the reversible heat Q
(1)
0

given by (10). At low temperature the reversible heat tends to a
constant, thus leading to a 1/T divergence of the equilibrium
entropy Seq with temperature.

V. BEYOND REVERSIBLE HEAT

The general expression for the heat obtained using gradient
expansion to first order beyond the reversible contribution
Q(1)

α + Q(2)
α is derived in Appendix C 2. If one considers the

heat α = 0 generated along the cycle of a periodic driving
of duration τ when the system reaches a stationary regime
(i.e., when initial transients are gone), the reversible heat is a
state function and vanishes along the cycle Q

(1)
0 = 0, and the

remaining heat contribution is given by

Q
(2)
0 =

∫ τ

0
dt

∫
dE

2π
∂Ef

[A(0)]2

2

×
(

dtε + ∂t� + ∂t�
E − ε − �

�

)2

. (17)

Since ∂Ef is always negative, this heat is always negative as
expected from the second law of thermodynamics.

VI. WIDE BAND AND CONSTANT COUPLING

We demonstrated that the heat α = 1/2 is in general
inconsistent with equilibrium thermodynamics. In this section
we consider the special case where the couplings to the
reservoirs are time independent (u constant) and where the
wide band approximation is used. We show that in this
case the reversible heat α = 1/2 may misleadingly appear
thermodynamically consistent.

Under these assumptions, the heat definition Q1/2 was
proposed in Ref. [33] when considering a strongly coupled
ac-driven resonant level coupled to a single reservoir treated by
scattering and Floquet theories. We made sure in Appendix C 3
that in this case our treatment reproduces the expression for
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the heat Q1/2 (the reversible contribution Q
(1)
1/2 as well as its

first correction Q
(2)
1/2) found in Ref. [33].

Turning to the thermodynamic analysis of these results, we
find that by integrating the reversible heat

Q̇
(1)
1/2 = T dtS

eq
1/2, (18)

the resulting equilibrium entropy is given by

S
eq
1/2 =

∫
dE

2π
A(0)(−f ln f − [1 − f ] ln[1 − f ]). (19)

This is the first contribution to the entropy found in (16) which
we have seen satisfies the third law of thermodynamics. Also,
due to the absence of driving in the coupling, the equilibrium
entropy is necessarily a state function. While appealing the
results crucially depend on the two assumptions made (time-
independent coupling and wide band approximation).

VII. CONCLUSION

We contributed to the fundamental question of the nature
of heat in an open quantum system strongly interacting with a
reservoir and driven by a time-dependent force in the system
and in the system-reservoir energy, within the framework of
NEGF.

Our central finding is that any heat definition expressed as
the change in the quantum expectation value of the reservoir
energy plus any fraction α of the coupling energy displays
thermodynamic inconsistencies. Any α different from zero
leads to a reversible heat which is not a state function. The
choice α = 0 is more appealing since the reversible heat is a
state function and the second law is satisfied for our model, but
it leads to an entropy which diverges in the low temperature
limit in contradiction with the third law of thermodynamics.
Our considerations were made possible by using the gradient
expansion of NEGF which provides, to our knowledge, the first
explicit reversible expression for the various heat definitions
that we considered. The only assumption made in our approach
is intrinsic to NEGF techniques and somehow necessary to
guarantee a proper thermalization of the system (zeroth law).
It consist of treating the reservoirs as ideal equilibrated objects
by assuming that the reservoir Green functions are always
thermal.

Our conclusion reinforces our proposal in Ref. [43] to
abandon heat definitions (and other thermodynamic quantities)
expressed as quantum expectation values of operators in order
to derive a consistent thermodynamics within the framework
of NEGF for open quantum system beyond the weak coupling
limit.
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APPENDIX A: PARTICLE AND ENERGY FLUXES

We consider the standard definition for the particle and
energy fluxes at the interface with reservoir ν, Eqs. (3) and (4),
respectively. In terms of Green functions, these definitions
yield [35,41]

Iν(t) = 2 Re Tr
∫

dt1{G<(t,t1) 
a
ν (t1,t)

+Gr (t,t1) 
<
ν (t1,t)}, (A1)

