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Symmetry and dynamics universality of supermetal in quantum chaos
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Chaotic systems exhibit rich quantum dynamical behaviors ranging from dynamical localization to normal
diffusion to ballistic motion. Dynamical localization and normal diffusion simulate electron motion in an impure
crystal with a vanishing and finite conductivity, i.e., an “Anderson insulator” and a “metal,” respectively. Ballistic
motion simulates a perfect crystal with diverging conductivity, i.e., a “supermetal.” We analytically find and
numerically confirm that, for a large class of chaotic systems, the metal-supermetal dynamics crossover occurs
and is universal, determined only by the system’s symmetry. Furthermore, we show that the universality of this
dynamics crossover is identical to that of eigenfunction and spectral fluctuations described by the random matrix
theory.
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I. INTRODUCTION

Chaotic systems exhibit a wealth of quantum phenomena.
A canonical example is the quantum kicked rotor [1] (see
Refs. [2–4] for reviews)—a free rotating particle under the
influence of sequential time-periodic driving, the Hamiltonian
of which reads

Ĥ = 1

2
(h̃n̂)2 + K cos θ̂

∑
m

δ(t − m). (1)

Here the time t is rescaled by the kicking period τ , the
Planck’s quantum h̃ = �τ/I with I the particle’s moment of
inertia, and the angular momentum n̂ canonically conjugates
to the angular position θ̂ . The dimensionless amplitude of the
kicking potential, K , namely, the so-called classical stochastic
parameter, governs the degree of the system’s nonlinearity.
Despite this seemingly simple construction, tuning h̃ gives
rise to rich dynamical behaviors. For example, for (generic)
irrational values of h̃/(4π ) the rotor’s kinetic energy saturates
at long times [1], in sharp contrast to the linear energy growth in
the classical limit of vanishing h̃ [5]. The former, the so-called
dynamical localization, simulates an Anderson insulator [6]
while the latter simulates a (normal) metal. Even more striking,
h̃-driven phenomena occur to variants of the kicked rotor and
they simulate a broad spectrum of condensed-matter systems
(e.g., Refs. [7–15]). Most recently, it has been found that for
a spinful quasiperiodically kicked rotor the Planck’s quantum
can drive a sequential rotor Anderson insulator-metal transition
shown to be the mathematical equivalence of the integer
quantum Hall effect [16].

A peculiar phenomenon common to various kicked rotor
systems is the so-called quantum resonance for rational
values of h̃/(4π ) = p/q, with p and q being coprime natural
numbers [17]. For these values of h̃ the rotor’s kinetic energy
grows quadratically at large times, which is much faster than
the metallic (linear) growth. Such a phase simulates a perfect
crystal with diverging electric conductivity corresponding to
ballistic electron motion. Therefore, it is dubbed “supermetal.”
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Physically, for rational h̃/(4π ) the system exhibits translation
symmetry in the angular momentum space, and resonant
transmission through the ensuing Bloch bands gives rise to
the supermetallic (quadratic) growth. The extreme sensitivity
of the system’s behavior such as dynamical localization and
quantum resonance to the number-theoretic property of h̃/(4π )
is a prominent feature that distinguishes the kicked rotor
from genuine disordered systems (see Refs. [2,12,18–23] for
reviews of the early and recent status of this subject). Over
decades, this subject has been central to theoretical and exper-
imental studies of quantum chaos. Recently, the supermetallic
phase of the kicked rotor has been experimentally observed
in chemical systems and finds potential applications such
as achieving spin-selective rotational excitation of molecules
[24].

So far, most studies have focused on the asymptotic
supermetallic growth and are mute to effects of chaoticity.
In Ref. [22], it is first found by using the field theory that for
the standard kicked rotor the chaoticity gives rise to a universal
crossover from metallic to supermetallic energy growth which
is insensitive to the system’s details such as the values of
p and q and the strength of the kicking potential. Moreover,
it has been found that this universal dynamical behavior has a
deep connection to the optical conductivity of perfect crystals
[25,26] and the quantum walk in the periodic multibaker map
[27–29]. A fundamental question naturally arises: How robust
is this dynamical behavior? Notably, it is unclear whether
such dynamics universality exists in general periodic chaotic
systems and is impervious to the symmetry. The present work
aims at a systematic study of these issues.

We study the supermetallic phase [rational h̃/(4π )] of
a large class of generalized kicked rotor systems. These
systems have qualitatively different dynamical behaviors (e.g.,
dynamical localization or delocalization) when h̃/(4π ) is
irrational. We analytically show and numerically confirm
that chaoticity leads to even richer universal behavior in the
crossover from metallic to supermetallic energy growth. We
find that the universal dynamics crossover behavior is very
sensitive to the symmetry of the Hamiltonian describing the
free rotation of the particle, but not to system details. We show
that the universal metal-supermetal dynamics crossover can
be attributed to the universality of fluctuations of the Bloch
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wave functions and bands of the reduced quantum system
in a unit cell. The latter motivates us to conjecture that the
universality class of supermetal dynamics is identical to that
of eigenfunction and spectral fluctuations described by the
random matrix theory (RMT) [30].

