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Cooper pair splitting and recombination in a nanoSQUID geometry at high transparency
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We describe a Josephson device composed of two superconductors separated by two interacting quantum dots
in parallel, where clear manifestations of Cooper pair splitting and subsequent recombination occur. Indeed,
in addition to sequential tunneling of electrons through each dot, an additional transport channel exists in this
system: crossed Andreev reflection, where a Cooper pair from the source is split between the two dots and
recombined in the drain superconductor. Unlike nonequilibrium scenarios for Cooper pair splitting which involve
superconducting/normal metal “forks”, our proposal relies on an Aharonov-Bohm measurement of the DC
Josephson current when a flux is inserted between the two dots. We provide a path integral approach to treat
arbitrary transparencies, and we explore all contributions for the individual phases (0 or π ) of the quantum dots.
We propose a definition of the Cooper pair splitting efficiency (the fraction of the electron transfer processes
which involve the splitting of a Cooper pair) for arbitrary transparencies, which allows us to find the phase
associations which favor the crossed Andreev process. Possible applications to experiments using nanowires as
quantum dots are discussed.
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I. INTRODUCTION

The ground state of a superconductor is described by the
BCS wave function, where electrons form Cooper pairs [1]. If
for some reason a pair exits the superconductor, its constituent
electrons can be transmitted in a normal metal conductor: a
process called (reverse) Andreev reflection, where a hole from
the normal metal incident on the superconductor is converted
as a reflected electron in this same metal. If the superconductor
is connected to two such metallic contacts whose separation
is smaller than the superconducting coherence length, a hole
incident from the first contact can be reflected as an electron
in the second contact. This process is called crossed Andreev
reflection (CAR) and corresponds to Cooper pair splitting: A
Cooper pair exits the superconductor, and its two constituent
electrons propagate in two different metallic leads.

The initial manifestation of CAR was proposed theoreti-
cally for nonlocal current [2–6], as well as for nonequilibrium
noise cross correlations (current-current fluctuations between
the superconductor and the two outgoing devices) [7–14],
which have a positive sign if the CAR process is favored.
CAR can also occur for a superconductor connected to two
quantum dots in the Coulomb blockade regime: If the dots can
only accommodate one electron at a time, a Cooper pair can
be split between the two dots [15,16].

On the experimental side, attention has mainly focused on
nonlocal current measurement on the Cooper pair beam splitter
[17], a device where typically the superconducting source of
electrons is connected to two leads, sometimes via embedded
quantum dots [18–21]. Under specific gate voltages imposed
on such dots, it is possible to trigger electronic transport in the
two outgoing conductors. Only a single experiment managed
to measure positive noise cross correlations when the source
of electrons was rendered superconducting [22].

The main challenge with these experiments resides in
the fact that they rely on nonequilibrium measurements.
Strictly speaking, Refs. [18–21] constitute indirect evidence
of Cooper pair splitting, as opposed to noise cross-correlation

measurements. The latter represent a considerable ordeal due
to the poor signal to noise ratio, and no attempt has been made
so far to reproduce the results of Ref. [22].

A seminal theoretical work has been suggested early on
to circumvent these difficulties by proposing a Josephson
equilibrium current geometry to test Cooper pair splitting
[23]. It describes two superconductors (with applied phase
difference) separated by two quantum dots [24] placed in
parallel. When a Cooper pair is transmitted from one su-
perconductor to the other, the two electrons can either pass
both through a given dot, or they can transit through different
dots (cf. Fig. 1). This indeed realizes an Aharonov-Bohm
(AB) experiment with superconductors as source and drain,
driven by an applied phase difference. The critical current as
a function of the AB flux should be π periodic if electrons
are not split between the two dots and 2π periodic if Cooper
pair splitting is effective. The clear originality of this proposal
resides in the fact that unlike nonequilibrium noise setups, here
Cooper pair splitting is uncovered using a current measurement
at equilibrium albeit in a Josephson geometry. The calculation
was performed perturbatively in the tunneling Hamiltonian,
with infinite repulsion on the dots. Dot gate voltages insured
that on average each dot was occupied by a single electron. A
complementary study appeared a decade later with the same
setup [25], and perturbative results for dot levels which were
assumed to be above the superconducting chemical potentials
and with a finite Coulomb repulsion were also presented.

First, so far no analysis of this superconducting Aharonov-
Bohm effect has allowed us to go beyond lowest order
perturbation theory in the tunneling Hamiltonian. Advances
in superconducting device fabrication [26] seem to indicate
that by burying nanowires underneath superconductors, large
transmission can be achieved between the resulting quantum
dot and the lead. Treating the tunnel coupling to all orders of
perturbation theory thus constitutes a first motivation of our
study.

Secondly, it is established that when a quantum dot is
embedded in a Josephson junction, away from the Kondo
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FIG. 1. (Color online) Illustration of the three different possibili-
ties for the transmission of a Cooper pair from the left superconductor
to the right one. The two electrons of the pair can either be both
transmitted through the upper dot (top left), through the lower dot (top
right), or the Cooper pair can be split with one electron transmitted
through each dot (bottom).

regime, the strength of the on-site repulsion, the coupling to
the leads, and the level position of the dot determine whether it
constitutes a 0 or a π junction (positive or negative Josephson
amplitude). This has been analyzed perturbatively [27], as well
as with path integral formalism, followed by a saddle point
approximation [28]. This latter work allows us to distinguish
between three phases of the Josephson junction: (a) the π phase
(where the dot is singly occupied), (b) the 0(0) phase (where it
is unoccupied), and (c) the 0(2) phase (with double occupation).
These predictions have been verified experimentally a decade
ago [29]. In the Josephson setup with two dots in parallel,
which is studied here, each dot can be in either the 0(0), the
0(2), or the π phase. In Ref. [23] the two electrons are both in a
π junction configuration, while Ref. [25] has also considered
the case where both dots are in the 0(0) phase. However, there
is to date no systematic or comparative study specifying which
combination of the dot phases may enhance or reduce the AB
signal for maximal observation, even less so for arbitrarily
large transparencies.