Jν,α(t) = (α − 1) ∂t 〈V̂ν(t)〉 − α dt 〈V̂ν(t)〉

+ 2 Im Tr
∫

dt1{G<(t,t1) ∂t

a
ν (t1,t)

+Gr (t,t1) ∂t

<
ν (t1,t)}, (A2)

where

〈V̂ν(t)〉 = 2 Im Tr
∫

dt1{G<(t,t1) 
a
ν (t1,t)

+Gr (t,t1) 
<
ν (t1,t)}. (A3)

The partial derivatives in the first and third terms on the
right side of Eq. (A2) indicate a time derivative of the
system-reservoir coupling only in the external driving. Tr{· · · }
denotes a trace over the system subspace. G< = G−+ and
Gr = G−− − G−+ are matrices in the system subspace and
are the lesser and retarded projections of the single-particle
Green function

Gmm′(τ,τ ′) = −i〈Tc d̂m(τ ) d̂
†
m′ (τ ′)〉, (A4)

where Tc denotes the contour ordering operator, τ and τ ′ are the
contour variables, and the contour branches are labeled as time
ordered s = − , and antitime ordered s = + . 
<

ν = 
−+
ν and


a
ν = 
−+

ν − 
++
ν are also matrices in the system space and

are the lesser and advanced projections of the self-energy due
to the coupling to reservoir ν,

[
ν(τ,τ ′)]mm′ =
∑
k∈ν

Vmk(t) gk(τ,τ ′) Vkm′(t ′), (A5)

where

gk(τ,τ ′) ≡ −i〈Tc ĉk(τ ) ĉ
†
k(τ ′)〉 (A6)

is the equilibrium Green function for the free electrons in the
reservoir ν. The equations of motion for the projection s1s2 of
the GF (A4) are given by

⎛
⎝i

→
∂

∂t1
− HS(t1)

⎞
⎠Gs1s2 (t1,t2)

= σ z
s1s2

δ(t1 − t2) +
∑
s3

∫
dt3 
s1s3 (t1,t3) s3 Gs3s2 (t3,t2),

(A7)
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Gs1s2 (t1,t2)

⎛
⎝−i

←
∂

∂t2
− HS(t2)

⎞
⎠

= σ z
s1s2

δ(t1 − t2) +
∑
s3

∫
dt3 Gs1s3 (t1,t3) s3 
s3s2 (t3,t2),

(A8)

where σ z is the Pauli matrix, and 
s1s2 (t1,t2) is the total
self-energy, i.e., the self-energy due to the system-reservoirs
couplings and the intrasystem interactions.

APPENDIX B: GRADIENT EXPANSION

Green functions and self-energies are two-time functions
F (t1,t2). Introducing via a change of variable the classical
time scale t = (t1 + t2)/2, and the quantum time scale s =
t1 − t2, and performing a Fourier transform in the quantum
time leads to the time-dependent energy resolved function
F (t,E) = ∫

dseiEsF (t,s), which is the Wigner transform of
F (t,s). Naturally

F (t1,t2) = F (t,s) =
∫

dE

2π
e−iEsF (t,E). (B1)

Below we will consider partial derivatives of the form
∂t2F (t1,t2) [see Eq. (A2)]. Their Wigner transforms read
[∂t/2 + iE]F (t,E). We will also consider integral expression
such as

F (t1,t2) =
∫

dt3 F1(t1,t3) F2(t3,t2), (B2)

whose Wigner transform reads [44]

F (t,E) = F1(t,E) Ĝ(t,E) F2(t,E), (B3)

where

Ĝ(t,E) = exp

(
1

2i
[
←
∂ t

→
∂ E −

←
∂ E

→
∂ t ]

)
(B4)

is the gradient operator. At steady state the dependence on t

vanishes and only the energy resolution E survives. This means
that when the driving is slow relative to the characteristic
relaxation time scales of the system, we can expand (B4)
in Taylor series and truncate the series to the suited level.
Traditionally the gradient expansion goes to the first order, but
we will need the second order below:

F (t,E) ≈ F1(t,E) F2(t,E)

+ i

2
{F1(t,E); F2(t,E)} − 1

8
[F1(t,E); F2(t,E)],

(B5)

where

{F1(t,E); F2(t,E)}
= ∂EF1(t,E) ∂tF2(t,E) − ∂tF1(t,E) ∂EF2(t,E), (B6)

