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Observation of geometry-dependent conductivity in two-dimensional electron systems
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We report electrical conductivity σ measurements on a range of two-dimensional electron gases (2DEGs) of
varying linear extent. Intriguingly, at low temperatures (T ) and low carrier density (ns) we find the behavior to
be consistent with σ ∼ Lα , where L is the length of the 2DEG along the direction of transport. Importantly,
such scale-dependent behavior is precisely in accordance with the scaling hypothesis of localization [Abrahams
et al., Phys. Rev. Lett. 42, 673 (1979)] which dictates that in systems where the electronic wave function ξ is
localized, σ is not a material-specific parameter but depends on the system dimensions. From our data we are
able to construct the “β function” ≡ (h/e2)d ln σ/d ln L and show this to be strongly consistent with theoretically
predicted limiting values. These results suggest, remarkably, that the electrons in the studied 2DEGs preserve
phase coherence over lengths ∼10 μm. This suggests the utility of the 2DEGs studied towards applications in
quantum information as well as towards fundamental investigations into many-body localized phases.
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The scaling hypothesis of localization [1], formulated over
thirty years ago, is a statement that the electrical conductivity
σ is length-scale dependent in finite systems where the
conduction electrons are short-ranged or localized. This can be
understood by considering electronic states with localization
length ξ in systems of different spatial extents: As depicted
in Fig. 1(a), if ξ is greater than the linear extent of the
system, then electrons are able to communicate across the
system ends and there will be a finite conductance G even
at T = 0 K. However, this conductance will decrease as the
system size increases, ultimately vanishing for infinitely large
systems. On the other hand, if the electronic states are extended
ξ → ∞, then even in the infinite system-size limit G �= 0. This
intuitive picture is at the very heart of the scaling hypothesis
which distinguishes between metallic and insulating states
on the basis of the range of ξ : If the electronic states at
the chemical potential μ are extended, then the system is
a metal, but if they have a finite extent, the system is an
insulator. In other words, the metallic state is defined by σ

independent of system dimensions, whereas the insulating
state is characterized by σ decaying with increasing system
dimensions. This underlies the Anderson metal-to-insulator
transition in which a “mobility edge” in wave vector k space
demarcates short-ranged and long-ranged states [2].

However, since the scaling hypothesis was put forward, to
our knowledge there have been no experimental reports of
length-dependent σ . In this paper, working with mesoscopic
GaAs-based 2DEGs of varying linear extent L, we provide
experimental demonstration of σ scaling consistent with the
scaling hypothesis. We continuously tune ξ in the 2DEGs
by applying a top-gate voltage VG and observe a crossover
from a regime in which the electrical resistivity ρ ≡ 1/σ is
independent of L to one where it is strongly dependent on L.
We find our results to be strongly consistent with the scaling
predictions [1].

In low-disorder two-dimensional (2D) systems ξ ∼
� exp(kF�), where � is the electronic mean free path and kF

is the Fermi wave vector. Using a 2DEG equipped with a
top-gate electrode allows one to tune the carrier density ns

and thereby kF = √
2πns. Furthermore, since ns governs the

degree to which any charged scattering centers are screened,
this process also serves to vary � which, in turn, can be
estimated from the measured σ [3]. Clearly, when kF� � 1, ξ

can be macroscopically large, and this results in what is known
as the “weakly localized” (WL) phase of electrons. The WL
phase displays many outwardly metallic characteristics [4–7]
including dσ/dT � 0 to the lowest achievable T [8–10], the
hallmark of metallic conduction. When kF� ≈ 1 experiments
observe an abrupt crossover to the “strongly” or “Anderson”
localized (AL) phase in which ξ ∼ a	