The two above points constitute the main motivations of
the present paper. In this paper, we employ the path integral
formalism to model the AB setup without any restrictions on
the transmission properties of the sample. Indeed, we provide
results both in the tunneling and the high transparency regimes,
and we propose a way to measure the efficiency of CAR
processes in both cases, by analyzing the AB signal. We find
that the CAR processes are optimized when the two quantum
dots are in the same phase.

CAR processes are also intimately related to entanglement,
which constitutes yet another motivation for perfecting our
understanding of such processes. Indeed, when the two
electrons of a Cooper pair are separated in two different normal
metal electrodes, one expects that the entanglement of the
spin degrees of freedom is preserved because the tunneling
processes are spin-preserving. CAR processes thus create
spatially separated entangled electron pairs. Tests of quantum
entanglement, based on Bell inequality violation measure-
ments, could be implemented via noise cross correlations with
the so-called superconducting Cooper pair splitter [30,31].
Moreover, these ideas have been applied to the paradigm of

quantum teleportation [32,33], as well as in other applications
[34,35].

The paper is organized as follows. In Sec. II we provide
a description of the device and of the model with which we
describe it, and we give an expression of the partition function
in terms of Grassmann variables. The free energy used to derive
the Josephson current of this nanoSQUID in a nonperturbative
manner is presented in Sec. III. In Sec. IV, we discuss
the possible occupancy states of the dots. We propose the
definition of a Cooper pair splitting efficiency in Sec. V which
can be computed for arbitrary transparencies of the studied
junctions. The AB signals are calculated first in the tunneling
regime in Sec. VI and then in the nonperturbative regime in
Sec. VII, and all possible phase associations for the dots are
considered. In Sec. VIII, we propose a few natural extensions
to our work and discuss our results in Sec. IX.

II. MODEL AND PARTITION FUNCTION

The device is illustrated in Fig. 2. For simplicity, the two
leads consist of the same superconducting material with a
controllable phase difference which can either be imposed by
closing the device in a loop geometry or embedding the device
in a macroscopic SQUID [23,25]. Two quantum dots are placed
in parallel in the nanogap between the two electrodes, and a
magnetic flux (which is in principle independent from the
one imposed to trigger a DC Josephson signal between the
electrodes) threads the area between the two dots. Electrons
can tunnel from the source electrode to the upper or lower
dot, but on-site Coulomb repulsion favors zero or single
occupation on the latter. In the presence of a magnetic flux
between the two dots, because of the AB effect, different phase
shifts are expected between the two paths that an electron can
follow to reach the drain electrode. If the separation between
injection points is larger than the coherence length, Cooper
pairs as a whole pass either by the upper or lower path, as in
Ref. [26]. If the injection points are closer together than the
superconducting coherence length however, the two electrons
of the pair can travel through opposite dots, realizing a CAR
process on this first superconductor, followed by an “inverse”
CAR process on the second superconductor, giving another
contribution to the Josephson current (see Fig. 1). By adjusting
the quantum dot energy levels and Coulomb interaction, we
expect to filter the electrons and eventually favor the CAR
process. Note however that this setup does not allow us to

FIG. 2. (Color online) Path dependent phase shifts.
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extract direct information on the degree of entanglement of
the dot electrons due to these CAR processes.

We denote by d̂
†
aσ the creation operator for an electron with

spin σ = ↑,↓ on the quantum dot a = U,D and by ψ̂
†
jkσ the

creation operator for an electron with momentum k and spin
σ = ↑,↓ in the superconductor j = L,R. It is convenient to
introduce the Nambu spinors

d̂a =
(

d̂a↑
d̂
†
a↓

)
and ψ̂jk =

(
ψ̂jk,↑

ψ̂
†
j (−k),↓

)
. (1)

σi (i = x,y,z) are the Pauli matrices that act in Nambu space.
The Hamiltonian of the double Josephson junction reads

H =
∑

a=U,D

Ha +
∑

j=L,R

Hj + Ht. (2)

Ha is the Hamiltonian of the quantum dot a = U,D, charac-
terized by its energy level εa and its on-site Coulomb repulsion
Ua:

Ha = εa

∑
σ=↑,↓

d̂†
aσ d̂aσ + Uan̂a↑n̂a↓, (3)

with n̂aσ = d̂
†
aσ d̂aσ the dot occupation operator per spin. Hj is

the Hamiltonian of the superconductor j = L,R, with gap �

and chemical potential μ:

Hj =
∑

k

ψ̂
†
jk(ξk σz + �σx)ψ̂jk, ξk = k2

2m
− μ. (4)

Here � is real; the phase difference between electrodes
has been gauged out and instead appears in the tunneling
Hamiltonian. If we denote by rja the location of the injection
point from lead j to dot a, the tunneling Hamiltonian Ht reads

Ht =
∑
jka

eik·rja ψ̂
†
jk Tja d̂a + H.c. (5)

The tunneling matrices involved in Eq. (5) read

TLU = tL σz e+i
φ−α

4 σz , TRU = tR σz e−i
φ−α

4 σz , (6a)

TLD = tL σz e+i
φ+α

4 σz , TRD = tR σz e−i
φ+α

4 σz . (6b)

φ is the phase difference between the superconductors, while
α is related to the magnetic flux 
 inside the SQUID loop:
α = 2π 



0
where 
0 = h/e is the flux quantum. For clarity,

the phase shifts acquired by tunneling electrons are indicated
in Fig. 2.

