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Electron-phonon coupling in metallic carbon nanotubes:
Dispersionless electron propagation despite dissipation
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A recent study [Rosati, Dolcini, and Rossi, Appl. Phys. Lett. 106, 243101 (2015)] has predicted that, while
in semiconducting single-walled carbon nanotubes (SWNTs) an electronic wave packet experiences the typical
spatial diffusion of conventional materials, in metallic SWNTs, its shape remains essentially unaltered up to
micrometer distances at room temperature, even in the presence of the electron-phonon coupling. Here, by
utilizing a Lindblad-based density-matrix approach enabling us to account for both dissipation and decoherence
effects, we test such a prediction by analyzing various aspects that were so far unexplored. In particular,
accounting for initial nonequilibrium excitations, characterized by an excess energy E0, and including both intra-
and interband phonon scattering, we show that for realistically high values of E0 the electronic diffusion is
extremely small and nearly independent of its energetic distribution, in spite of a significant energy-dissipation
and decoherence dynamics. Furthermore, we demonstrate that the effect is robust with respect to the variation of
the chemical potential. Our results thus suggest that metallic SWNTs are a promising platform to realize quantum
channels for the nondispersive transmission of electronic wave packets.
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I. INTRODUCTION

Using wave dynamics as a platform to encode information
naturally offers the possibility to exploit the superposition
of states and, thereby, to perform an intrinsically parallel
transfer and manipulation of information. To this purpose,
a crucial ingredient is to generate sequences of wave packets
propagating coherently without overlapping to each other. In
quantum optics, where sources of single-photon wave packets
have been achieved since long, the control of light propagation
and polarization with beam splitters and polarizers is extremely
high, and photonic materials are nowadays considered a
realistic platform to perform scalable quantum computing [1].

The exciting perspective to achieve a similar degree of con-
trol using electron waves [2,3] has led to the implementation
of single electron pumps with various setups [4–7]. However,
despite a number of proposals [8–13], the realization of flying
qubits via single-electron wave packets of controllable shape
and phase that propagate ballistically in low-dimensional
conductors still remains a fascinating challenge in physics.

A major difference between an electromagnetic and an elec-
tronic wave is that, while the velocity of a photon is nearly inde-
pendent of its wave vector k, the group velocity of an electron
in conventional materials—characterized by a paraboliclike
dispersion relation—depends on k, so that its components
propagate with different velocities. This leads to an intrinsic
spreading of an electron wave packet, even in the absence
of scattering processes. However, in metallic single-walled
carbon nanotubes (SWNTs), in graphene, and in the surface
states of topological insulators, electrons behave as massless
relativistic fermions and, just like photons, are characterized
by a linear spectrum, with the Fermi velocity vF ∼ 106 m/s
playing the role of the speed of light c. This property makes
such materials ideal candidates for an electronic alternative to
photon-based quantum information processing. In graphene,
for instance, electron supercollimation has been predicted
to occur when an external static and long-range disorder is

suitably applied [14,15]. SWNTs are even more promising,
in view of the accuracy reached in their synthesis [16,17],
their behavior as one-dimensional ballistic conductors [18,19],
and their versatility in forming perfectly aligned arrays for
high-performance electronic devices [20–22].

Although, in principle, an electron wave packet can prop-
agate along a metallic SWNT maintaining its initial shape,
in realistic devices, such a property may be affected by
scattering processes. Extrinsic scattering due to impurities
can nowadays be made essentially negligible, by exploiting
well established fabrication techniques yielding ultraclean
nanotubes by avoiding exposure to chemicals [16,23]. Intrinsic
scattering mechanisms involve electron-electron and electron-
phonon couplings. The former plays an important role at very
low temperatures, where it has been shown to lead to the
Coulomb blockade [24] and Luttinger liquid behavior [25]. At
intermediate and room temperature, however, electron-phonon
coupling is the most important scattering mechanism, as
experimental results indicate [26–28]. For these reasons, in
the last few years, various theoretical studies have analyzed
the effects of electron-phonon coupling in SWNTs. On
the one hand, models based on a classical-like treatment
of the electron-phonon coupling as an external oscillating
potential [29–32] enable one to analyze the time-dependent
evolution of single wave packets and to obtain the linear
conductance by performing a suitable averaging over the
initial state. These approaches, however, fail in capturing the
intrinsically dissipative nature of the phonon bath. On the other
hand, treating electron-phonon coupling in SWNTs via the
Boltzmann-equation schemes [33,34] does not allow one to
account for electronic phase coherence.

