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I discuss the relationship between edge exponents in the statistics of work done, dynamical phase transitions,
and the role of different kinds of excitations appearing when a nonequilibrium protocol is performed on a closed,
gapped, one-dimensional system. I show that the edge exponent in the probability density function of the work is
insensitive to the presence of interactions and can take only one of three values: +1/2, −1/2, and −3/2. It also
turns out that there is an interesting interplay between spontaneous symmetry breaking or the presence of bound
states and the exponents. For instantaneous global protocols, I find that the presence of the one-particle channel
creates dynamical phase transitions in the time evolution.
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Out of equilibrium phenomena in quantum systems have
been given a large amount of attention recently. The interest
was largely spun by the advent of new experimental techniques
in cold atoms and solid state quantum devices where coherence
can be maintained for far longer times than previously [1], and
therefore the unitary evolution after a quantum system is taken
out of equilibrium has become an important and well studied
concept. This has been renewing interest in some fundamental
and long-standing questions in statistical mechanics, and
at the same time bringing new ideas and phenomena into
the spotlight. One such concept is that of dynamical phase
transitions (DPTs), which refers to nonanalytical behavior
detected in the Loschmidt echo (LE) [2] and affecting the time
evolution of certain observables in a characteristic way [3]. For
the important class of global, instantaneous, nonequilibrium
protocols (dubbed as quantum quenches), this phenomenon
can be understood in terms of the Fisher zeros of the partition
function corresponding to singularities of the free energy: The
LE in this case is equivalent to the partition function with
imaginary temperature [2]. While DPTs have been the subject
of a growing number of both analytical and numerical works,
a clear physical mechanism accounting for them has yet to
emerge [2–7].

Another interesting quantity is the work performed when
taking the system out of equilibrium [8]. With the discovery
of nonequilibrium fluctuation relations [9] this is interesting
on its own right, but it is also intimately connected to the LE
for certain important protocols [10]: In the case of quantum
quenches, the LE and the probability density function (PDF)
of the work done are related by Fourier transformations.
Furthermore, it seems now that although the work itself is
not an observable [10], due to being a positive operator valued
measure, it can in principle be measured on an enlarged system
[11]. One of the most striking features of the statistics of
work is the robustness and universality of the edge singularity
exponent in its PDF at the lower limit, corresponding to
the opening of the first continuous channel of realizing
the quench, i.e., the emission of two (quasi)particles with
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opposite momenta [4,12,13]. This robustness has already been
demonstrated with respect to the details of the protocol [4].

In this paper, we will concentrate on the role of interactions,
and we will determine the possible exponents emerging from
the statistics of work in one-dimensional gapped systems.
We will connect the different values to different kinds of
quasiparticle contents. We establish that the crucial property is
the existence or absence of one-particle excitations, which can
appear, e.g., in the form of bound states or when the initial or
the final system is spontaneous symmetry breaking. We also
find that the exponent is extremely robust and, in fact, close to
criticality, there are only three possible values (excluding fine
tuning): +1/2, −1/2, and −3/2, independent of the relevant
critical point and the symmetries of the system. Our results are
also interesting with respect to DPTs: For global quenches we
can predict the emergence of a transition by looking at the pre-
and postquench particle contents.

In the following, we first discuss the possible edge sin-
gularity exponents through a scattering theoretical argument.
We then study the case of spontaneous symmetry breaking on
the example of the Ising model. Then we move on to discuss
the sine-Gordon model, which provides a low-energy effective
field theory description of many interesting condensed matter
systems, e.g., one-dimensional magnets of the XYZ and XXZ

types and Mott insulators [14]. Finally, the connection to the
LE is studied.

Edge exponent from scattering theory. We apply quantum
field theoretical scattering theory to extract the exponents. This
approach is natural since the edge exponent is determined only
by the low-energy part of the spectrum, and quantum field
theory gives the universal low-energy effective description
valid close to criticality.