The rest of the paper is organized as follows. In the next
section we introduce the models and discuss their symmetries.
We present the analytical results of the energy growth in
Sec. III and put them to numerical test in Sec. IV. In Sec. V we
discuss the RMT foundation of the universality of supermetal
dynamics. We conclude in Sec. VI. Some technical details are
presented in the Appendix.

II. MODEL AND SYMMETRY

In this work we will explore the dynamical behavior of a
large class of generalized quantum kicked rotors for rational
values of h̃/(4π ). In this section we first describe the models
and discuss their symmetries.

A. Generalized quantum kicked rotor

The system to be considered below has a general Hamilto-
nian as follows:

Ĥ = H0(n̂) + K cos θ̂
∑
m

δ(t − m). (2)

Here we assume the free rotation Hamiltonian H0(n̂) to be an
analytic function of n̂ which can be expressed as

H0(n̂) =
∞∑

k=0

ckn̂
k, (3)

where the numerical coefficients ck generally depend on h̃.
The angular momentum operator n̂ canonically conjugates
to the angular operator θ̂ and has the eigenvalue spectrum
{ñ},ñ ∈ Z. When H0(n̂) = 1

2 h̃2n̂2 the system is reduced to the
standard quantum kicked rotor (1). The quantum evolution can
be expressed as a stroboscopic dynamics such that the wave
vector at integer time t , |ψ(t)〉, is given by

|ψ(t)〉 = Û t |ψ(0)〉, t ∈ Z, (4)

with the Floquet operator

Û = e− i

2h̃
H0e− iK

h̃
cos θ̂ e− i

2h̃
H0 . (5)

As mentioned above, we shall focus on h̃/(4π ) = p/q

throughout this work.

B. Symmetry

First of all, we will consider such ck that H0/h̃ is shifted by
multiple 2π upon the translation operation:

T̂q : n̂ → n̂ + q. (6)

As a result,

[Û ,T̂q] = 0, (7)

implying that the system exhibits the translation symmetry in
the n̂ space. This brings the rotor to the supermetallic phase.

Next, the system exhibits an effective time-reversal symme-
try. To be specific, we note that the Hamiltonian (2) is invariant

under the “time-reversal” operation:

T̂c: n̂ → n̂, θ̂ → −θ̂ , t → −t. (8)

This has an important consequence, i.e.,

ÛT = Û , (9)

where the superscript T stands for the transpose. This T̂c

symmetry brings the system to the orthogonal class in the
RMT.

Finally, if ck = 0 for all odd k, then H0(n̂) and thereby the
system bears an additional symmetry, i.e., Û being invariant
under the operation

T̂i : n̂ → −n̂. (10)

Otherwise this symmetry is broken. This symmetry is dubbed
the “inversion symmetry” following solid-state physics [31].
Its effects on the quantum resonance have not yet been explored
[32] and this is the main subject of this work.

III. THEORY OF SUPERMETAL DYNAMICS

In this section we present an analytic theory for dynamics
of a generalized quantum kicked rotor at resonance, i.e., the
supermetallic phase. Particular attentions are paid to effects of
the inversion symmetry. Armed with this theory, we explicitly
calculate the rotor’s “kinetic energy” [33]:

E(t) ≡ 1
2 〈ψ(t)|n̂2|ψ(t)〉. (11)

Throughout, to simplify technical discussions without loss of
generality, we assume that the initial state is an unperturbed
eigenstate with zero angular momentum, i.e., |ψ(0)〉 = |0〉.

A. Reduced system

The quantum dynamics (4) in the angular momentum space
is determined by the quantum amplitude, 〈ñ|Û t |ñ′〉. It is easy to
show that the time Fourier transformations of this amplitude
and its complex conjugate, denoted as 〈ñ|(1 − eiω+Û )−1|ñ′〉
and 〈ñ′|(1 − e−iω−Û †)−1|ñ〉, respectively, give

E(t) = 1

2

∑
ñ

ñ2
∫

dω

2π
e−iωt

×〈〈ñ|(1 − eiω+Û )−1|0〉〈0|(1 − e−iω−Û †)−1|ñ〉〉ω0 ,

(12)

where ω± = ω0 ± ω
2 and 〈·〉ω0 ≡ 1

2π

∫ 2π

0 dω0.
To proceed we consider the eigenvalues and eigenvectors

of Û . The translation symmetry (7) entails a good quantum
number, i.e., the Bloch angle θ ∈ [0,2π/q]. According to
Bloch’s theorem,