In a recent work [35], it has been shown that, while in
semiconducting SWNTs an electronic wave packet spreads
already for a scattering-free propagation, in metallic SWNTs,
the shape of the wave packet can remain essentially unaltered,
even in the presence of electron-phonon coupling, up to
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micrometer distances at room temperature. Although such a
result is quite promising, a number of fundamental questions
remain still open in the problem. In the first instance, the case
of nonequilibrium carrier distributions has not been discussed
so far. Secondly, the result of Ref. [35] is limited to the case
of intraband phonon scattering, whereas interband coupling
may be significant, especially due to breathing phonon modes.
Furthermore, while the spatial dynamics of the wave packet
has been discussed, it is still unclear how dissipation and
decoherence affect its energy and momentum distribution.
Finally, it is crucial to understand whether and to what
extent the predicted dispersionless propagation is affected by
a change of the chemical potential.

This paper addresses these relevant problems. To this
purpose, we apply a recently developed density-matrix ap-
proach [36,37] that enables us to account for both energy-
dissipation and decoherence effects. Focussing on the case
of a metallic SWNT, we demonstrate that the shape of the
wave packet is essentially unaltered, even in the presence of
interband electron-phonon coupling, provided that the excess
energy of the excitation is realistically high. Thus, despite a
significant energy-dissipation and decoherence dynamics, the
electronic diffusion in metallic SWNT is extremely small and
nearly independent of the wave-packet energetic distribution.
Furthermore, we show that this effect is weakly dependent
on the chemical potential, at least at room temperature. Our
results thus support the conclusion that metallic SWNTs can
be considered as an electron-based platform for information
transfer.

The paper is organized as follows. In Sec. II, we describe
the SWNT model utilized to account for the electronic and
phononic energy spectrum, as well as for the corresponding
electron-phonon coupling. In Sec. III, we briefly summa-
rize the main aspects of the Lindblad-based density-matrix
formalism developed in Ref. [37], providing the explicit
expression for the electronic properties needed for the present
investigation, namely, the spatial and the energetic carrier
distributions. In Sec. IV, we present simulated experiments
that enable us to quantify the impact of intra- as well as
interband carrier-phonon interactions on the propagation of
electron wave packets for different initial conditions and
chemical-potential values. As we shall discuss, the highly
nontrivial interplay between energy dissipation and electronic
quantum diffusion is crucial for such a purpose. Finally, in
Sec. V, we summarize our results and draw the conclusions.

II. SWNT MODEL

In order to describe our SWNT, we adopt the well
established model developed by Ando and co-workers (see
Ref. [38] and references therein), whose main ingredients
needed for our analysis are summarized here below.

Electronic properties. The low-energy electron dynamics
in a SWNT decouples into two valleys around the K and K′
points, described by the following Hamiltonian matrices in the
sublattice basis,

HK = �vF σ · k, HK′ = −�vF σ ∗ · k, (1)

where σ = (σx,σy) denote Pauli matrices acting on the
twofold sublattice space, and k = (k⊥

n,ν,k) the carrier wave

vector [38]. Here, k denotes the continuous component along
the SWNT axis (‖), whereas k⊥

n,ν = (n + vν/3)/R is the
discrete component along the circumference (⊥), where n

is the electron subband, v = ±1 for the K/K′ valley, R the
nanotube radius, and the index ν = 0,±1 is defined through the
relation exp(iK · C) = exp(−iK′ · C) = exp(2πiν/3), where
C is the vector rolling the graphene lattice into the SWNT.

Since typical subband energy separations are of the order of
eV, we shall focus on the lowest energy subband (n=0), whose
energy spectrum is independent of the valley v = K/K′ = ±1
and is given by

εα = b �vF

√
k2 + (ν/3R)2 , (2)

where α = (k,b) is the quantum number multilabel, with
b = c/v = ±1 denoting the conduction and valence band,
respectively. The related eigenvectors are

ψαv(r) = 〈r|αv〉 = eık·r
√

4πRL

(
1

bveıvθk

)
, (3)

where θk is the polar angle of the two-dimensional wave vector
k, and L denotes the nanotube length, which we assume to
be the longest length scale in the problem, L → ∞. While
for ν �= 0 the energy spectrum is gapped (semiconducting
nanotube) and near k = 0 is parabolic-like similarly to con-
ventional semiconductors, for ν = 0, the spectrum is gapless
(metallic case), and the typical massless Dirac-cone structure
is recovered. All armchair and (3n,0) zigzag SWNTs are
remarkable examples of the metallic case [38].