Suppose we perform some finite T time nonequilibrium
protocol on our system,

H [g(t0)] = H0 � H1 = H [g(t0 + T )], (1)

beginning in, e.g., the ground state of an initial Hamiltonian
H0, which is allowed to evolve by a different, local Hamil-
tonian that may itself be explicitly time dependent through
a coupling, e.g., the magnetic field H [g(t)]. At the end of
the protocol we arrive in some state that can be expanded

1098-0121/2015/92(23)/235433(5) 235433-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.235433


T. PALMAI PHYSICAL REVIEW B 92, 235433 (2015)

in terms of asymptotic states of the final Hamiltonian H1.
Asymptotic states form an eigenbasis of the fully interacting
theory and have a perfectly good interpretation as collections
of asymptotically free particles with mass and appropriate
quantum numbers. (In most of the interesting physical cases
such a basis exists.) We write the expansion as

|0〉0 � |e〉 = |0〉1 +
∑

{an}

∑

{pn}
K

{an}
{pn}|{pn}〉1

{an} + · · · , (2)

where the eigenstates contain the stable (quasi)particle exci-
tations of species an and momentum pn. Since we consider
a nonadiabatic, finite-time process, the amplitudes K

{an}
{pn} in

general will be nonzero, however, we note that for the
multiparticle states to acquire an appreciable weight, the
inverse time scale of the protocol should be much larger than
the gap, 1/T � m.

Now consider the PDF of the work done on the system
during the protocol defined as

P (W ) =
∑

eigenstates |�〉 of H1

δ(W − E� + Egs,0)|〈�|e〉|2, (3)

signifying two projective energy measurements before and
after the protocol and summing over all the possible transitions
weighted by the respective overlaps. Supposing a translation-
ally invariant initial state and time-evolving Hamiltonian, the
one-particle part can only consist of zero-momentum particles
responsible for Dirac deltas in the PDF, and the low-energy
behavior of the continuum part is dictated by the two-particle
creation amplitudes 〈p1p2|e〉 = K(p1)δ(p1 + p2) relative to
the particles with lowest mass m (only states with zero total
momenta are allowed because of translation invariance).

In Ref. [12], for an integrable quantum field theory in the
quench limit, it was observed that if there are no particle
multiplets, the continuum part starts as

P (W � 2m) ∼ |K(
√

W 2 − 4m2)|2(W − 2m)−1/2, (4)

where the density of states near the threshold was supposed
to go as ρ(E) ∼ (E − 2m)−1/2. Here, we observe that Eq. (4)
depends only on the relativistic dispersion E(p) ≡ E|p,−p〉 =
2
√

m2 + p2 and density of states and therefore generalizes
to finite-time protocols on arbitrary interacting relativistic
quantum field theories. Now we use the relation

K(p) = S(−2p)K(−p), (5)

with S(p) being the two-particle scattering amplitude. This can
be verified by considering a state |�〉 = ∫ ∞

−∞ dpK(p)|p,−p〉
and using the definition of the scattering amplitude |p,−p〉 =
S(2p)|−p,p〉 to obtain |�〉 = ∫ ∞

−∞ dpK(−p)S(−2p)|p,−p〉,
proving Eq. (5). Noting that in one dimension for any inter-
acting theory the scattering amplitude has the superuniversal
property S(0) = −1,1 we see that the two-particle amplitude
is odd near p = 0. The simplest choice realizing this would be

1See Ref. [15] after Eq. (6.13) or consider the simple quantum
mechanical problem of potential scattering, where it can be seen by
elementary considerations that in the low-energy limit, i.e., when the
potential can be approximated by a Dirac delta, the phase shift is
always π corresponding to S = −1.

K(p ≈ 0) ∼ p, giving P (W ≈ 2m) ∼ (W − 2m)1/2, which
was indeed observed when quenching inside a single phase
in the Ising [4] and sinh-Gordon models [12]. However, one
could also imagine K(p ≈ 0) ∼ p−1, or in fact any odd
power. Incidentally, the choice p−1 yields P (W ≈ 2m) ∼
(W − 2m)−3/2, an edge behavior observed when quenching
through the quantum critical point in the Ising model [4].