Û |ψα,θ 〉 = eiεα (θ)|ψα,θ 〉, (13)

where both the quasienergy spectrum, {εα(θ )}, and corre-
sponding eigenvectors, {|ψα,θ 〉}, depend on θ . The Bloch wave
function

ψα,θ (ñ) ≡ 〈ñ|ψα,θ 〉 = eiñθϕα,θ (ñ), (14)
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with ϕα,θ (ñ) being a q-periodic wave function:

ϕα,θ (ñ) = ϕα,θ (ñ + q) = ϕα,θ (n). (15)

In deriving the last equality of Eq. (15) we use the fact that
ñ can be uniquely written as n + Nq, where 0 � n � q − 1
and N ∈ Z. Upon applying Bloch’s theorem to Eq. (12) we
express the energy profile as

E(t) = −1

2

∫
dω

2π
e−iωt

q−1∑
n=0

∫
b

dθ+∂2
θ−|θ−=θ+Kω(n), (16)

where the notation
∫
b
dθ ≡ q

2π

∫ 2π/q

0 dθ has been introduced
and

Kω(n) = 〈〈n| 1

1 − eiω+Ûθ+
|0〉〈0| 1

1 − e−iω−Û
†
θ−

|n〉〉ω0 (17)

is the density correlation function for autonomous strobo-
scopic dynamics restricted on a circle of circumference q.
This reduced system is governed by a θ -dependent Floquet
operator:

Ûθ = e− i

2h̃
H0e− iK

h̃
cos(θ̂+θ)e− i

2h̃
H0 . (18)

Physically, Kω(n) probes interference between retarded and
advanced amplitudes corresponding to the reduced dynamics,
and the Bloch angle θ introduces an “Aharonov-Bohm flux,”
qθ , piercing through the circle (see Fig. 1). Note that the
unitarity of Ûθ now implies

∑q−1
n′′=0(Ûθ )nn′′(Û †

θ )n′′n′ = δnn′ for
arbitrary n,n′ ∈ {0,1, . . . ,q − 1}.

It is important to note that for the reduced system governed
by Ûθ the effective time-reversal symmetry T̂c is broken by the
Bloch angle if θ 	= 0, π . A question naturally arises: Does this
broken T̂c symmetry bring the system to the unitary class in the
RMT? As we will show in the following, the answer crucially
depends on whether H0(n̂) exhibits the inversion symmetry T̂i .
If the latter symmetry is broken, then the system belongs to the
unitary class. If not, then Ûθ is invariant under the combined
operation T̂i T̂c and this brings the reduced system back to the
orthogonal class.

B. Universal metal-supermetal dynamics crossover

1. Field theory

The remaining task is to calculate the two-particle Green’s
function Kω(n) evaluated at fixed parameters θ±. Following

FIG. 1. (Color online) The translation symmetry entails a reduc-
tion of quantum dynamics from unbounded angular momentum space
to a circle of circumference q pierced by an Aharonov-Bohm–like
flux qθ with θ being the Bloch angle.

Ref. [22] we may express it in terms of a functional integral:

Kω(n) = − 1

24

∫
dQe−S[Q]

× str(k[Q(n)]+2,−2k[Q(0)]−2,+2). (19)

Here Q ≡ {Qλαβ,λ′α′β ′ } is a supermatrix defined on three
sectors: the index λ = +,− refers to the advanced and retarded
(AR) sector, α = f,b to the fermionic-bosonic (FB) sector,
and β = 1,2 to the “T” sector accommodating the symmetry
under the combined operation T̂i T̂c; i.e., β = 1 (2) refers to
(in)variance under the T̂i T̂c operation. Q satisfies the periodic
boundary condition Q(n) = Q(n + q). The constant matrix
k = σ 3

FB ⊗ σ 0
AR ⊗ σ 0

T , where σ 0
X is the unit (2 × 2) matrix in

the X sector. The action is given by

S = 1

24

∫ q

0
dnstr

[
Dq(i∂nQ − [ϑ̂,Q])2 − 2iωQσ 3

AR

]
(20)

with

ϑ̂ =
(

θ+ 0
0 θ−

)
AR

⊗ σ
−1+β2

T ⊗ σ 0
FB. (21)

For β = 2 the matrix σ
−1+β2

T = σ 3
T represents the sign change

in the Aharonov-Bohm flux under the T̂c operation. The
corresponding effective field theory has been obtained in
Ref. [22], but for β = 1 an additional symmetry,