Phonon spectrum. In the long-wavelength phonon limit,
the transversal phonon wave vector q⊥ vanishes. The SWNT
phononic spectrum only depends on the wave vector q

along the SWNT axis, and includes zone-center and zone-
boundary (ZB) modes [38–40]. The former can be grouped into
(i) longitudinal (L) stretching modes, characterised by an
acoustic (A) branch ωq,LA = vL|q| with vL  1.9 × 104 m/s,
and an optical (O) branch with �ωLO  0.2 eV; (ii) breathing
(Br) modes orthogonal to the nanotube surface, with a roughly
q-independent spectrum �ωBr  0.14 eV Å/R; (iii) transverse
(T) twisting modes, characterised by an acoustic branch with
ωq,TA = vT|q| with vT  1.5 × 104 m/s and an optical (O)
branch with �ωTO  0.2 eV. In contrast, ZB modes, primarily
corresponding to the Kekulé distortions, are characterized by
a typical phonon energy �ωZB  0.16 eV.

Electron-phonon coupling. As far as electron-phonon cou-
pling is concerned, a few preliminary remarks are in order.
First, while zone-center modes induce intravalley scattering,
zone-boundary modes cause intervalley scattering. Secondly,
not all the above modes are relevant for our investigation. In
particular, optical modes and zone-boundary modes typically
become important only at very high energies, as observed, e.g.,
in transport measurements at high applied voltage bias [14,26].
As we shall discuss in detail later, we consider here values
of nonequilibrium excess energy that are much smaller than
�ωLO, �ωTO, and �ωZB. In such a regime, only scattering with
acoustic and breathing modes actually matters, whereas the
contribution of optical and zone-boundary modes is definitely
negligible. In fact, in Sec. IV B, we shall explicitly prove that
this is true for TO and LO modes; zone-boundary modes,
whose energies are comparable to O modes, are expected to
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have a physically negligible impact too, with the unnecessary
computational drawback of coupling the two valleys. For
these reasons, we shall exclude ZB modes, and consider
henceforth intravalley processes only. The electron dynamics
thus decouples into the two valleys, and in each valley electrons
scatter with each vibrational mode ξ = LA,TA,Br,LO,TO.

Near the energetically relevant K and K′ points, the
electron-phonon coupling for each vibrational mode is de-
scribed by a 2 × 2 matrix acting on the electronic states of the
related valley. In Refs. [39,41], explicit expressions for such
matrices are given in the sublattice space. Here, in order to
treat the electron-phonon coupling with the Lindblad-based
density-matrix formalism (see Sec. III), it is more suitable
to switch from the sublattice basis to the α basis of the
electron eigenvectors (3). Then, the electron-phonon coupling
is rewritten as

Ĥ e−ph =
∑

αα′,v,qξ

(
g

qξv−
αα′ ĉ†αvb̂qξ ĉα′v + g

qξv+
αα′ ĉ†αvb̂

†
qξ ĉα′v

)
, (4)

where g
qξv±
αα′ = g

qξv∓∗
α′α describe carrier-phonon matrix entries

for the carrier transition α′ → α occurring in the valley v =
K/K′ = ±1 and resulting from the absorption (−) or emission
(+) of a phonon with a vibrational mode ξ and wave vector
q. Furthermore, ĉ†αv (ĉαv) and b̂

†
qξ (b̂qξ ) denote the creation

(annihilation) of an electron in the αv single-particle states (3),
and of a q ξ phonon, respectively. The explicit expression for
the coefficients g

qξv±
α,α′ is given in Appendix A for the case of a

metallic SWNT.