B, the effective Bohr
radius in GaAs-based 2DEGs ≈ 11 nm. In this regime σ

is completely suppressed, although at finite T conduction
occurs through phonon-assisted “hops.” This gives rise to
σ (T ) ∼ exp (−(
/kBT )p), where 
 is the hopping energy, kB

is the Boltzmann constant, and p = 1, 1/2, or 1/3 depending
on whether the hopping is nearest-neighbor hopping [11],
hopping in the presence of the Coulomb gap [12], or variable-
range hopping [11], respectively. In other words, the sign
of dσ/dT can serve as a diagnostic to distinguish between
metallic and insulating states. However, as we will directly
show in this paper, the T dependence alone is an insufficient
test of metallicity. This is because, even in situations where
ξ �= ∞ (i.e., the system is, by definition, an insulator), dσ/dT

can be negative if L � ξ .
Experiments so far are consistent with the two limiting

instances of ξ � L (WL) and ξ 
 L (AL), neither of which,
importantly, are expected to show σ scaling. This is obvious in
the AL or “hopping” regime since phonons, which mediate the
hopping transport, exist homogeneously in space. The reasons
for the absence of scaling behavior in the WL regime are,
however, more subtle and perhaps linked to the macroscopic
samples employed. Localization arises due to interference of
the electronic wave function and thus relies crucially on phase
coherence. The phase coherence length �φ is defined as the
length over which the phase of the electron is completely
randomized through inelastic interactions. Therefore scaling
behavior is only expected when L < ξ < �φ , a condition which
may not have been rigorously met in earlier experiments [13].

Here we perform a systematic size-dependence study of
2DEGs with varying L and width W . As shown in Fig. 1(b),
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FIG. 1. (Color online) (a) If the conducting electrons in a material are extended, i.e., localization length ξ → ∞, then the electrical
conductance G is finite and the conductivity σ is well defined. However, for short-ranged states the relative extents of ξ and the system L decide
the precise value of G. If ξ > L, then electrons can “bridge” the system and behave as though extended, i.e., induce a metallic character to the
system. However, the metallicity is a finite-size effect, and in the large-L limit, G → 0. (b) Scanning electron microscope (SEM) image of the
six top-gate-defined 2DEGs in a device similar to those used in this study. The light regions represent Ti-Au top-gate electrodes overlaid on a
conducting mesa which is patterned into two parallel channels. Each top gate can be individually addressed using a voltage source (see Ref. [3]
for details). (c) Each panel shows ρ as a function of 1/T for a different sized 2DEG at an arbitrarily chosen gate voltage Vg = −0.913 V. Here
all the 2DEGs are ostensibly in the Anderson localized regime, and it is expected that ρ ∼ exp(1/T ) (shown as a broken line in bottom-right
panel). However, the data seem consistent with the coexistence of metallic and insulating states. The solid lines are fits to Eq. (2).

our devices each contain six top-gate-defined 2DEGs with
constant width W and length L ranging from 2 to 10 μm. We
have fabricated devices with W = 3 μm (D3), 9 μm (D9), and
11 μm (D11), and here we focus on the results from D9 and
D11. Please refer to the Supplemental Material [3] for details
of the wafers used, device fabrication, and measurement setup.

Figure 1(c) shows resistivity ρ ≡ 1/σ against 1/T for
the six 2DEGs in D9 at gate voltage Vg = −0.913 V. Here
ρ is evaluated as R × W/L, where R is measured in a
quasi-four-terminal setup [3]. The corresponding ρ values are
all � h/e2 and kF� � 1 [3] with � determined from Drude
theory. This would normally be the strongly localized regime
where the T dependence for an insulator can be expected.
Remarkably, dσ/dT � 0 for T � 1 K, indicating the presence
of metallic states as defined above [14–18]. While the device
geometry has very little influence on the value of T at which
metallic conduction sets in, it is noteworthy that the ρ(T → 0)
value is strongly device dependent. This is despite the fact that
the data are at the same value of Vg, that the 2DEGs are
located close to each other on the host wafer, and that they are
all cooled down simultaneously under the same conditions.
Importantly, while this behavior stands in stark contrast to the
commonly observed 2D “metal-to-insulator” transition, it sug-
gests that the insulating and metallic states might be intimately
linked.

Figures 2(a) and 2(b) show ρ as a function of L at T =
0.28 K for D9 and D11, respectively. Interestingly, we find
that the dependence seems broadly consistent with ρ(L) ∝ Lα .
The exponent α decreases as T increases and, as shown in
Fig. 2(d), goes to zero at a Vg-dependent T . We emphasize
that the data shows the resistivity and not resistance, and thus
any geometry-dependent characteristics are very unexpected.