Q(n) = Q(q − n), (22)

arises. Note that the above action is universal in the sense that
it depends on system parameters only through the diffusion
constant Dq . The effective field theory is valid, provided
the parametric conditions, (i) 1 � K/h̃ � q � (K/h̃)2, (ii)
ω � 1, and (iii) K � 1 [34], are met. The physical meanings
of these conditions are as follows. For (i), K/h̃ plays the role of
the “transport mean free path” in normal metals; the inequality
K/h̃ � q guarantees the validity of the hydrodynamic expan-
sion, while q � (K/h̃)2 implies that localization physics does
not play any roles. For (ii), we are concerned in time scales
much larger than the kicking period. In (iii) and K/h̃ � 1, it is
implied that the angular (or more precisely, sin θ̂) correlation
rapidly decreases, i.e., strong chaoticity. The latter results in the
fact that the distribution of the quasienergy spectrum {εα(θ )}
of the Floquet operator Ûθ follows the Wigner-Dyson statistics
for the circular orthogonal ensemble (COE) for β = 1 and the
circular unitary ensemble (CUE) for β = 2.

In principle, the diffusion constant Dq depends on both
the parameters K and h̃ and the details of H0, i.e., {ck}.
The H0 dependence arises from the short-time correlation
contributions to the diffusion constant [22]. For K/h̃ � 1
these correlation contributions are negligible and consequently
only the parameter (K,h̃) dependence arises, i.e., Dq =
Dq(K,h̃) ∼ (K/h̃)2.

2. Metallic-supermetallic growth crossover

We proceed to use Eqs. (16), (19), and (20) to explicitly
calculate E(t). First of all, for ω � � ≡ 2π/q which is
the mean level spacing of the unit cell, the effective action
(20) shows that inhomogeneous Q-field fluctuations have
a typical action Ec/� � 1 where the Thouless energy
Ec = Dq/q

2 is the inverse of the classical diffusion time
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through the periodicity volume. This inequality is ensured
by q � (K/h̃)2 ∼ Dq . So, inhomogeneous fluctuations can
be neglected and only the zero mode, Q(n) ≡ Q, is kept.
Equation (20) thereby is simplified to the zero mode action:

S = π

8�
str

(
Dq[ϑ̂,Q]2 − 2iωQσ 3

AR

)
. (23)

Then, we substitute this action into Eq. (19). The subsequent
calculations are similar to those of Ref. [22] and below we
will give the results. Some details are given in the Appendix.
We find

E(t)/(qDq) = F (t̃), t̃ = t/q. (24)

It is important that this energy profile is universal: the details
of the model [e.g., the stochastic parameter K , the free
Hamiltonian H0, the denominator of rational h̃/(4π ), etc.]
only determine the scales of energy and time. The explicit
form of the universal function F (t̃) depends on the system’s
symmetry and is given as follows.

(1) For H0 with inversion symmetry so that the quantum
system reduced to a unit cell is orthogonal, we find (see the
Appendix for derivations)

F (t̃) = 1

8

∫ ∞

1
dλ1

∫ ∞

1
dλ2

∫ 1

−1
dλδ(2t̃ + λ − λ1λ2)

× (1 − λ2)
(
1 − λ2 − λ2

1 − λ2
2 + 2λ2

1λ
2
2

)2(
λ2 + λ2

1 + λ2
2 − 2λλ1λ2 − 1

)2 . (25)

For short times (t̃ � 1) the Dirac function in Eq. (25) implies
that the integrals are dominated by λ,λ1,2 ≈ 1. Therefore, we
may expand λ,λ1,2 near unity and keep the leading expansion
of F (t̃). As a result, F (t̃ � 1) ∼ t̃ . For long times (t̃ � 1),
the integrals are dominated by λ = O(1) and λ1,2 � 1. Taking
this into account we find F (t̃ � 1) ∼ t̃2.

(2) For H0 without the inversion symmetry so that the
quantum system reduced to a unit cell is unitary, the result
is the same as what has been found previously [22], which is

F (t̃) =
{
t̃ + 1

3 t̃3, 0 < t̃ < 1,

t̃2 + 1
3 , t̃ > 1.

(26)

Equations (25) and (26) show that the energy profile exhibits
a universal crossover from metallic to supermetallic growth
(Fig. 2). As we will show in Sec. V, they can be obtained also
from RMT.

IV. NUMERICAL TESTS

In this section we put the analytic results, namely, Eqs. (25)
and (26), to numerical tests. As we will see below, although
the analytical derivations of these two universal crossovers
require the conditions 1 � K/h̃ � q � (K/h̃)2 and K �
1, they hold in broader regimes. Surprisingly, they hold
even in systems (e.g., the kicked Harper system [7–9]) the
quantum dynamical behaviors of which at irrational h̃/(4π )
are fundamentally different from the standard kicked rotor
[10,11].