III. LINDBLAD-BASED DENSITY-MATRIX FORMALISM

In order to investigate energy dissipation and decoherence
as well as quantum-diffusion phenomena induced by the
nanotube phonon bath on the otherwise phase-preserving
electron dynamics, we apply the general formalism introduced
in Ref. [37] to the SWNT model just described. According to
such a fully quantum-mechanical treatment, the time evolution
of the single-particle density matrix ρv

α1α2
= 〈ĉ†α2v

ĉα1v
〉 in the

α basis of the electronic single-particle eigenstates is given by

dρv
α1α2

dt
= εα1 − εα2

ı�
ρv

α1α2
+ dρv

α1α2

dt

∣∣∣∣
scat

. (5)

In Eq. (5), the first term on the right-hand side describes
the scattering-free propagation, with εα denoting the single-
particle electron eigenvalues, whereas the second term is a
nonlinear scattering superoperator,

dρv
α1α2

dt

∣∣∣∣
scat

= 1

2

∑
α′α′

1α
′
2,ξ

[(
δα1α′ − ρv

α1α′
)
Pξv

α′α2,α
′
1α

′
2
ρv

α′
1α

′
2

− (
δα′α′

1
− ρv

α′α′
1

)
Pξv∗

α′α′
1,α1α

′
2
ρv

α′
2α2

] + H.c., (6)

expressed via generalized scattering rates Pξv

α1α2,α
′
1α

′
2
, whose

explicit form is microscopically derived from the electron-
phonon Hamiltonian (4). More specifically, from the general
scheme described in Ref. [37], one obtains

Pξv

α1α2,α
′
1α

′
2
=

∑
q±

A
qξv±
α1α

′
1
A

qξv±∗
α2α

′
2

(7)

with

A
qξv±
αα′ =

√
2π

(
N◦

qξ + 1
2 ± 1

2

)
�

g
qξv±
αα′ D

qξ±
αα′ , (8)

where N◦
qξ is the Bose occupation number corresponding to

the phonon qξ , and

D
qξ±
αα′ = lim

δ→0

exp{−[(εα − εα′ ± �ωqξ )/2δ]2}
(2πδ2)1/4

(9)

is the Gaussian regularization of the total energy conservation
constraint.1

The fully quantum-mechanical density-matrix equation (5)
enables us to go beyond the conventional Boltzmann transport
equation, whose space-independent version is straightfor-
wardly recovered in the diagonal limit (ρv

α1α2
= f v

α1
δα1α2 ),2

where the generalized scattering rates reduce to the semiclas-
sical rates provided by the standard Fermi’s golden rule:

P
ξv

αα′ = Pξv

αα,α′α′ . (10)

The latter provide a qualitative information about the typical
time scale of energy dissipation versus decoherence processes
induced by the various phonon modes, and will play a central
role in understanding the simulated experiments presented in
Sec. IV.

The average value of a generic single-particle opera-
tor â (with matrix entries av

α1α2
in valley v) can be ex-

pressed in terms of the single-particle density matrix as
a = ∑

v

∑
α1α2

ρv
α1α2

av
α2α1

. In particular, in our investigation,
two physical quantities play a central role, namely, the spatial
carrier distribution in band b (b = c/v = ±1),

nb(r) =
∑

v

∑
α1α2

ρv
α1α2

nv
α2α1

(r) δb1,bδb2,b (11)

with

nv
α2α1

(r) = 〈α2v|r〉〈r|α1v〉, (12)

and the corresponding (valley-averaged) carrier momentum
distribution,

fkb = 1

2

∑
v

∑
α1α2

ρv
α1α2

f v
k,α2α1

δb1,bδb2,b (13)

with

f v
k,α2α1

= 〈α2v|k〉〈k|α1v〉. (14)

In particular, for the case of a metallic SWNT, which is the
focus here, the above expressions reduce to

nb(r‖) = 1

2πRL

∑
v

∑
k1k2>0

ρv
k1b,k2b

eı(k1−k2)r‖ (15)

1As discussed in Ref. [36], the choice of this regularization function,
which has no specific impact on the asymptotic system dynamics,
allows for a natural time symmetrization, crucial ingredient for the
derivation of our Lindblad-like scattering superoperator.

2Notice that the derivation of the space-dependent Boltzmann
equation goes beyond the mere diagonal limit mentioned here, and
requires to perform a proper spatial coarse-graining procedure, as
discussed, e.g., in Ref. [42].
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and

fkb = 1

2

∑
v

ρv
kb,kb, (16)

respectively.
An inspection of Eq. (15) shows that a nonhomogeneous

spatial carrier distribution is intimately related to the presence
of phase coherence between different states, k1 �= k2. In
particular, the constraint k1k2 > 0 indicates that the only
density-matrix entries contributing to the spatial distribution
are those with k1 and k2 of equal sign. Such feature plays a
crucial role in understanding the strong suppression of carrier
diffusion in metallic SWNTs, as we shall discuss in Sec. IV as
well as in Appendix B.