We employ a path integral approach in the Matsubara
formalism in order to compute the partition function of the
device. We introduce then the eigenvalues of the annihilation
operators ψ̂jkσ and d̂aσ written as ψjkσ and daσ , respectively.
These are Grassmann variables, and we consider also their
conjugates ψjkσ and daσ as well as the collections in Nambu
spinors da and ψjk defined in the same way as Eq. (1).

The partition function is given by a functional integration
over paths that are β antiperiodic:

Z =
∫

da (β) = −da (0)
ψjk(β) = −ψjk(0)

D[d,d,ψ,ψ] exp[−SE(d,d,ψ,ψ)]. (7)

The Euclidean action SE reads

SE(d,d,ψ,ψ) =
∫ β

0
dτ

{
H(d,d,ψ,ψ)

+
∑

a

da∂τ da +
∑
jk

ψjk ∂τψjk

}
, (8)

where the matrix elements of the Hamiltonian can be written
as

H(d,d,ψ,ψ) =
∑

a

Ha(da,da) +
∑
jk

Hjk(ψjk,ψjk)

+
∑
jka

Ht,jka(da,da,ψjk,ψjk). (9)

The expressions of Hjk and Ht,jka are readily obtained from
Eqs. (4) and (5) by substituting the annihilation operators â by
their eigenvalues a and the corresponding creation operators
a† by the conjugate Grassmann variables a. For the quantum
dots, we can also find an expression in terms of Nambu spinors
as follows:

Ha(da,da) = ε̃a + ε̃a da σz da − Ua

2
(dada)2, (10)

with ε̃a = εa + Ua

2 .

III. FREE ENERGY AND JOSEPHSON CURRENT

As the lead degrees of freedom are quadratic in the
Hamiltonian, they can be easily integrated out. The partition
function is then expressed as a functional integral over the dot
Grassmann variables:

Z = c1

∫
da (β)=−da (0)

∏
a

D[da,da] exp[−Seff(d,d)], (11)

where c1 is the determinant arising from the integration of the
lead variables, which is independent of φ and α. The effective
action in Eq. (11) reads

Seff(d,d) =
∑

a

∫ β

0
dτ

{
ε̃a + da(τ )[∂τ12 + ε̃a σz]da(τ )

− Ua

2
(da(τ ) da(τ ))2

}

−
∑
a,b

∫ β

0
dτ

∫ β

0
dτ ′ da(τ ) �ab(τ − τ ′) db(τ ′),

(12)

where the self-energy term

�ab(τ ) =
∑
jk

eik·(rjb−rja)T †
jaGk(τ )Tjb (13)

involves the Green function of the leads Gk(τ ), which verifies

[∂τ12 + ξkσz + �σx]Gk(τ ) = δ(τ )12. (14)

The quartic terms (dada)2 in Eq. (12) prohibit an exact
computation of the partition function. As in Ref. [28], we use
a Hubbard-Stratonovich transformation to treat these terms,
and we neglect the temporal fluctuations of the two auxiliary
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fields XU and XD which are introduced:

e
Ua
2

∫ β

0 dτ(dada)2 ≈
√

β

2πUa

∫ +∞

−∞
dXa e− β

2Ua
X2

a+Xa

∫ β

0 dτ dada .

(15)

Because both the Green’s functions Gk and the Nambu spinor
components daσ are β antiperiodic, we use a Matsubara series
expansion F (τ ) = ∑

p∈Z e−iωpτF (ωp) over the frequencies

ωp = (p + 1
2 )2π/β. Rather than keeping track of a cumber-

some device-specific position dependence of the self-energy,
we choose to introduce a phenomenological parameter η. It
extrapolates between the two most relevant cases: η = 0 for
infinitely distant injection points (much more separated than
the superconducting coherence length) and η = 1 for coin-
ciding injection points (much closer than the superconducting
coherence length). The dots are now integrated out and the
partition function becomes

Zη(φ,α) = c1c2

∫ +∞

−∞
dXU

∫ +∞

−∞
dXD exp

[ − S
HS,η

eff (XU,XD,φ,α)
]
, (16)

where c2 is a fermionic determinant arising from the dot variables integration. The effective action reads

S
HS,η

eff (XU,XD,φ,α) =
∑

a

(
β ε̃a + β

2Ua

X2
a

)
− 2

∑
p∈N

ln
(
β4

∣∣det
[
Mη

p(XU,XD,φ,α)
]∣∣), (17)

Mη
p(XU,XD,φ,α) =

[−(iωp + XU )12 + ε̃U σz − Ap(φ − α) −Bη
p(φ, + α)

−Bη
p(φ, − α) −(iωp + XD)12 + ε̃D σz − Ap(φ + α)

]
, (18)

Ap(φ) = �√
�2 + ω2

p

[
iωp 12 − �

(
cos

φ

2
σx + γ sin

φ

2
σy

)]
, (19)

Bη
p(φ,α) = η

�√
�2 + ω2

p

[
iωp

(
cos

α

2
12 + iγ sin

α

2
σz

)
− �

(
cos

φ

2
σx + γ sin

φ

2
σy

)]
. (20)

The decay rate is defined as � = π ν(0)(t2
L + t2

R), where ν(0)
is the density of states of the leads at the Fermi level. The
contact asymmetry is given by γ = (t2

L − t2
R)/(t2

L + t2
R).