Figure 2(c) shows ρ(L) at 10 K, and remarkably, we still find
a clear and systematic L dependence in ρ. It even appears that
at the lowest |Vg| there is a slight negative slope [also seen in
the top-right corner in Fig. 2(d)], but this is a measurement
artifact that becomes important only at low |Vg| (see Ref. [3]).
In all our measurements, we came across only one 2DEG (D11,

FIG. 2. (Color online) Geometry-dependent electrical character-
istics. In (a) and (b) we see that ρ ∼ Lα for both D9 and D11. (c) The
power-law dependence of ρ on L persists upon heating to T = 10 K,
but α is markedly reduced when compared to (a). (d) Phase diagram
of α(Vg,T ) for D9. The black line shows the locus of points where α

becomes zero.
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FIG. 3. (Color online) Localization and conductivity scaling in
the 2DEGs. (a) The five lower curves show � extracted using the
Drude expression for σ [3], and the top curve shows � estimated
using the scaling hypothesis [1]. The corresponding kF� values are
shown along the top axis and lie well in the “metallic” regime. (b)
Even at the lowest ns where σ ≈ 0.01e2/h for L = 10 μm, we find
ξ to be comparable to L. (c) and (d) show the scaling function β

as a function of ln g, where g ≡ σ/(e2/h). The experimental data
is in clear agreement with the theoretically predicted limiting values
(shown as broken lines) for g 
 g0 and g � g0, where g0 = e2/h.
The red lines are guide to the eyes.

L = 8 μm) in which log ρ deviated by more than 10% from
α log L.

In the following, we analyze our experimental findings in
light of the scaling hypothesis which states that

σ (L) = e2

2π�
(kF�◦) − e2

�π2
ln(L/�◦). (1)

Here the first term on the right is the conductivity at a
microscopic length scale �◦, and the second term is the
size-dependent reduction in σ arising due to the exponentially
decaying envelope of ξ . The microscopic length scale is the
smaller of � and �φ . We assume that T is sufficiently low
such that �φ > L,�, an assumption which we will reexamine
later. Therefore the first term is identically equal to the Drude
conductivity σD = nse

2τ/m [3], where e is the electron charge,
τ is the momentum scattering time, and m is the electron
effective mass in GaAs = 0.067me, with me being the bare
electron mass. It is therefore important to note that σ = σD

only when L/� = 1 and is suppressed for larger L. The length
scale over which σ → 0 is ≈� exp(πkF�/2), and this provides
an estimate for ξ . On intermediate length scales, Eq. (1) clearly
indicates that (incorrectly) identifying σ (L) as σD results in
an underestimate for � and, importantly, that (h/e2)/ρ �= kF�.
Indeed, as shown in Fig. 3(a), upon fitting the measured ρ(L)
to Eq. (1), we obtain � ≈ 100 nm at the lowest accessible
Vg, which is significantly greater than the nominally obtained
� values. We are able to map from Vg to ns by tuning the
device to the quantum Hall regime and observing edge-state

reflections as Vg is decreased [19] and thereby ascertain
that the corresponding ns = 1.4 × 1014 m−2. This results in
kF� = √

2πns�ST ≈ 3, even though the measured ρ is orders
of magnitude greater than h/e2 and kF �Drude < 1 (see Fig. 2).
For kF� = 3, we estimate ξ ≈ 11 μm which, crucially, is com-
parable to the device dimensions. Similar results are obtained
for D11, and ξ is plotted as a function of ns in Fig. 3(b).