IV. SIMULATED EXPERIMENTS

In order to show that metallic SWNTs can be utilized
as quantum-mechanical channels for the nondispersive trans-
mission of electronic wave packets, we have performed a
numerical solution of the Lindblad-based nonlinear density-
matrix equation (LBE) in Eq. (5). We shall henceforth focus
on the metallic case [ν = 0 in Eq. (2)], and present results of
simulated experiments, where the shape of an initially prepared
wave packet is monitored while it evolves under the effect of
the phonon bath.

For any arbitrary electronic state, the density matrix can
always be written as

ρv
α1α2

= ρ◦
α1α2

+ ρv
α1α2

, (17)

where ρ◦
α1α2

= f ◦
α1

δα1α2 is the homogeneous equilibrium state,
characterized by a Fermi-Dirac distribution

f ◦
α ≡ f ◦(εα) = 1

e(εα−μ)/kBT + 1
(18)

with chemical potential μ and temperature T , and ρv
α1α2

describes a localized excitation. Inserting Eq. (17) into
Eq. (15), the spatial carrier distribution is rewritten as

nb(r‖) = n◦
b + nb(r‖) , (19)

where n◦
b is the homogeneous equilibrium charge density and

nb(r‖) = 1

2πRL

∑
v

∑
k1k2>0

ρv
k1b,k2b

eı(k1−k2)r‖ , (20)

is the inhomogeneous density excitation. Similarly, the mo-
mentum carrier distribution, obtained by inserting Eqs. (17)
into (16), reads

fkb = f ◦
kb + fkb, (21)

where f ◦
kb is the equilibrium Fermi-Dirac distribution in

Eq. (18) and

fkb = 1

2

∑
v

ρv
kb,kb. (22)

The spatial and energetic profile (e.g., Gaussian-like) of the
excitation ρv

α1α2
can in principle be generated experimentally

via a properly tailored optical excitation. While the description
of the specific optical-generation process is beyond the aim of
the present paper, the localisation of the initial wave packet

is a crucial aspect in our analysis. In Ref. [35], the excitation
ρv

α1α2
was chosen to arise from the conduction band only and,

most importantly, was assumed to have purely equilibrium
diagonal contributions. Here we aim to go beyond such a
simplified scenario, and include nonequilibrium contributions,
both in the conduction and the valence band. To this purpose,
we take an initial state described by the following intravalley
density-matrix excitation:

ρv
α1α2

= b1δb1b2 C e− 1
2 ( |εk |−E0

E
)2

e−�|k′|, (23)

where k = (k1 + k2)/2 and k′ = k1 − k2 are the usual center-
of-mass momentum coordinates, while C can be regarded as a
sort of excitation amplitude. Notice that the excitation (23) is
independent of the valley v = K/K′ = ±1, and has opposite
signs in the conduction (b1 = c = +1) and in the valence
band (b1 = v = −1), so that no total net charge excitation
is injected into the SWNT. The parameter � plays the role of
a delocalization length: for � → ∞ the homogeneous case is
recovered, whereas for finite values of �, an interstate phase
coherence (intraband polarization) is present. Moreover, the
energetic distribution of the interband excitation is parame-
terized by its average energy E0, often referred to as excess
energy, together with its standard deviation E. Indeed, the
nonequilibrium density matrix in Eq. (23) can be regarded as
the after-excitation intraband state generated by an interband
laser pulse with central photon energy �ω = 2E0 and pulse
duration τ = �/2E.

We shall focus here on the armchair (10,10) SWNT, a
metallic nanotube characterized by a breathing-mode phonon
energy �ωBr of about 20 meV. In all the simulated experiments,
we shall adopt as an initial condition the nonequilibrium
excitation in Eq. (23), choosing a delocalization length � =
0.2 μm (corresponding to a FWHM value of the initial peak
of about 0.4 μm) and an energetic broadening E = 5 meV,
corresponding to a laser-pulse duration τ  70 fs. We shall
henceforth focus on the low-excitation regime, and take a value
of the excitation amplitude C in Eq. (23) such as to produce a
small deviation in the carrier distribution, i.e., fkb � 1.