[F1(t,E); F2(t,E)]

= ∂2
EF1(t,E) ∂2

t F2(t,E)

+ ∂2
t F1(t,E) ∂2

EF2(t,E) − ∂2
tEF1(t,E) ∂2

tEF2(t,E). (B7)

Below we will also need to consider the dependence of the
full self-energy 
(t1,t2) on the system-reservoir coupling u(t).
Since


(t1,t2) = u(t1) S(t1,t2) u(t2), (B8)

it is easy to show that up to second order gradient expansion,
the functions 
 and S are related by


(t,E) ≈ u2(t) S(t,E) − 1
4

(
∂2
t u(t) − [∂tu(t)]2

)
∂2
ES(t,E).

(B9)

Similarly their time derivatives are related by

∂t
(t,E) ≈ u2(t) ∂tS(t,E) + u(t) ∂tu(t) S(t,E). (B10)

APPENDIX C: SLOW DRIVING OF A SINGLE LEVEL
COUPLED TO A RESERVOIR

We now restrict our consideration to a single level, Eqs. (5)–
(7). The position of the level ε(t) as well as its coupling to the
reservoir u(t) are driven by a slowly changing external field,
Eqs. (8) and (9).

After gradient expansion,

Gr (t1,t2) → Gr (t,E), (C1)

G<(t1,t2) → G<(t,E) = i A(t,E) φ(t,E), (C2)

where the system spectral function is given by

A(t,E) ≡ −2 Im Gr (t,E) (C3)

and φ(t,E) is the nonequilibrium population of the level. Also


r (t1,t2) → 
r (t,E) = �(t,E) − i�(t,E)/2, (C4)


<(t1,t2) → 
<(t,E) = i �(t,E) f (E), (C5)

where � and � are the Lamb shift and the broadening caused
by the coupling to the reservoir and f (E) is the Fermi-Dirac
thermal distribution.

We now apply the second order gradient expansion (B5) to
expressions for the fluxes, Eqs. (A1) and (A2). This leads to

I (t) =
∫

dE

2π
I (t,E) = d

dt

∫
dE

2π
A(t,E) φ(t,E), (C6)

Jα(t) = (α − 1) ∂t 〈V̂ (t)〉 +
(

1

2
− α

)
dt 〈V̂ (t)〉

+
∫

dE

2π
E I (t,E), (C7)
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where

I (t,E) = {E − ε(t); Aφ}, (C8)

〈V̂ (t)〉 = 2
∫

dE

2π
(Aφ � + Re Gr �f )

+ 1

2

∫
dE

2π
({�; Aφ} − {�φ; A}), (C9)

∂t 〈V̂ (t)〉 =
∫

dE

2π
(Aφ ∂t� + Re Gr ∂t� φ)

+ 1

4

∫
dE

2π
({∂t�; Aφ} − {∂t� φ; A}). (C10)

Note that evaluation of expressions (C6) and (C7) up to second
order in gradient expansion requires the knowledge of the Gr ,
A, and φ only up to first order [see Eqs. (C14)–(C18) below].
Note also that in the spirit of the Botermans and Malfliet (BM)
approximation [45], we substituted f (E) by φ(t,E) in all the
expressions involving derivatives of the lesser projection of
the self-energy.

The retarded projection of the Green function Gr (t,E), the
spectral function A(t,E), and the nonequilibrium distribution
φ(t,E) can be expanded as

Gr (t,E) = Gr(0)(t,E) + Gr(1)(t,E) + Gr(2)(t,E) + · · · ,

(C11)

A(t,E) = A(0)(t,E) + A(1)(t,E) + A(2)(t,E) + · · · , (C12)

φ(t,E) = φ(0)(t,E) + φ(1)(t,E) + φ(2)(t,E) + · · · , (C13)

where the orders coincide with the orders of the gradient
expansion. Inserting this expansion in the gradient expansion
expression for the Green function equations-of-motion (A7)
and (A8), and identifying terms order by order, one finds
that [46,47]

Gr(0)(t,E) = [E − ε(t) − 
r (t,E)]−1, (C14)