Figures 3(c) and 3(d) provide a complementary look at the
scaling behavior in our data by examining the scaling function
β ≡ d ln g/d ln L as a function of ln g, where g ≡ σ/(e2/h). β
is evaluated from each pair of neighboring points in Figs. 2(a)
and 2(b). The general trend in β (solid red line) agrees well with
the theoretical limits of β for very large and small ln g. These
theoretical limits arise from a combination of dimensional
considerations in the low-disorder (g � 1) regime and some
basic assumptions about the overlap of localized states in the
high-disorder (g 
 1) regime. In the former, where disorder
and scattering are weak, the electronic wave function will have
a very large extent, and it is reasonable to expect that σ (L) is
intensive ∼GLd−2, where d is the dimensionality of the system
under study. In the latter, where disorder is strong and the
electronic wave function is localized, conduction is governed
by the spatial overlap of neighboring states. However, such
localized states cannot cumulatively result in an extended state
since states in close spatial proximity are necessarily widely
separated in energy. Thus σ (L) is exponentially suppressed
∼ exp (−L/ξ ), independent of dimensionality. These expres-
sions for σ provide the theoretically expected limits in β, which
in 2D reduce to β = 0 for g � 1 and β = ln g for g 
 1.
We find the averaged β, obtained from our measurements,
exactly in the range in between the theoretically expected
limiting values. It is noteworthy that Fig. 3 provides evidence
of finite ξ within the WL regime where 3 < kF�ST < 7 where
the subscript denotes ‘scaling theory’.

Thus the picture emerges that the 2DEGs studied are, in
fact, in the WL regime but with σ significantly reduced due
to the finite extent of ξ . Therefore, the weak dependence and
even positive slope of ρ against T are entirely expected. The
question then arises as to why above 1 K the 2DEGs show
activated transport. The point here is that the metallic character
below 1 K is imparted by the relatively long ξ � L electronic
states at E = μ, but states with E 
 μ, which nominally do
not contribute to transport due to phase space restrictions, are
continually hopping due to inelastic interactions with phonons.
These therefore provide an additional transport channel with
an activated form. We thus propose a simple “parallel-resistor”
model to understand the T dependence of ρ in which
the conducting states (at E = μ) and hopping states (at
E < μ − kBT ) conduct in parallel:

1

ρ
= 1

ρL
+ 1

ρ0
exp (−
/kBT ). (2)

Here ρL is the contribution due to the effectively extended
states assumed to be T independent, and the second term on
the right is the hopping term. As shown in Fig. 1(c), we are
able to obtain excellent fits to the data using ρL, ρ0, and 


as fitting parameters. Values of the resulting fit parameters
are listed in Table I. A noteworthy, though small, feature
that the model does not capture is the mildly positive dρ/dT

seen at 1/T > 2 K−1 in the lower-middle panel of Fig. 1(c)
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TABLE I. Summary of fitting parameters for Fig. 1(c) using
Eq. (2).

W × L (μm2) 
/kB (K) ρ0 (k
) ρL (k
)

9×10 2.25 ± 0.08 273.87 ± 14.41 1713 ± 18.94
9×8 1.68 ± 0.06 114.22 ± 4.14 409.51 ± 4.93
9×6 6.49 ± 0.39 43.79 ± 4.66 281.22 ± 5.20
9×4 1.50 ± 0.04 78.00 ± 2.26 260.92 ± 3.04
9×3 1.64 ± 0.06 63.21 ± 1.37 45.14 ± 0.22
9×2 0.97 ± 0.04 74.09 ± 1.12 24.76 ± 0.12

(see also Ref. [15]). However, this is trivially so due to the
assumption of constant ρL which disregards effects such as
electron screening [20] and interelectron interactions [21],
including which will, no doubt, result in more accurate models.

We now return to our assumption that �φ > L, which is a
necessary requirement for coherent electron interference and,
thus, for localization effects to manifest. As T → ∞ phase
coherence is lost, and it is to be expected that localization
phenomena be suppressed. We see clear evidence of this in
Fig. 2(c), where α gradually diminishes to 0 as T increases.
In addition, the thermopower S of similar 2DEGs displays
strong oscillations and even sign changes [22] which might
have their origin in phase coherent transport [23]. Thus, there
are various indications that electrons retain phase coherence
over the length of the devices studied. This is a remarkable
observation given that (i) the largest 2DEGs have L ∼ 10 μm,
which is significantly longer than conventionally measured �φ

(see, for example, Ref. [24]), and (ii) the L dependence is seen
even at 10 K. We comment on why this might be so further on
in the paper but at this stage emphasize the strong applicability
of the systems studied in quantum information schemes.