A. Scattering-free evolution

We start our analysis from the scattering-free propagation
of the initial state in (23) switching off the electron-phonon
coupling term in Eq. (6). Then, the solution of the density-
matrix equation (5) is simply given by

ρv
α1α2

(t) = ρv
α1α2

(0) e−ı(εα1 −εα2 )t/�, (24)

leading to a density excitation

nb(r‖,t) = nr
b(r‖ − vF t) + nl

b(r‖ + vF t), (25)

where

nλ
b(r ′

‖) =
∑

v

∑
k1,k2∈�λ

b

ρv
k1b,k2b

(0)
eı(k1−k2)r ′

‖

2πRL
, (26)

with λ = r/l = ±1, and b = c/v = ±1. Here, �λ
b denotes a

domain defined as follows: k1/2 ∈ �λ
b if λbk1/2 > 0.

In Eq. (25), the components n
r/l
b of the scattering-free

carrier density excitations are straightforwardly identified as
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right(r)- or left(l)-moving contributions in the b band, as they
fulfill

dn
r/l
b

dt
= ∓vF

dn
r/l
b

dr‖
. (27)

The splitting (25) of the carrier density evolution into
right- or left-moving components is the hallmark of the well
known symmetry underlying the Hamiltonian (1) in the case
of metallic SWNTs: the right- and left-moving electronic
states (3) are characterized by opposite and k-independent
pseudospin eigenvalues. Thus the carrier density, which traces
over the pseudospin degree of freedom [see Eqs. (11) and (12)],
consists of oppositely propagating terms. Explicitly, in the
K-valley right-moving carriers have k > 0 in the conduction
band (b = +1) and k < 0 in the valence band (b = −1) and
are all characterized by a pseudospin +1, whereas left-moving
components have k < 0 in the conduction band (b = +1) and
k > 0 in the valence band (b = −1) and are all characterized
by pseudospin −1. The opposite pseudospin eigenvalues occur
in the K′ valley. Importantly, for a given propagation direction,
all electrons are characterized by the very same velocity vF ,
so that no wave-packet dispersion occurs. The initial charge
peak thus splits into two components, which travel in opposite
directions with velocity ±vF and preserve their shape. This
is shown in Fig. 1, where the charge excitation (20) for the
conduction band (b = c) is plotted as a function of the position
along the SWNT axis, for an excess energy E0 of 10 meV (solid
curves) and 50 meV (dashed curves) at three different times:
t = 0 ps (third peak), t = 1 ps (second and fourth peaks), and
t = 2 ps (first and fifth peaks). Similarly, an equal and opposite
charge excitation arises from the valence band (b = v) (not
plotted here).

Importantly, as can be seen from Fig. 1, for a metallic
SWNT, the shape and the propagation dynamics of the electron

-2 -1 0 1 2
0.0
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E
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= 50 meV

FIG. 1. (Color online) Scattering-free dynamics of an electronic
wave packet in a metallic SWNT corresponding to the initial condition
in Eq. (23): conduction-band (b = c) excitation charge distribution
in Eq. (20) as a function of the position along the SWNT axis for
an excess energy E0 of 10 meV (solid curves) and 50 meV (dashed
curves) at three different times: t = 0 ps (third peak), t = 1 ps (second
and fourth peaks), and t = 2 ps (first and fifth peaks). Note that solid
and dashed lines almost coincide (see text).

wave packet is nearly independent of the initial excess energy
E0, which is once again a peculiar feature stemming from the
linearity of the band.

The above scenario strongly differs from the semiconduct-
ing SWNT case in various aspects: in the first instance, in
the latter case, right- and left-moving electronic eigenstates
are characterized by a k-dependent pseudospin direction,
similarly to a conventional material in the presence of spin-
orbit coupling, so that the carrier density is not simply the
sum of right- and left-moving terms, but also mixed terms
arise. Secondly, because of the nonlinearity of the band,
the propagation velocity depends on the wave vector k.
As a consequence, the wave packet experiences the typical
dispersion of conventional (i.e., parabolic-band) materials, as
observed in Ref. [35]. Finally, a dependence on the initial
excess energy E0 arises in semiconducting SWNT.

B. Effects of electron-phonon coupling

Let us now switch on the electron-phonon coupling and
address the crucial question of whether and how-energy
dissipation and decoherence modify such an ideal dispersion-
free scenario. To this purpose, we have performed a set of
simulated experiments based on the LBE (5), including all the
relevant phonon modes discussed in Sec. II.