To numerically study the universality of the dynamics
crossover we use different forms of the free Hamiltonian
H0. It has been known that this Hamiltonian, H0, mimics
“impurities” in genuine disordered systems [6,22].

10-2 10-1 100 101

10-2

10-1

100

101

102

2

∼

∼

∼

∼∼ t

∼ t

F
(t
)

t

FIG. 2. (Color online) The analytical results obtained by the field
theory for a generalized kicked rotor with (thick blue dashed line) and
without (thick red dotted line) the inversion symmetry. It shows that
the energy profile exhibits a universal crossover from metallic (∼ t̃)
to supermetallic (∼ t̃2) growth. The results are in excellent agreement
with those obtained from the RMT corresponding to the orthogonal
(thin green solid line) and the unitary (thin black dash-dotted line)
symmetry, respectively.

A. Polynomial-type free Hamiltonian

We first consider a polynomial-type free Hamiltonian with
a specific form given by

H0 = h̃2

2
(α2n̂

2 + α3n̂
3), (27)

with α2,3 ∈ N. The T̂i symmetry is present for vanishing α3

and otherwise broken.

1. Spectral statistics

For a given Bloch angle θ we numerically diagonalize
the Floquet operator Ûθ to obtain the quasienergy spectrum
{εα(θ )}. We repeat the computation for 1000 randomly selected
values of θ so that a large ensemble is realized. We calculate
the distribution of the nearest level spacing, P (s), for various
parameters of α2,3,K and h̃. We find that P (s) follows the
Wigner-Dyson statistics for COE for vanishing α3 (Fig. 3,
green solid histograms) and CUE for vanishing α2 (Fig. 3,
black dash-dotted histograms). More generally, as long as
α3 	= 0, P (s) follows the Wigner-Dyson statistics for CUE
(Fig. 4). These results indicate that the system is strongly
chaotic so that the field theory is expected to be valid.

2. Universal energy growth

For a given free Hamiltonian H0, we use the standard fast
Fourier transform technique to simulate the quantum evolution
(4) and thereby obtain F (t̃) defined by Eq. (24). In Fig. 5 we
present the simulation results of F (t̃) for the free Hamiltonian
H0 given by Eq. (27) with the same parameters as in Fig. 3 for
the sake of comparison. We find that for vanishing α3 where
the T̂i symmetry is present F (t̃) is in excellent agreement with
the analytic result given by Eq. (25), while for vanishing α2

where the T̂i symmetry is broken F (t̃) is in excellent agreement
with the analytic result given by Eq. (26). We also find that
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FIG. 3. (Color online) The simulation results of the distribution
of the nearest level spacing P (s) for α2 = 1,α3 = 0 (green solid his-
tograms) and α2 = 0,α3 = 1 (black dash-dotted histograms) follow
the Wigner-Dyson statistics for COE (blue dashed lines) and CUE
(red dotted lines), respectively. The parameter h̃/(4π ) is 55/691 (a),
24/301 (b), 24/299 (c), and 7/87 (d). For all four panels K = 300.

the universal metallic-supermetallic growth crossovers (25)
and (26) are valid not only in the regime of K/h̃ � q �
(K/h̃)2 [Fig. 5(a)] but also of q � K/h̃ [Figs. 5(b)–5(d)]. In
addition, as shown in Fig. 6, as long as α3 	= 0, for which
the quasienergy spectrum follows the Wigner-Dyson statistics
for CUE (see Fig. 4), the energy growth follows the metallic-
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FIG. 4. (Color online) The simulation results of P (s) (black
dash-dotted histograms) follow the Wigner-Dyson statistics for CUE
(red dotted line), as long as α3 does not vanish. For panel (a)
α2 = 1 and α3 = 99 while for (b) α2 = 99 and α3 = 1. In both cases
h̃/(4π ) = 8/101 and K = 300. The blue dashed lines are for the
Wigner-Dyson statistics for COE.
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FIG. 5. (Color online) The simulation results of the rescaled
energy growth F (t̃) for α2 = 1,α3 = 0 (green solid lines) and α2 =
0,α3 = 1 (black dash-dotted lines) convincingly support the analytic
predictions for orthogonal (blue dashed lines) and unitary (red dotted
lines) systems, respectively. The parameters for each panel are the
same as in Fig. 3.

supermetallic growth crossover of unitary type described by
Eq. (26), confirming the sensitivity of the crossover to the
system’s symmetry.