Before presenting our concluding remarks, we first consider
the important issues of (i) the background disorder potential
the 2DEGs reside in [25–27] and (ii) interelectron interactions.
Implicit in our analysis based on the scaling hypothesis is
the assumption that the background disorder experienced by
the various 2DEGs is statistically homogeneous. However, we
believe this assumption to be amply justified by the systematic
ρ vs L trend observed in all three sets of 2DEGs: D9, D11,
and D3 [3]. We have also found this trend to be reproducible
between cooldowns, albeit with marginally different pinch-off
characteristics [3]. Thus, it seems reasonable to believe that
the statistical degree of inhomogeneity in the disorder is small,
perhaps responsible for the departures from perfect linearity in
Figs. 2(a) and 2(b). It is also conceivable that “fluctuations” in
ξ due to the mesoscopic nature of the 2DEGs are influencing
transport [28–31]. In other words, it is possible that the small
scale of the 2DEG facilitates observation of certain ballistic
electron trajectories which are not observable at longer length
scales. However, we believe we have minimized the effect of
such nonergodicities by (i) working at Vg values where � < L

[see Fig. 3(a) and also Ref. [3]] and (ii) averaging our data
over long times before recording [3]. The second important
point to consider is that of interelectron interactions which,
importantly, must be present in the 2DEGs since the interaction
parameter rs, which is the ratio of the Coulomb energy
EC and kinetic energy EK of the electrons = 1/(a	

B
√

πns),
attains values as large as 5 in our studies. However, as was
demonstrated recently in Ref. [32], qualitative changes in β

are not expected even in the presence of strong interactions,
and this is consistent with our findings. It will be interesting to
understand whether the recently observed strong enhancement
in the magnitude of S measured in similar 2DEGs [17] or
the observed violation of the Mott formula [17,22], where
S and ρ were observed to oscillate asynchronously, reflect
strong interaction effects or not. Lastly, we also wish to
point out the similarities between our experimental results
and the phenomenology of many-body delocalized phases in
translationally-invariant 2D systems [33]. While it is debatable
whether our experimental system stringently fulfills the criteria
for many-body delocalization, namely complete isolation from
the environment, we note that this is certainly consistent with
the lack of electron decoherence even at ≈10 K.

In conclusion we emphasize that the observed L depen-
dence of σ in mesoscopic 2DEGs is strongly consistent with
the scaling hypothesis, which in turn suggests that the 2DEGs
are, in fact, in the kF� > 1 regime, but perceptibly Anderson
localized, i.e., with σ suppressed due to the finite ξ . In
macroscopic 2DEGs where L � �φ , conductivity scaling may
not be apparent since blocks of size �φ × �φ contribute in an
incoherent fashion. Nevertheless, it is important to note that
as long as �φ > � the conductivity of such a block must be
diminished from its value at size � × �, rendering imprecise
the identification that kF� = (h/e2)/ρ. The observation of
scaling-like behavior at length scales of several μm and at
temperatures of ≈ 10 K suggest the system under study to be
remarkably robust to decoherence effects. While we do not
fully understand why this might be, we speculate that this has
to do with the specific device geometry [3] in which the ohmic
contacts are at a large spatial separation from the 2DEGs being
studied. Thus, the primary link the 2DEGs have to the envi-
ronment is the tenuous low-T electron-phonon coupling which
might be further weakened due to the narrow mesa widths em-
ployed [34,35]. Importantly, this opens up several possibilities
towards studying many-body localized electron phases [36].

We acknowledge funding from the Leverhulme Trust, UK
and the Engineering and Physical Sciences Research Council
(EPSRC), UK. We also acknowledge D. Joshi for assistance
with device fabrication. D.B. and V.N. acknowledge useful
discussions with Margarita Tsaousidou, Chris Ford, Charles
Smith, Moshe Kaveh, and Richard Berkovits. Supporting
data for this paper is available at the DSpace@Cambridge
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1810/252722).
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