1. Total scattering rates

To start our analysis, a useful insight about the typical
energy-relaxation time scale is provided by the semiclassical
rates P

ξv

αα′ in Eq. (10), via the following total scattering rates:

�
ξ

k,b→b′ = 1

2

∑
v

∑
k′ �=k

(1 − f ◦
k′b′ )P

ξv

k′b′,kb, (28)

where the generic (intravalley) transition kb → k′b′ is multi-
plied by the Pauli-blocking factor of the final state. The total
scattering rates (28) are displayed in Fig. 2 as a function of
the conduction energy (ε = �vF |k|) for the (10,10) SWNT.
As one can see, for both intraband and interband processes,
the dominant (i.e., fastest) dissipation channels are due to
optical (LO and TO) and breathing (Br) phonon modes, which
are expected to induce a significant energy dissipation and
decoherence, in view of their strongly inelastic nature. In
particular, for values of E0 significantly smaller than the
optical-phonon energy (200 meV), the primary dissipation
channel is ascribed to Br phonon modes. Furthermore, due
to the different threshold mechanisms for intraband and
interband scattering (both dictated by the phonon energy
�ωBr  20 meV), the impact of Br modes is expected to
be strongly E0-dependent. In any case, the total scattering
rates shown in Fig. 2 would suggest that the carrier-phonon
scattering induces energy dissipation and decoherence on a
picosecond time scale. Note that LA-phonon scattering is
absent for the considered (10,10) SWNT: the only available
transition is k → k, the so-called self-scattering.

The crucial question to address is whether and to what
extent such incoherent dynamics modifies the dispersion-
free propagation scenario of Fig. 1. Indeed, combining
Eqs. (5), (17), and (20), in the presence of carrier-phonon
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FIG. 2. (Color online) Room-temperature (T =300 K and μ=0)
total scattering rates in Eq. (28) as a function of the conduction energy
(ε = �vF |k|) for intraband (top), interband (middle), and intra plus
interband scattering processes (bottom) due to the various phonon
modes: ξ = TA (dashed curves), Br (dotted-dotted-dashed curves),
LO (short-dotted-dashed curves), TO (dotted-dashed curves), and
their sum (solid curves). Note that the ξ = LO and ξ = TO curves
almost coincide in every panel.

scattering, the dispersion-free result in Eq. (27) is modified to

dn
r/l
b

dt
= ∓vF

dn
r/l
b

dr‖
+ dn

r/l
b

dt

∣∣∣∣
scat

(29)

with

dnλ
b

dt

∣∣∣∣
scat

=
∑

v

∑
k1,k2∈�λ

b

eı(k1−k2)r‖

2πRL

dρv
k1b,k2b

dt

∣∣∣∣∣∣
scat

, (30)

and �λ
b is defined below Eq. (26).

2. Intraband scattering

Let us start by considering the case of intraband scattering
processes only, where all interband dissipation channels are
switched off. Figure 3 shows a direct comparison between
energetic (left panels) and spatial distributions (right panels)
for conduction band excitation carriers at different times,
for two values of the excess energy, E0 = 10 meV (upper
panels) and E0 = 50 meV (lower panels). The chemical
potential is set here at the charge neutrality point, μ = 0,
so that the valence band excitation distributions are equal in
magnitude and opposite in sign to the conduction ones, and
are not explicitly shown. As one can see, both the energetic
carrier distributions (left panels) exhibit the typical phonon-
replica scenario of ultrafast energy-relaxation experiments. In
particular, the nature (i.e., number of emitted Br phonons) and
time scale of the dissipation process depend on the value of
the excess energy E0, and agree with the intraband scattering
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FIG. 3. (Color online) Room-temperature (T = 300 K and μ = 0) dynamics of an electronic wave packet in a metallic SWNT corresponding
to the initial condition in Eq. (23) in the presence of intraband scattering only: conduction-band (b = c) excitation charge distribution in Eq. (22)
as a function of the carrier energy �vF |k| (left) and corresponding excitation charge distribution in Eq. (20) as a function of the position along
the SWNT axis (right) at three different times [t = 0 (solid curves), t = 1 ps (dashed curves), and t = 2 ps (dash-dotted curves)] for two
different excess energies: E0 = 10 meV (upper panels) and E0 = 50 meV (lower panels). Here all thick curves show the effects of the intraband
carrier-phonon coupling accounted for by the LBE (5) while the thin ones in the right panels correspond to their scattering-free counterparts
(see text).
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rates reported in the upper panel of Fig. 2. In spite of such
picosecond energy-relaxation and decoherence dynamics, the
spatial carrier distributions (right panels) clearly show that
the electron-phonon coupling does not significantly alter the
shape of the electron wave packet with respect to the ideal
scattering-free results (thin curves), so that (i) the propagation
is essentially dispersionless up to the micrometric scale, even
at room temperature, and (ii) the small diffusion effect is nearly
independent of E0.