In this paper we argue that in one dimension and close to
criticality (or when a relativistic dispersion is expected) the
exponents 1/2 and −3/2 are in fact the only natural ones
in any interacting system. In the special case of free bosons
with S(0) = 1, a third exponent is seen instead, P (W ≈ 2m) ∼
(W − 2m)−1/2, which is confirmed by explicit calculation in
Ref. [16].

We show that the only way for an extensive quench to be
realized with a singular two-particle amplitude, e.g., K(p ≈
0) ∼ p−1, is in the presence of a zero-momentum one-particle
excitation in the expansion (2). Vice versa, if there is a nonzero
one-particle term in Eq. (2), the corresponding two-particle
amplitude has a pole at p = 0. To see this correspondence,
we note that extensivity of free energy is expected for
translationally invariant initial states in thermodynamically
large systems because the translation operator does not change
throughout the protocol. The asymptotic expansion of the
partition function calculated in the postprotocol system in finite
volume L and inverse temperature R reads

Z = 1 + a1Le−mR

+
∑

I

ε(pI )

Lε(pI ) + 2δ′(2pI )
|K(pI )|2e−2Rε(pI ) + · · · , (6)

where the fraction in the two-particle term accounts for the
difference in the density of states in finite and infinite volumes
(for details, see Ref. [17], where the equivalent boundary field
theoretical problem was considered). ε(p) is the one-particle
energy at momentum p, δ(p) the phase shift, S(p) = eiδ(p),
and I labels the quantized finite-volume states. At the bottom
of the spectrum the quantized momenta behave as pI ∼ L−1,
so both ε(p) and δ′(p) are finite. As shown already in Ref. [17],
if the two-particle amplitude has a first-order pole at p = 0, the
only way for the free energy to be extensive F = log Z ∼ L

is in the presence of a nonzero one-particle contribution, and
in fact the coefficient a1 is related to the residue of the pole
of K(p) [17,18]. This is because the part of the two-particle
contribution coming from the pole of K(p) is superextensive
of order L2 and needs to be canceled exactly in log Z.2

One can also see that a more singular behavior of K(p) at zero
cannot be canceled by the one-particle contribution, therefore
we can restrict K(p) to be

K(p ≈ 0) ∼ p2k+1, k � −1. (7)

2It is interesting to note that the extensivity of the nonequilibrium
protocol gives the same condition for |e〉 as the one obtained in
boundary field theory for sensible boundary states from considera-
tions involving the crossed channel [18,19].
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FIG. 1. Extensivity of the initial state and a local, translationally
invariant, interacting Hamiltonian evolution requires a singular edge
exponent of −3/2 in the PDF of the work done if the protocol can
be realized by the emission of a single zero-momentum particle (a).
In the absence of the one-particle realization the edge is nonsingular
with an exponent of +1/2 (b).

Considering this last equation, we expect that, without a fine
tuning in the parameters,3 the two-particle amplitude is linear
for small momenta unless there is a realization of the protocol
with the emission of a single particle, in which case the
amplitude will have a simple pole at p = 0 (see Fig. 1).

In the following, we discuss two scenarios leading to a
one-particle contribution in the after-protocol state. In the
first case, the system is spontaneous symmetry breaking
(SSB) either before or after the protocol. The second, equally
interesting case is when the model has a more complicated
particle content, such as the sine-Gordon model, where bound
state one-particle contributions can appear without crossing a
critical point.

Spontaneous symmetry breaking. We take the simplest
SSB system, the Ising model in a transverse field close
to criticality, in the thermodynamic limit equivalent to free
massive Majorana fermions. Depending on the sign of the
mass, the system is either in the unbroken (disordered) m > 0
or the broken symmetry phase m < 0 (ordered). To determine
the condition for the one-particle contribution to appear, we
need to recall the Hilbert space structure of Majorana fermions.