A(0)(t,E) = �(t,E)

[E − ε(t) − �(t,E)]2 + [�(t,E)/2]2 , (C15)

φ(0)(t,E) = f (E), (C16)

and

Gr(1)(t,E) = A(1)(t,E) = 0, (C17)

φ(1) = −dEf
A(0)

2

(
dtε + ∂t� + ∂t�

E − ε − �

�

)
. (C18)

1. Reversible driving

The reversible transformation in the system is performed
by a reversible driving, which corresponds to expanding the
fluxes to first order in Eqs. (C6) and (C7). To do so we only
need the zero order correction of the retarded Green function
Gr (0)(t,E), its corresponding A(0)(t,E), and of the population
φ(0)(t,E). We find

I (1)(t) =
∫

dE

2π
∂tA

(0) f, (C19)

J (1)
α (t) = (α − 1)[∂t 〈V̂ (t)〉](1) +

(
1

2
− α

)
dt 〈V̂ (t)〉(0)

+
∫

dE

2π
E[∂tA

(0) f + dtε ∂E(Af )], (C20)

where

〈V̂ (t)〉(0) = 2
∫

dE

2π
(A(0)f � + Re Gr(0) �f ), (C21)

[∂t 〈V̂ (t)〉](1) =
∫

dE

2π
(A(0)f ∂t� + Re Gr(0) ∂t�). (C22)

Using (C19)–(C22) in the definition (2) yields Eq. (10).
Since both the Lamb shift �(t,E) and broadening �(t,E)

are proportional to u2(t) [see Eqs. (12) and (13)], and taking
into account (10), the condition (14) means that the derivative
of

∫
dE f A(0) dtε with respect to the driving parameter

for the system-reservoir coupling u(t) should be equal to
the derivative of (1 − α)

∫
dEf [ReGr(0) ∂t� + A(0) ∂t�] with

respect to the driving parameter for the level position ε(t). It
is easy to see that this condition is satisfied only for α = 0.

Since the exact differential of the reversible heat defines
entropy

T dtS(t) = Q̇
(1)
0 (t), (C23)

we find that the entropy is given (up to a constant) by

S =
∫

dE

2π
f

(
A

[
E − μ

T
+ E − ε

T

]

+ 2

T
arctan

E − ε − �

�/2

)
. (C24)

Utilizing

E − μ

T
= ln

1 − f (E)

f (E)
, (C25)

f (E)

T
= d

dE
ln[1 − f (E)], (C26)

and performing an integration by parts for the last term
in (C24), we get Eq. (16). We stress that the reversible driving
results do not rely on the BM approximation.

2. Beyond reversible driving

To calculate the fluxes (C6) and (C7) to second order, we
therefore need corrections up to first order of the retarded
Green function Gr (0,1)(t,E), its corresponding A(0,1)(t,E), and
of the nonequilibrium population φ(0,1)(t,E). This leads to

I (2)(t) =
∫

dE

2π
[∂t (A

(0) φ(1)) + dtε ∂E(A(0) φ(1))], (C27)

J (2)
α (t) = (α − 1)[∂t 〈V̂ (t)〉](2) +

(
1

2
− α

)
dt 〈V̂ (t)〉(1)

+
∫

dE

2π
E[∂t (A

(0) φ(1)) + dtε ∂E(A(0) φ(1))], (C28)
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where

〈V̂ (t)〉(1) = 2
∫

dE

2π
A(0)φ(1) �

+ 1

2

∫
dE

2π
({�; A(0) f } − {� f ; A(0)}), (C29)

[∂t 〈V̂ (t)〉](2) =
∫

dE

2π
(A(0)φ(1) ∂t� + Re Gr(0) ∂t� φ(1))

+ 1

4

∫
dE

2π
({∂t�; A(0) f } − {∂t� f ; A}).