The CAR process is due to the off-diagonal terms Bp of the
matricesMp, the determinants of which we have to compute as
a result of the Gaussian integrals over quantum dot degrees of
freedom. In practice, these off-diagonal terms depend on the
separation between injection points R ≡ |rjU − rjD|. They
have an exponential decay on the scale of the superconducting
coherence length. With the microscopic tunneling Hamilto-
nian formulation of Eq. (5), they also bear fast oscillations
on the Fermi wavelength and possibly power law decay
depending on the dimensionality [η(R) = (sin kF R)/(kF R)
for 3D superconductors [23,36] and no power law decay for
quasi-one-dimensional superconductors [37]]. Existing CAR
experiments [18–21] based on nanowire quantum dots embed-
ded in the superconducting leads are typically performed for
an injection separation which is less than the superconducting
coherence length. Yet these experiments find no evidence of
either Fermi wavelength oscillations or power law decay at
all: The nonlocal signal is strong and can be optimized by
tuning the dot gate voltages. This can be attributed to the
proximity effect from the bulk superconductors, which acts on
the nanowires used in the experiments. To keep our discussion
more general, and avoid such device-specific complications,
in this paper we use η as a phenomenological parameter, as
in Refs. [25,38]. Most of the results will be displayed for the
extreme values η = 0 and η = 1, but in order to show the
evolution of the AB signals, we sometimes allow it to vary
smoothly between these two values.

To evaluate the partition function of Eq. (16), we
use a saddle-point method [28]. The effective action

S
HS,η

eff (XU,XD,φ,α) is computed numerically by summing
over Matsubara frequencies (up to a cutoff much larger
than the superconducting gap). Its minimum, located in
[X∗

U (φ,α),X∗
D(φ,α)], is obtained with a gradient descent

method for fixed φ and α (the number of starting points of
the algorithm depends on the symmetry of the function to be
minimized). The free energy is then defined from this min-
imum value as S

HS,η

eff (X∗
U (φ,α),X∗

D(φ,α),φ,α) ≡ βFη(φ,α).
The current is finally obtained by differentiating the free energy
with respect to the phase difference φ:

J η(φ,α) = 2 ∂φF η(φ,α). (21)

The critical current, function of the flux α, is defined as

J η
c (α) = maxφ|J η(φ,α)|. (22)

For η = 0, it is π periodic. Indeed, in this case, there are
no CAR processes, and for a magnetic flux α, the current
characteristic (current as a function of the phase difference φ)
through the double junction is simply the sum of the current
characteristics across the independent single junctions, one
being shifted by −α and the other one by +α. Shifting α

by π results in adding a phase shift −π for one of the two
junctions [Ap(φ − α) → Ap(φ − α − π ) in the top left block
of Eq. (18)] and a phase shift +π for the other one [Ap(φ +
α) → Ap(φ + α + π ) in the bottom right block of Eq. (18)].
Because of the 2π periodicity in φ of the current through a
single junction, the critical current of the double junction is
unchanged when α → α + π . This is in contrast to the case
with η = 1, i.e., in the presence of CAR processes, where
the off-diagonal terms of Eq. (18) imply that only the 2π

periodicity of the critical current can be observed.
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IV. 0-π TRANSITION IN A SINGLE
JOSEPHSON JUNCTION

As a first step, let us recall some known results concerning
a single dot embedded in a Josephson junction. In this section,
we summarize the properties of such a setup, and we determine
under what condition the junction is in the 0(0), the π , or the
0(2) phase. The 0 phase is characterized by a positive Josephson
current for φ ∈ [0,π ]. It can be further separated between a 0(0)

phase where the dot is almost empty and a 0(2) phase where the
mean occupation number of the dot is almost 2. The π phase
is associated with a negative Josephson current for φ ∈ [0,π ]
and corresponds to a singly occupied dot.

In perturbative calculations, the Josephson current flowing
through the quantum dot is the result of the tunneling of Cooper
pairs, which requires a fourth order perturbative expansion
in the tunneling amplitudes between a superconductor and
the quantum dot. At this order, the current can be written
as J = J0 sin φ, where φ is the phase difference between the
superconductors, and the sign of J0 determines the 0 or π

character of the junction. Providing a single occupancy on the
quantum dot (0 < −ε � U ) J0 can be negative [27] unlike the
case of an empty quantum dot.

This phenomenon has been investigated numerically [28]
for arbitrary transmissions between the dot and the supercon-
ducting leads. For a fixed quantum dot energy level ε < 0
and a fixed decay rate �, the current as a function of the
phase difference φ between the superconductors undergoes a
discontinuity as one tunes the Coulomb interaction U across a
critical value. Computing the mean occupation number on the
quantum dot in the (−ε,U ) plane reveals the presence of all
three phases, as shown in Fig. 3, where the π phase, which lies
around the line 2ε + U = 0, separates the 0(0) and 0(2) phases.

V. SPLITTING EFFICIENCY

In order to identify the optimal regime for observing
signatures of CAR processes in the AB signal, we need to
define a splitting efficiency: a way to quantify contributions to

FIG. 3. (Color online) Mean occupation number diagram of the
quantum dot of a single Josephson junction for symmetric couplings
(tL = tR) and for � = �, β = 50�−1.

the Josephson current involving Cooper pair splitting. We start
by discussing the case of low electron transmission, where
intuition can be gained from simple perturbation theory. We
then aim at comparing the results of our general approach for
arbitrary transmission to the perturbative results for the AB
signal.

The fourth order perturbation expansion [23,25] in the
tunneling amplitudes tj allows us to write the Josephson
current as three contributions, associated with the three
different processes illustrated in Fig. 1, so that

J (φ,α) = ID sin (φ + α) + IU sin (φ − α) + ICAR sin φ.