The Hilbert space can be divided into two sectors, with two
ground states, according to either adopting a periodic (Neveu-
Schwartz, NS) or antiperiodic boundary condition (Ramond,
R). The excitations are free fermions, and in finite volume the
boundary conditions require that the zero-momentum excited
states have even fermion numbers relative to the ground
state. In the broken phase and in the thermodynamic limit,
the energies of the two ground states become degenerate,
and in fact the two infinite-volume ground states are the
superpositions [20]

|↑〉 = 1√
2

(|NS〉 + |R〉),
(8)

|↓〉 = 1√
2

(|NS〉 − |R〉).

3Fine tuning is understood in the sense that for different exponents to
appear, K ′(0) = 0 would be required, however, the derivative K ′(p)
has no simple physical meaning, and therefore this corresponds only
to an accidental choice of protocol parameters.

The excitations over these states are kinks interpolating
between the two vacua, i.e., moving domain walls. In the
disordered, unbroken phase the R ground state acquires a mass
relative to the NS ground state and becomes a one-particle
state, so the zero-momentum R sector can be interpreted as a
collection of states containing an odd number of particles. The
vacuum is the NS vacuum and the excitations are fermions
corresponding to spin waves. Now, the states from different
sectors have no overlaps with each other because they have
different topological properties, so if the initial state contains
one sector, that sector will survive any protocol.

There is an important difference between arriving in the
same or arriving in a different phase as the initial one. Let
us first take the case of starting and ending the protocol in
the disordered phase. In this case, the initial state is the NS
vacuum and there is no overlap between NS and R states,
so we have no one-particle contribution in the expansion (2).
Contrary, if we start from one of the ordered ground states
and arrive in the disordered phase, because of the presence of
the R sector, initially we do expect a one-particle contribution.
The remaining cases can be obtained by the Kramers-Wannier
(KW) duality and using the fact that the work statistics has
to be identical to that of the dual protocol (the operator
corresponding to the work is invariant under the KW duality).

In summary, we obtained that when a protocol begins and
ends in different phases, the amplitude K(p) has a pole, while
if no phase boundary is crossed, it remains linear. This is in fact
the correct result as calculated in Refs. [4,21]. But contrary to
the explicit calculations available (e.g., Refs. [4,12,16,21,22]),
our considerations here depended only on the structure of the
Hilbert spaces before and after the protocol, and therefore we
expect them to generalize to other SSB situations, e.g., to pro-
tocols between phases of the three-state Potts or parafermionic
models in the following way. For discrete symmetry breaking
G → H ⊂ G, we can partition the Hilbert space according to
the representations of G/H in both the symmetric and broken
phases, but, importantly, in the broken phase, the lowest lying
states in all the sectors are degenerate and in infinite volume the
physical vacua are linear combinations of these, while in the
symmetric phase there is only one vacuum and the other sectors
will contain one-particle states. Since local operators (relative
to the Hamiltonian) have a zero matrix element between the
different sectors, for a protocol starting in the broken phase and
ending in the symmetric, we will in general have one-particle
excitations in the expansion (2).

To conclude this section, we comment on the effect of
finite volume on the Ising example. Consider the disordered-
to-ordered quench when only the NS sector is involved. With
a periodic boundary condition (PBC) there is no one-particle
state in the broken phase in finite volume, however, in infinite
volume such excitations do exist (see Fig. 2). On the other
hand, the cases of large finite and infinite volumes should not
be qualitatively different, and indeed an explicit calculation
of the two-particle amplitude [4,21] shows an infrared pole
in K(p) independent of the volume. Careful examination of
the calculation for the work PDF from the exact two-particle
amplitude (available through techniques developed for the
boundary thermodynamic Bethe ansatz [17,18,23]) shows that
a finite-volume infrared regularization in the Ising model
only allows for the appearance of the one-particle Dirac delta
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FIG. 2. Zero-momentum excitations in the finite- and infinite-
volume Ising model in the ordered phase.

when the volume goes all the way to infinity, in accordance
with the available excitations. These observations show that
our thermodynamic argument connecting the one-particle
contribution and the pole only works in infinite volume.
Indeed, the finite-volume vacuum |NS〉 for m < 0 does not
satisfy clustering and therefore an extensive free energy is not
expected at all.