B. Nonpolynomial-type free Hamiltonian

When the polynomial is of higher degree (with all coeffi-
cients being integers) but finite, we find numerically that the
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(a)
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FIG. 6. (Color online) The simulation results (black dash-dotted
lines) show that as long as α3 does not vanish F (t̃) follows the
metallic-supermetallic growth crossover of unitary type described
by Eq. (26) (red dotted lines). The parameters for each panel are the
same as in Fig. 4. For comparison, the crossover of orthogonal type
described by Eq. (25) (blue dashed lines) is also plotted.
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FIG. 7. (Color online) The simulation results of P (s) for the
kicked Harper model. The green solid histogram for φ = 0 in (a)
and the black dash-dotted histogram for φ = π/2 in (b) follow
the Wigner-Dyson statistics for COE (blue dashed line) and CUE
(red dotted line), respectively. For both panels h̃/(4π ) = 24/301 and
L = K = 300.

system’s behavior at resonance remains the same. A natural
question thereby arises: What happens if the degree is infinite
so that H0 is not a polynomial? To investigate this problem we
consider

H0 = L cos(h̃n̂ + φ). (28)

Here L is a (nonzero) constant. When the phase parameter φ

vanishes, this system becomes the conventional kicked Harper
model [7–9] and exhibits the inversion symmetry. Whereas
φ 	= 0 the inversion symmetry breaks.

As shown in Fig. 7, the spectral fluctuations of the
Floquet operator Ûθ obey the Wigner-Dyson statistics for COE
(CUE) for φ = 0 (π/2). Correspondingly, F (t̃) is in excellent
agreement with the analytic result given by Eq. (25) for φ = 0
[Fig. 8(a)] and by Eq. (26) [Fig. 8(b)] for φ = π/2. Therefore,
the analytic results for universal metal-supermetal dynamics
crossover are also confirmed for the kicked Harper model.
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FIG. 8. (Color online) The simulation results, green solid line
in (a) and black dash-dotted line in (b), of the energy growth
corresponding to the two cases in Fig. 7. They exhibit again the
universal metallic-supermetallic growth crossover as analytically
predicted by Eq. (25) for the orthogonal (blue dashed line) and by
Eq. (26) for the unitary (red dotted line) symmetry.

V. DYNAMICS UNIVERSALITY FROM RMT

In this section we provide an alternative scheme for
approximate analytic calculations of the energy profile. From
this scheme we will see that the universality of the dynamics
crossover is deeply rooted in the universal fluctuations of the
Bloch bands and eigenfunctions which are well described by
the RMT. Interestingly, this scheme unveils a connection of
the quantum resonance (supermetallic phase) of kicked rotors
to the periodic multibaker map [27–29].

A. General expression of E(t)

To this end we compactify the angular momentum space
with the periodic boundary condition so that it includes M

unit cells. Recall that the initial condition is not essential. We
consider the energy growth with the initial state |ψ(0)〉 = |ñ〉
and average the energy profile with respect to ñ. Mathemat-
ically, this is equivalent to preparing an “equilibrium state,”
ρeq = (qM)−1 ∑

ñ |ñ〉〈ñ|.
By the definition of E(t) we find

E(t) = 1

2

t−1∑
τ1,2=0

Tr[ρeqv̂(τ1)v̂(τ2)] ≡ 1

2

t−1∑
τ1,2=0

Cτ1,τ2 , (29)

where v̂(τ ) ≡ K

h̃
sin θ̂ (τ ) may be considered as the velocity

(corresponding to the motion in angular momentum space)
operator, with

v̂(τ ) = (Û †)τ v̂ Û τ , (30)

and Cτ1,τ2 is its autocorrelation function. Equation (29) is
further reduced to

E(t) = 1

2

(
C0t + 2

t−1∑
τ=1

(t − τ )Cτ

)
(31)

thanks to Cτ1,τ2 = Cτ1−τ2 .
Next, we calculate the autocorrelation function Cτ . It can

be rewritten as

Cτ =
(

K

h̃

)2 1

qM
Tr[(Û †)τ sin θ̂ Û τ sin θ̂ ] (32)

by using its definition [cf. Eq. (29)]. Employing Bloch’s
theorem (13) we obtain

Cτ =
(

K

h̃

)2 1

qM

∑
α,α′

∑
θ,θ ′

e−i[εα (θ)−εα′ (θ ′)]τ |J̃αθ,α′θ ′ |2, (33)

J̃αθ,α′θ ′ = 〈ψα,θ | sin θ̂ |ψα′,θ ′ 〉. (34)

The matrix elements of J̃ can be simplified to

J̃αθ,α′θ ′ = 1

2iM

∑
ñ,ñ′

ϕ∗
α,θ (ñ)ϕα′,θ ′ (ñ′)ei(ñθ−ñ′θ ′)

× (δñ−ñ′,1 − δñ−ñ′,−1)

= 1

2i
δθθ ′

q−1∑
n=0

(ϕ∗
α,θ (n)ϕα′,θ (n − 1)eiθ

−ϕ∗
α,θ (n)ϕα′,θ (n + 1)e−iθ )