(23)

Indeed, in the presence of a magnetic flux α �= 0, an additional
phase shift is acquired, depending on the path that each electron
of the Cooper pair followed between the two superconducting
leads. When the Cooper pair tunnels through the U (resp.
D) quantum dot, it accumulates a phase shift −α (resp.
+α) in addition to the superconducting phase difference and
contributes to the Josephson current with an amplitude IU

(resp. ID). However, when the Cooper pair is delocalized on
the two quantum dots (via the CAR process, thus contributing
with an amplitude ICAR), one electron gets a phase shift +α

2
while the other one gets a phase shift −α

2 , the pair accumulating
as a result no additional phase shift.

The critical current associated with the Josephson current
Eq. (23) then reads

Jc(α) = I0

√
1 + a cos α + b cos 2α (24)

with I0 =
√

I 2
U + I 2

D + I 2
CAR, I 2

0 a = 2ICAR(IU + ID), and
I 2

0 b = 2IDIU . For low enough values of �, we are in the tun-
neling regime, and the approximation Eq. (23) for the Joseph-
son current is justified. If we are able to extract the parameters
IU , ID , and ICAR, e.g., from a fit of the AB signal, we can
calculate the quantity

rt = I 2
CAR

I 2
U + I 2

D + I 2
CAR

, (25)

which encodes the splitting efficiency of the double Josephson
junction. It varies between 0 and 1. rt = 0 corresponds to a
low efficiency of the CAR process, while rt = 1 is obtained
when this process of spatial delocalization of the two electrons
of a Cooper pair is much more important than the tunneling
processes of a whole Cooper pair through a single quantum
dot.

As already stressed, the formalism developed in Secs. II and
III is valid regardless of the strength of the coupling between
the superconductors and the quantum dots. However, the above
definition of the splitting efficiency relies on the expression
Eq. (24) for the critical current which is no longer valid in
the nonperturbative regime. There, one needs an alternative
diagnosis for the detection of the CAR process. As it turns
out, a relevant quantity can be extracted from the mean powers
of the critical current obtained for infinitely distant injection
points (η = 0) and for coinciding ones (η = 1). Indeed,
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FIG. 4. (Color online) Critical current (in units of 10−4e�/�)
curves for symmetric associations of dots in the tunneling regime:
π -π (top panel), 0(0)-0(0) (middle panel), 0(2)-0(2) (bottom panel).

defining Pη = ∫ 2π

0 dα[J η
c (α)]2, we compute the quantity

r = |Pη=1 − Pη=0|
Pη=1

. (26)

This generalizes the concept of splitting efficiency to the case
of arbitrary transmission and coincides with the definition of
Eq. (25) in the tunneling regime.

VI. NANOSQUID IN THE TUNNELING REGIME

We first focus on the tunneling regime, taking a low value
of the decay rate � = 0.01�. We choose to explore all the
possible combinations for the phases of the two quantum dots
(see Figs. 4 and 5). The results were obtained for symmetric
couplings γ = 0 at temperature β−1 = 0.002�. The energies
of the quantum dots are: ε = −0.3� for the π phase, ε = 0.3�

for the 0(0) phase, and ε = −0.9� for the 0(2) phase. The
Coulomb interaction U is chosen to be the same for the two

FIG. 5. (Color online) Critical current (in units of 10−4e�/�)
curves for asymmetric associations of dots in the tunneling regime:
π -0(0) (top panel), π -0(2) (middle panel), 0(0)-0(2) (bottom panel).

quantum dots and within a specific range, as staying in a given
phase at fixed energy restricts the possible values for U .

The particle-hole symmetry ensures that the current is in-
variant under the change (ε̃U ,ε̃D) → (−ε̃U , − ε̃D). For the val-
ues of energy ε mentioned above, this implies that the critical
current is identical for 0(0)-0(0) and 0(2)-0(2) phase associations
with U = 0.6�, for π -0(0) and π -0(2) phase associations again
with U = 0.6�, and finally for 0(0)-0(0) at U = 0.7� and
0(2)-0(2) at U = 0.5�.

We first consider the critical current curves of a SQUID
made of two independent single Josephson junctions, i.e., for
η = 0. In this particular case, ICAR = 0 and consequently a =
0 in Eq. (24), so that the extrema of the critical current are
the zeros of sin 2α, and the total Josephson current is given by
Eq. (23) with ICAR = 0. From the results of Figs. 4 and 5, it
clearly appears that there is a π/2 phase shift in the critical
current between the situation where the two dots are in the
same phase (0-0 or π -π ) and the one where they are in different
phases (π -0). More specifically, for two quantum dots in the
same phase (IDIU > 0), there is no phase shift between the
currents of the two single Josephson junctions for α = 0, so
that the maxima are added (|ID + IU | = |ID| + |IU |) and, as a
result, the critical current is maximal for α = 0. However, for
two quantum dots in different phases (IDIU < 0), the phase
shift of π between the currents of the two single Josephson
junctions for α = 0 is compensated by a phase shift α = +π/2
for one of the currents and a phase shift −α = −π/2 for the
other one (|ID − IU | = |ID| + |IU |) resulting in a maximum
of the critical current for α = π/2. Such behavior has been
observed experimentally [26].

Comparing the left panels of Figs. 4 and 5 to the right
ones (i.e., the case η = 0 to η = 1), we immediately obtain
evidence of the crosstalk between the two single Josephson
junctions: The period of the critical current doubles. This is a
signature of the emergence of the CAR process. Note that the
symmetric associations (cf. Fig. 4) differ completely between
η = 0 and η = 1: For the π -π association, the maximum at
α = 0 for η = 0 becomes a minimum for η = 1, and for the
0(0)-0(0) and 0(2)-0(2) associations, the maximum at α = π for
η = 0 becomes a zero for η = 1. Concerning the asymmetric
associations (cf. Fig. 5), the critical current curves for η = 1
somehow look like those obtained for η = 0: The positions
of the maxima and minima are mostly preserved for all phase
associations; only their local or global character changes when
tuning η.