(C30)
Using (C27)–(C30) in the definition (2) yields

Q̇(2)
α =

(
1

2
− α

)
dt 〈V̂ (t)〉(1)

+ d

dt

{∫
dE

2π
A(0)

[
(E − μ)φ(1) + 1 − α

4
∂t�∂Ef

]}

+
∫

dE

2π
∂Ef

[A(0)]2

2

(
dtε + ∂t� + ∂t�

E − ε − �

�

)

×
[
dtε + (1 − α)

(
∂t� + ∂t�

E − ε − �

�

)]
. (C31)

When considering periodic transformations where the system
has reached a stationary regime, the second law of thermody-
namics states that

Q0 = Q
(2)
0 � 0, (C32)

where we used the fact that �Seq = Q
(1)
0 /T = 0. We verify

that this relation is satisfied since along such cyclic transfor-
mation only the last two lines of Eq. (C31) survive and one
finds that for α = 0 they become
∫

dE

2π
∂Ef

[A(0)]2

2

(
dtε + ∂t� + ∂t�

E − ε − �

�

)2

, (C33)

which is indeed always negative or zero.

3. Wide band and no driving in the coupling

We now consider the wide band approximation (WBA)
[i.e., � = 0 and �(E) = � = const.] and driving only in the
level position and not in the coupling [u(t) = 1] to show that
our expressions (10), (C19)–(C22) and (C27)–(C31) reduce in
this case to the results derived in Ref. [33] using scattering and
Floquet theories.

Under these assumptions we can make use of the identity

∂tA
(0)(t,E) = −dtε(t) ∂EA(0)(t,E). (C34)

We start by considering the particle current. Utilizing (C34)
in (C19) and integrating by parts in energy leads to

I (1)(t) = dtε

∫
dE

2π
dEf A(0). (C35)

Similarly, utilizing (C34) in (C27) and integrating by parts in
energy leads to

I (2)(t) = ∂t

∫
dE

2π
A(0) φ(1) ≡ − 1

2
∂t

∫
dE

2π
dEf [A(0)]2 dtε,

(C36)

where the second equality is obtained by using the WBA
version of (C18). Expressions (C35) and (C36) are the results
presented in Eq. (S.33) of the supporting information of
Ref. [33]. Note that difference in sign is due to our flux
definition (positive when going from the reservoir to the
system) which is opposite to the choice in Ref. [33].

We now turn to evaluating the coupling term. Using (C21)
within the WBA one gets

[dt 〈V̂ (t)〉](1) ≡ dt 〈V̂ (t)〉(0) = 2
∫

dE

2π
� f ∂tRe Gr(0).

(C37)
Utilizing

dtRe Gr(0) = −dtε ∂ERe Gr(0) (C38)

and integrating in energy by parts leads to

[dt 〈V̂ (t)〉](1) = 2
∫

dE

2π
dEf � Re Gr(0) dtε

≡ 2
∫

dE

2π
dEf A(0) (E − ε) dtε. (C39)

Similarly in the WBA (C29) becomes

[dt 〈V̂ (t)〉](2) ≡ dt 〈V̂ (t)〉(1) = −1

2
dt

∫
dE

2π
� dEf ∂tA

(0).

(C40)
Since using (C34),

∂tA
(0) = 2 (E − ε) dtε

�
[A(0)]2, (C41)

we get that

[dt 〈V̂ (t)〉](2) = −dt

∫
dE

2π
dEf [A(0)]2 (E − ε) dtε. (C42)

Expressions (C39) and (C42) are the results presented in
Eq. (S.36) of the supporting information of Ref. [33].

We finally turn to the energy current. Taking the choice
α = 1/2 and disregarding the driving in the system-reservoir
coupling (the first term) in Eq. (C20), after using (C34), we
get

J
(1)
1/2(t) =

∫
dE

2π
dEf E A(0) dtε. (C43)

Similarly Eq. (C28) after employing (C34) yields

J
(2)
1/2(t) =

∫
dE

2π
E A(0)(∂tφ

(1) + dtε ∂Eφ(1)). (C44)

Substituting the WBA version of Eq. (C18) and performing
the derivatives leads to

J
(2)
1/2(t) = − 1

2

∫
dE

2π
dEf

× {E dt ([A
(0)]2 dtε) − (A(0) dtε)2}. (C45)

Expressions (C43) and (C45) are the results presented in
Eq. (S.32) of the supporting information of Ref. [33]. Once
more, the difference in sign is due to our opposite convention
for the flux compared to Ref. [33].
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