≡ δθθ ′ J̃αα′ (θ ). (35)

235437-6



SYMMETRY AND DYNAMICS UNIVERSALITY OF . . . PHYSICAL REVIEW B 92, 235437 (2015)

In deriving the second equality we have summed over the
Bravis lattice which enforces θ = θ ′. Substituting Eq. (35)
into Eq. (33) gives

Cτ =
(

K

h̃

)2 1

qM

∑
α,α′

∑
θ

e−i[εα (θ)−εα′ (θ)]τ |J̃αα′ (θ )|2. (36)

By setting τ = 0 in Eqs. (32) and (36) we find the following
identity:

1

Lq

∑
α,α′

∑
θ

|J̃αα′ (θ )|2 = 1

2
. (37)

Equations (31) and (36) constitute an exact formalism for
calculating E(t). Formally, they are identical to the formulas
giving the mean-square displacement in the periodic multi-
baker map. The latter essentially is composed of an infinite
number of standard baker’s maps, which are coupled to each
other, with the coupling being spatially periodic [35]. (The
details are certainly not.)

B. Effects of chaotic fluctuations of Bloch bands
and wave functions

Equation (36) shows that the correlation is governed
by the quasienergy spectrum {εα(θ )} and the corresponding
eigenfunctions ϕα,θ , which determine the oscillatory factor
e−i[εα (θ)−εα′ (θ)]τ and the matrix elements of the velocity oper-
ator, i.e., J̃αα′ (θ ), respectively. Because the reduced quantum
system in a unit cell (for a given Bloch angle θ ) is chaotic, both
{εα(θ )} and ϕα,θ exhibit chaotic fluctuations. If we assume that
the fluctuations of {εα(θ )} and ϕα,θ are independent, then the
correlation function is simplified to

Cτ →
(

K

h̃

)2 1

Lq

∑
α,α′

∑
θ

〈e−i[εα (θ)−εα′ (θ)]τ 〉〈|J̃αα′ (θ )|2〉, (38)

where 〈·〉 stands for the averages over a random ensemble
of energy spectrum and wave functions, respectively. These
random ensembles are well described by the RMT.

For the system without the inversion symmetry (β = 2),
following Ref. [29] we use the RMT corresponding to CUE to
find

〈e−i[εα (θ)−εα′ (θ)]τ 〉 =
⎧⎨
⎩

1, τ = 0;
τ−q

q(q−1) , 0 < τ < q;
0. τ � q.

(39)

For the system with the inversion symmetry (β = 1), we find

〈e−i[εα (θ)−εα′ (θ)]τ 〉

=
⎧⎨
⎩

1, τ = 0;
1

q(q−1)

{ − q + 2τ
[
f ( q

2 + τ ) − f ( q

2 )
]}

, 0 < τ < q;
1

q(q−1)

{ − q + 2τ
[
f ( q

2 + τ ) − f (τ − q

2 )
]}

, τ � q

(40)

corresponding to COE, where f (τ ) ≡ ∑τ
k=1

1
2k−1 . Note that

these results are independent of θ .
We cannot calculate the second factor in Eq. (38) analyt-

ically. Instead, motivated by the similarity between Eq. (36)
and the corresponding expression for the periodic multibaker
map, we hypothesize that the matrix elements of the velocity

operator have the universal behavior. So, we translate the
results of Ref. [29] obtained from the RMT to the present
context, which read

〈|J̃αα′ (θ )|2〉 =
{

1
2

3−β

q+3−β
, α = α′;

1
2

q

(q−1)(q+3−β) , α 	= α′,
(41)

where the overall factor of 1/2 makes it obey the identity
(37). Below, key predictions obtained from this ansatz are
confirmed.

We substitute Eqs. (39)–(41) into Eq. (38). In combination
with Eq. (31) we obtain for β = 1 [Dq = ( K

2h̃
)2]

E(t)

qDq

=
{

t̃ + t̃(t̃−q−1)
(1+2q−1)

(
1 + t̃−2q−1

3(1−q−1)

)
, 0 < t̃ < 1;

2t̃2

1+2q−1 + 1+q−1

3(1+2q−2) , t̃ � 1,
(42)

where small corrections have been ignored, and for β = 2

E(t)

qDq

=
{

t̃ + t̃(t̃−q−1)(t̃−2q−1)
3(1−q−2) , 0 < t̃ < 1;

t̃2

1+q−1 + 1
3 , t̃ � 1.