Increasing U results in a more pronounced filtering as the
processes where the quantum dots are doubly occupied are
less favored. This explains the observed decrease in critical
current for the 0(0)-0(0) and π -π associations (Fig. 4). The
opposite behavior happens when the quantum dots are doubly
occupied, i.e., for the 0(2)-0(2) association. There, increasing U

favors processes where the occupation of the dots is lowered,
since approaching the π transition results in the decrease
of the mean occupation number on the quantum dot. Such
opposite behaviors while tuning U for 0(0)-0(0) and 0(2)-0(2)

phase associations can be seen as a consequence of the already
discussed particle-hole symmetry. Similarly, the π -0(0) and
π -0(2) combinations have opposite interaction dependence (see
Fig. 5). Interestingly, the interaction has no noticeable effect
in the case of the 0(0)-0(2) phase association.
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FIG. 6. (Color online) Influence of the parameter η on the critical
current (in units of 10−4e�/�) in the tunneling regime (U = 0.6�).

In order to monitor the emergence of CAR processes,
we investigate intermediate regimes in Fig. 6 for the π -π ,
0(2)-0(2), π -0(2), and 0(0)-0(2) phase associations by turning on
η progressively from 0 to 1. This is a phenomenological way
to introduce more and more CAR processes, as the injection
points in the superconductors are brought together, from η = 0
(no CAR effect) to η = 1 (maximal CAR effect). We observe
a dramatic increase of the critical current in the symmetric
configurations (π -π and 0(2)-0(2) phase associations), while
in the asymmetric configurations (π -0(2) and 0(0)-0(2) phase
associations), the modification of the AB signal is noticeable
but not substantial.

We display the splitting efficiency r given by Eq. (26) for
all phase associations in Fig. 7. In the studied domain for
Coulomb repulsion parameter U , we do not observe noticeable
evolutions of r except for the 0(0)-π association for which we
see a clear decrease. The symmetric associations of phases
(for which the critical current differs the most between η =
0 and η = 1) lead to the highest values of r . The highest
splitting efficiency is obtained for two quantum dots in the

FIG. 7. (Color online) Splitting efficiency r given by Eq. (26)
extracted from the curves of Figs. 4 and 5.

π phase: Ensuring a mean occupation number around 1 on
each quantum dot favors the CAR process. One can get some
insight concerning the value of r for the associations 0(0)-0(0)

and 0(2)-0(2) from the perturbative calculation presented in the
previous section. Indeed, in the tunneling regime the splitting
efficiency r matches the definition rt of Eq. (25) in terms of the
amplitudes ID , IU , and ICAR. For symmetric associations, we
must add the constraint ID = IU ≡ I/2 to the fit procedure,
so that the critical current reads

Jc(α)

|I | =
∣∣∣∣ICAR

I
+ cos α

∣∣∣∣, (27)

and since the critical current in symmetric associations of 0
phases vanishes for α = π , we get ICAR/I = 1 and rt = 2/3.

VII. NANOSQUID IN THE HIGH
TRANSPARENCY REGIME

The advantage of the formalism developed in Secs. II
and III relies on the possibility to address high transparency
regimes of the double Josephson junction under study. The
results presented in this section are obtained for symmetric
couplings γ = 0 at temperature β−1 = 0.02� and for a decay
rate � = 2�. The energies of the quantum dots are: ε = −4�

for the π phase, ε = 4� for the 0(0) phase, and ε = −12� for
the 0(2) phase. Particle-hole symmetry implies that the critical
current is identical for 0(0)-0(0) and 0(2)-0(2) phase associations
with U = 8�, for π -0(0) and π -0(2) phase associations again
with U = 8�, and finally for 0(0)-0(0) at U = 9� and 0(2)-0(2)

at U = 7�.
The strategy is again to investigate all the possible com-

binations of phases for the quantum dots (which correspond
to different mean occupation numbers) in order to reproduce
the qualitative study of Sec. VI. Our goal is to determine
what features are preserved and what has changed and to
compute the splitting efficiency r defined by Eq. (26) in
order to determine which associations of phases favor nonlocal
phenomena the most. The critical current curves are given in
Figs. 8 and 9.

FIG. 8. (Color online) Critical current (in units of e�/�) curves
for symmetric associations of dots in the high transparency regime:
π -π (top panel), 0(0)-0(0) (middle panel), 0(2)-0(2) (bottom panel).
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FIG. 9. (Color online) Critical current (in units of e�/�) curves
for asymmetric associations of dots in the high transparency regime:
π -0(0) (top panel), π -0(2) (middle panel), 0(0)-0(2) (bottom panel).

From the results of the π -π association for η = 1, it is
clear that we are no longer in the tunneling regime as the
flux dependence cannot be fitted by Eq. (24) together with the
constraint that ID = IU . We can again notice, for η = 0, the
π/2 phase shift in the critical current between dots in the π -0
phases (top and middle panels of Fig. 9) and dots in the 0-0 or
π -π phases (Fig. 8 and bottom panel of Fig. 9).

The critical current in Figs. 8 and 9 again presents a
doubling of its period when switching η from 0 to 1. This
is due to the emergence of nonlocal processes where both
quantum dots are involved. For the π -π association, during this
switching, α = 0 remains a local maximum (contrary to the
tunneling regime). For 0(0)-0(0) and 0(2)-0(2) phase associations,
the maximum at α = π for η = 0 becomes a zero for η = 1 (as
in the tunneling regime). There is little influence (less than in
the tunneling regime) of η on the π -0(2) and π -0(0) associations,
whereas for the 0(0)-0(2) association the maximum in α = 0 is
considerably lowered (more than in the tunneling regime) from
η = 0 to η = 1.