Bound states. One-particle contributions in the expansion
(2) can also arise in models with more complicated spectra:
When the postprotocol Hamiltonian supports bound states,
their appearance is not forbidden by translation and parity
invariance (which was crucial in Refs. [24–26] to establish
the structure of the after protocol state), and we expect that
generally they appear in protocols performed on such models.

To support this idea, we made numerical calculations on
the sine-Gordon model with PBCs in small volume using the
truncated conformal space approach [27,28]. We found that,
both when quenching between the repulsive (no bound states)
and the attractive (bound states present) regimes and when
quenching inside the attractive regime, there are finite one-
particle contributions in the expansion (2) [29]. Our predictions
seem to be supported by the numerical results of Ref. [5], where
DPTs were observed without crossing a phase boundary for
quenches in the XXZ model with staggered magnetic fields in
the parameter regime, where the low-energy reduction is the
sine-Gordon model.

Implications for the dynamics. We propose that for global
quenches the remarkable universality of the edge exponent in
the work PDF can be detected in the large time behavior of the
LE, and based on whether or not a one-particle realization
is allowed, one can predict if a DPT will be encountered
during time evolution. LE is defined by L(t) = |L(t)|2 =

|〈�0|eiH0t e−iH1t |�0〉|2 = | ∫ ∞
−∞ dWe−iWtP (W )|2 and it is

connected to the work PDF by a Fourier transform. To every
new channel for increasing W corresponds an edge with some
exponent αnj (n being the number of particles emitted in the
new channel and j labels the particle species), so the long-time
behavior of the Loschmidt amplitude reads

L(t) = 1 +
∑

j

b1j e
imj t +

∑

j

b2j e
2imj t t−1−α2j

+ higher particle terms, (9)

where the first term comes from the vacuum, the second from
one-particle, and the third from two-particle contributions.
Compared to the two-particle terms, the higher particle
contributions are less singular, therefore these should be
invisible in the long-time limit.

For the bosonic α = −1/2, we get L(t) − L(∞) ∼ t−1/2,
and for the interacting α = 1/2, L(t) − L(∞) ∼ t−3/2. In-
terestingly, when there is a one-particle contribution to a
given species j , we would get L(t) − L(∞) ∼ t1/2, which is
nonphysical and apparently signals that the low-energy degrees
of freedom cannot capture the long-time behavior of the LE,
and we expect nonanalytic behavior during the time evolution,
or, by definition, a dynamical phase transition.

While this is an intriguing observation, we do not suggest a
one-to-one correspondence between one-particle contributions
in the expansion of the initial state and DPTs. In Ref. [6], it
was found that in the XY model it is possible to have DPTs
without a singular K(p) two-particle amplitude. Instead, their
results also show that whenever there is a singularity in the
amplitude, there are also DPTs in the LE, supporting the
physical relevance of the one-particle channel.

Conclusions. We proposed that the lowest edge exponents
in the probability density function of the work done during a
nonequilibrium protocol correspond to the realization of the
protocol by emitting two particles and are extremely robust to
perturbations in gapped one-dimensional systems. In fact, in
the presence of interactions, there are only two possibilities
depending on whether the protocol can also be realized by
emitting only one particle or this is forbidden. We discussed
two cases where such a one-particle process is allowed: when
the protocol begins and ends in different phases of a SSB model
and when there are bound states in the particle spectrum. We
also proposed that if the one-particle realization is allowed, the
time evolution of the Loschmidt echo shall exhibit a dynamical
phase transition.
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