(43)

As shown in Fig. 2, these results are in excellent agreement
with those predicted by the field theory and are confirmed by
simulations as shown in Sec. IV. Indeed, for β = 2, Eq. (43) is
identical to the analytic expression (26) for q � 1. Equations
(42) and (43) show that

E|β=1(t)

E|β=2(t)
t�1−→ 2, for q � 1. (44)

Summarizing, the universal metal-supermetal dynamics
crossover can be attributed to universal chaotic fluctuations
of Bloch bands and eigenfunctions. Since the latter are
well described by the RMT, we expect that such dynamics
universality is identical to the RMT universality. On the other
hand, it is well known [36] that very rich RMT universality
classes are brought about by different symmetries. Although
in this work only crossovers corresponding to the orthogonal
and unitary classes are found, the richness of RMT universality
classes implies that even richer universal crossover behaviors
may exist, provided the system exhibits other symmetries.

VI. CONCLUSION

We analytically and numerically studied the dynamics of a
large class of generalized kicked rotor systems the Hamiltonian
of which is given by Eq. (2) with rational h̃/(4π ) = p/q. The
universal laws for the crossover from metal to supermetal
dynamics are found, manifesting themselves in universal
crossovers from metallic (linear) to supermetallic (quadratic)
energy growth. These crossover behaviors are determined only
by the system’s symmetry and insensitive to the details such as
the values of p and q and the strength of the kicking potential
which only affect the energy and the time scales. Specifically,
we find that when the Hamiltonian H0(n̂) governing the free
rotation has inversion symmetry, i.e., H0(n̂) = H0(−n̂), the
energy profile follows an orthogonal-type crossover behavior,
described by Eq. (25), and otherwise the crossover is a
unitary type, described by Eq. (26). We show by the RMT
that these universal dynamics crossovers can be attributed
to the universal Bloch wave functions and band fluctuations
of quantum systems reduced to a unit cell. This leads us to
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conjecture that in more general chaotic systems with periodic
driving the universality class of the metal-supermetal dynamics
crossover is identical to that of eigenfunction and spectral
fluctuations described by the RMT.

Our results can be generalized to condensed-matter systems
(such as semiconductors) where Bloch bands have been seen
to exhibit chaotic fluctuations following the RMT. For these
systems even richer universality classes have been predicted
[36]. The ensuing metal-supermetal dynamics crossovers are
expected to fall into different universality classes manifesting
in different universal behaviors of the optical conductivity.
Provided the unit cell is so complicated that the Bloch energy
spectrum exhibits chaotic fluctuations following the Wigner-
Dyson statistics, our results are expected to be valid.

Finally, we remark that in Ref. [21] the supermetallic
growth has been rigorously established for the standard kicked
rotor under general parametric conditions. This result was
obtained without resorting to the chaoticity condition. A
byproduct of the present work, i.e., E(t → ∞) ∼ t2, is con-
sistent with this rigorous result, but is established based on the
chaoticity condition. We believe that our main result of univer-
sal metal-supermetal dynamics crossovers is of chaos origin.
Such a crossover phenomenon was not studied in Ref. [21].
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APPENDIX: DERIVATIONS OF EQ. (25)

In this Appendix we derive Eq. (25). To this end we employ
the polar coordinate representation of Q [37]. Specifically, we

parametrize Q as

Q = RQ0R
−1, Q0 =

(
cos �̂ i sin �̂

−i sin �̂ − cos �̂

)
AR

, (A1)

where Q0 is the radial part and

�̂ =
(

θ̂11 0
0 θ̂22

)
BF

,

θ̂11 =
(

θ̃ 0
0 θ̃

)
T

, θ̂22 = i

(
θ̃1 θ̃2

θ̃2 θ̃1

)
T

(A2)

with 0 < θ̃ < π,θ̃1,2 > 0, and R is the transverse part com-
muting with σ 3

AR. It is important to note that the Grassmann
variables enter only into R (see Ref. [37] for details).

We substitute this parametrization into Eqs. (19) and (23).
Taking into account that Eq. (21) now is simplified to

ϑ̂ =
(

θ+ 0
0 θ−

)
AR

⊗ σ 0
T ⊗ σ 0

FB, (A3)

we find

Kω = 1

4

∫ ∞

1
dλ1

∫ ∞

1
dλ2

∫ 1

−1
dλ e−S

× (1 − λ2)
(
1 − λ2 − λ2

1 − λ2
2 + 2λ2

1λ
2
2

)
(
λ2 + λ2

1 + λ2
2 − 2λλ1λ2 − 1

)2 , (A4)

where the radial coordinates λ ≡ cos θ̃ ,λ1,2 ≡ cosh θ̃1,2 and
the zero-mode action

S = π

2�

[
Dq(�θ )2

(
2λ2

1λ
2
2 − λ2 − λ2

1 − λ2
2 + 1

)
+ 2iω(λ − λ1λ2)

]
. (A5)

Substituting Eq. (A4) into Eq. (16) we obtain Eq. (25).
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