For symmetric associations of phases, the evolution of the
critical current with increasing U (Fig. 8) can be explained
following the same arguments as in the tunneling regime.
While the filtering of electrons tunneling through 0(0) or π

quantum dots is responsible for a decrease of the signal, favor-
ing one-electron processes through a 0(2) quantum dot results
in an increase of the signal. The opposite U dependence for
the 0(0)-0(0) and 0(2)-0(2) phase associations is a consequence
of particle-hole symmetry. While there is still no noticeable
effect of U on the 0(0)-0(2) association as in the tunneling
regime, the π -0(2) association also shows little U dependence.
As a consequence, we do not observe the opposite behavior as
a function of U for the π -0(0) and π -0(2) associations (Fig. 9).

We introduce progressively nonlocal effects in Fig. 10
by switching η from 0 to 1. For the symmetric associations
(π -π and 0(2) − 0(2)) as well as for the 0(0)-0(2) configuration
(contrary to the tunneling regime), the AB signal is dramat-
ically increased when CAR processes are switched on. On
the contrary, the π -0(2) phase association is hardly influenced
by the presence of nonlocal processes (even less than in the
tunneling regime). We can quantify the importance of CAR

FIG. 10. (Color online) Influence of the parameter η on the
critical current (in units of e�/�) in the high transparency regime
(U = 8�).

processes compared to the direct tunneling through a single
quantum dot by calculating the splitting efficiency r given
by Eq. (26), which we display in Fig. 11 for the different
associations of phases. As a function of U , the splitting
efficiencies which are found are essentially constant over the
range considered. As it turns out, although we work with
specific phases for the individual quantum dots, implying
specific populations, the quantization of the electron charge
on these dots is ineffective at high transparencies because they
constitute “open quantum dots” involving large fluctuations
from their average population. This is consistent with the
observation that the splitting efficiency varies little with U .
As mentioned above, there is little influence of η on the π -0(2)

and π -0(0) associations, and this is why these are the lowest
splitting efficiencies we found. The splitting efficiencies of
the associations of 0 phases are around 0.55, and the highest
splitting efficiency is still obtained for the π -π association.

Finally, we note that the energy levels of the dots can be
easily varied experimentally using electrostatic gates. Varying

FIG. 11. (Color online) Splitting efficiency r given by Eq. (26)
extracted from the curves of Figs. 8 and 9.
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FIG. 12. (Color online) Evolution of the splitting efficiency as
a function of the effective transparency D(ε) [Eq. (28)] for fixed
� = 2� and U = 8�. Top: The energy levels of both dots are taken
to be identical and varied simultaneously (εU = εD ≡ ε). Middle: the
D quantum dot is taken in the π phase (εD = −4�), while the energy
of the U dot is varied (εU ≡ ε). Bottom: the D quantum dot is taken
in the 0(0) phase (εD = 4�), while the energy of the U dot is varied
(εU ≡ ε).

the position of the energy level ε of a quantum dot at fixed
decay rate � and fixed Coulomb on-site repulsion U changes
the effective transparency defined as

D(ε) = �2

�2 + (
ε + U

2

)2 . (28)

Thus, by varying the energy levels of the two dots, we can
optimize the splitting efficiency by reaching the π -π phase
at high effective transparency. We show in the top panel of
Fig. 12 the splitting efficiency as a function of the energy level
of the two dots, taken to be identical. The abrupt change of
the efficiency near D(ε) = 0.4 shows the crossover from the
0(0)-0(0) to the π -π junction. Similarly, when tuning only one
of the two energy levels, while maintaining the other dot in
the π (middle panel) or the 0(0) phase (bottom panel), the
splitting efficiency shows a marked transition as a function of
the effective transparency.

VIII. EXTENSIONS AND PERSPECTIVES

Several directions can be envisioned beyond the mean-field
approximation presented here. In this section, we explore three
possible extensions of the present work, both from a purely
theoretical standpoint and from the point of view of observing
the presented results experimentally.

The present project relies on a Hubbard-Stratonovich
treatment of the Coulomb interactions on the quantum dots
involving auxiliary fields, which is of course exact if the path
integral over the latter is performed. In principle, this allows
us to access the Kondo regime for the quantum dots if the
fluctuations of the auxiliary fields around the saddle point
approximation are fully taken into account. For Josephson
junctions containing a single quantum dot, the Kondo regime,
where the Kondo temperature TK = √

�U/2 eπε0(ε0+U )/(�U )

[39] exceeds the superconducting gap �, has been reached

either with a Hubbard Stratonovich transformation approach
followed by a Monte Carlo numerical treatment of the auxiliary
field [40] or by an exact numerical renormalization group
approach [41]. For these single dot Josephson junctions,
the Kondo regime imposes a 0 phase with high harmonics
describing the current phase relationship. The present work is
therefore restricted to the regime where TK < �. Within the
range of parameters chosen in our numerical study, we find
that the Kondo temperature is at most TK = 0.13�, which
gives us confidence in our working assumptions. Nevertheless,
extensions of this work could be envisioned by going beyond
the saddle point approximation of the Hubbard Stratonovich
transformation for the double dot junctions. In a first step,
Gaussian fluctuations around the saddle point approximation
could be included in order to improve our solution, but only
a full Monte Carlo numerical treatment of the auxiliary fields
would allow us to reach the Kondo regime of this double dot
Josephson junction. Alternatively, a numerical renormalization
group method [41] could be employed. At any rate, when
working under the assumption TK > �, the Kondo regime
could be avoided altogether by working with dot gate voltages
such that only the 0(0)-0(0) combination of phases occurs (zero
average occupation on both dots). According to Fig. 11 this
combination of phases still has a sizable splitting efficiency.

Given the relative complexity of the device, and for the sake
of simplicity, we have chosen to ignore here the effects of both
direct interdot tunneling and interdot Coulomb interaction. In
our previous work on superconducting/normal metal forks,
Ref. [11], we addressed the issue of interdot tunneling and
found that the pair splitting signal (positive noise crossed
correlations) can be spoiled when interdot tunneling becomes
too large (of the order of the dot-electrode tunneling). We
expect the same effect on the present device, which means that
all the results presented in this paper should remain valid in
the presence of interdot tunneling as long as it is smaller than
the other tunnel couplings. Coulomb interactions between the
dots are likely to render the operation of our device in the π -π
phase (our optimal candidate for large splitting efficiency) less
efficient, because they disfavor the presence of one electron on
each dot. They should not have substantial consequences on
the other combination of phases. Granted, the generalization of
this work to include the effect of interdot tunneling or interdot
Coulomb interaction does not present important technical
difficulties, as these effects can in principle be incorporated
in our Hubbard Stratonovich scheme, yet such extensions go
beyond the scope of this paper.

Finally, a limitation of the present Cooper pair diagnosis
resides in the fact that the nanoSQUID requires reduced
dimensions so that the injection points to the dots on both
superconductors are separated by a distance smaller than the
coherence length. This imposes constraints on the separation
of the quantum dots, and as a consequence, the area where
the AB flux is imposed becomes reduced. Recall that in
order to perform the AB diagnosis, a few flux quanta need
to be introduced in this area, but if the imposed magnetic
field needed to apply several flux quanta becomes larger
than the critical field of the superconductors, the whole
diagnosis breaks down. In order to optimize the surface area
encompassed between the dots, we believe the best choice
would be to work with nanowire/nanotube quantum dots,
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V U

V D

FIG. 13. (Color online) Setup with nanowire/nanotube quantum
dots.

which have a large aspect ratio, and which nevertheless can
achieve large charging energies even though their length may
exceed several μm [42]. This possibility is illustrated in
Fig. 13. To work out the numbers, we find that imposing two
magnetic flux quanta within a 1 μm2 area requires a magnetic
field of 8 × 10−3 T, which is still smaller than the critical field
of superconducting materials such as aluminum (10−2 T) or
niobium (0.2 T). Note that aluminum could be quite adapted
due to its long coherence length (1.6 μm).

IX. CONCLUSION

We have studied a double Josephson junction consisting of
two quantum dots connected to two superconductors as a tool
to probe Cooper pair splitting. When the two single Josephson
junctions which constitute our device are coupled to each other
via CAR processes, the doubling of the period of the critical
current measured in a nanoSQUID experiment provides proof
that Cooper pair splitting and recombination operates and
is evidence for the emergence of nonlocal phenomena in
the electronic transport of the double junction. This type of
diagnosis may prove more convenient than nonequilibrium
scenarios involving a superconducting source of electrons
and two normal leads/dots where either nonlocal conductance
signal or noise cross correlations are measured. While this
setup does not provide direct proof of entanglement of the dot
electrons, it is clear that this phenomenon plays an essential
role.

While this device had been studied in the context of
perturbation theory in the tunneling Hamiltonian coupling the
dot to the leads [23,25], to our knowledge no generalization to
arbitrary transmission had been proposed, and no systematic
study for optimizing the CAR signal with respect to the
phases (0(0), π , 0(2)) of the quantum dots had been attempted.
The path integral approach of Ref. [28], within reasonable

approximations (saddle point treatment), allows us to meet
these goals. One of the key results of the present paper resides
in defining the degree of efficiency of Cooper pair splitting
and evaluating it for the different dot configurations.

We first studied the tunneling regime where the usual
perturbative expression for the Josephson signal allows us to
fit our numerical results and to introduce a natural definition
of the splitting efficiency. We were also able to generalize this
quantity to arbitrary transparency, providing a criterion for the
efficiency of CAR processes which is based on an analysis
of the AB signal of the Josephson critical current. We thus
studied the prominence of nonlocal phenomena depending
on the phases of the quantum dots and found that the π -π
association optimizes the splitting of the Cooper pairs that
are emitted from one superconductor and recombined on the
other one. Yet, our analysis shows that the 0(0)-0(0) and 0(2)-0(2)

combinations also provide robust Cooper pair splitting signals.
Within each of these combinations of phases, we see for the
most part that variations of the Coulomb repulsion parameter
have little influence on the Cooper pair splitting efficiency.

Furthermore, we treated the CAR coupling parameter η

in a phenomenological manner (varying it between 0 and 1),
justifiably so because so far no experimental investigation of
Cooper pair splitting in superconducting–normal metal “forks”
out of equilibrium seems to find the power law suppression
which is attributed to bulk 3D superconductors. This may be
due to the fact that microscopic models have to be revisited,
taking into account that electron emission/absorption in the
superconductors is not pointlike but should be averaged over
some finite volume, reducing the effect of oscillations over the
Fermi wavelength of the CAR parameter.

Recently, we became aware of a current biased measure-
ment [43] which studies precisely the behavior of the double
dot Josephson junction. There, a (remarkable) comparative
study of the switching current (the current required to transit
to the dissipative regime with voltage bias) was performed
for different dot phase configurations. This experiment seems
to provide realistic evidence of Cooper pair splitting, albeit
indirectly, because the self-organized quantum dots embedded
in the Josephson junction are too close in order to impose the
necessary magnetic flux to observe the AB oscillations.
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