In order to understand the origin of such shape-preserving
dynamics, it is worth noting that in the electron-phonon
coupling a natural distinction arises between forward and
backward scattering processes, namely processes where the
initial and final electronic states have the same and opposite
velocity sign, respectively. In terms of our density-matrix
formalism, since a quantum transition involves two pairs of
momenta (k1,k2) → (k1 + q,k2 + q), forward and backward
processes can in principle interplay in Eq. (6). In semiconduct-
ing materials such transitions can lead to scattering nonlocality
and quantum diffusion speed-up phenomena [42]; moreover,
in Luttinger liquids, the forward component of the electron-
phonon coupling can lead to Wentsel-Bardeen instabilities
of the electron propagator [43]. However, in a metallic
SWNT, due to the energy and momentum conservation, mixed
(forward-backward) processes occupy a vanishing measure
subset of the phase space, and are irrelevant. Furthermore, a
detailed investigation summarized in Appendix B shows that
intraband forward processes yield a negligible contribution
to the scattering term in Eq. (30) and therefore have an
extremely small impact on the wave-packet propagation. The
wave-packet dispersion (see right panels in Fig. 3) originates
mainly from backward processes. Such conclusion, obtained
from a fully quantum-mechanical approach, turns out to be
essentially similar to the expectation one would formulate on
a semiclassical argument based on the Boltzmann theory.

At room temperature, the backward scattering processes
may be ascribed to different phonon modes, depending on
the type of SWNT: for armchair SWNT, like the (10,10) one,
they are due to TA modes only, whereas for zigzag SWNTs
they are due to Br as well as to LA modes. We stress that
also LO modes induce backward processes; however, due to
their high phonon energy [26], in the simulated experiments
of Fig. 3 their impact is extremely negligible. In turn, this
also confirms that the neglect of the zone-boundary modes—
whose energy is comparable to the optical modes—is a good
approximation.

The scenario described so far is confirmed by the forward-
versus-backward total scattering rates reported in Fig. 4.
As anticipated, the intraband scattering rates in the upper
panel of Fig. 2 are dominated by forward processes (see
upper panel in Fig. 4) which, in turn, are dominated by Br
phonon modes. In contrast, the total scattering rate due to
backward processes (see lower panel in Fig. 4) is due to TA
modes only, and is at least one order of magnitude smaller
compared to the forward one. Recalling that the diffusion
of an electronic wave packet in a metallic SWNT is mainly
determined by backward processes (see Appendix B) and that
the latter are characterized by a much longer time scale, we are
then able to explain the apparent discrepancy in Fig. 3 between
the energy-relaxation (left panels) and the quantum diffusion
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FIG. 4. (Color online) Forward-scattering (top) and backward-
scattering components (bottom) of the intraband total scattering rates
reported in the upper panel of Fig. 2 (see text).

time scale (right panels). Moreover, the fact that quantum
diffusion is mainly determined by backward processes, and
that the latter involve TA phonons only, explains well how the
diffusion dynamics (right panels) is basically independent of
the excess energy E0.

3. Effects of interband scattering

As a second step, we have included also interband
carrier-phonon scattering, and analyzed how the simulated
experiments of Fig. 3 are modified by the presence of such
processes. Figure 5 shows again a direct comparison between
energy-relaxation (left panels) and spatial-diffusion dynamics
(right panels), for the same two values of E0. While for E0 =
10 meV the presence of interband scattering induces strong
modifications with respect to the intraband results of Fig. 3,
for E0 = 50 meV, the effect of interband coupling is hardly
visible, both in terms of the energetic and the spatial carrier
distributions. Indeed, an inspection of the interband total
scattering rates reported in the central panel of Fig. 2 shows that
for the considered values of E0 the most efficient (i.e., fastest)
interband scattering channel is again ascribed to Br phonon
modes; however, such a picosecond scattering mechanism is
active only for carrier energies smaller than �ωBr. Moreover, in
addition to an energetic carrier redistribution, the presence of
interband transitions leads to a progressive decay of the initial
excitation charge nb(r‖) in Eq. (20) via an interband charge
transfer, which can be regarded as a net phonon-mediated
electron-hole recombination process. The resulting loss of
conduction electrons may affect the nearly dispersion-free
scenario of Fig. 3. However, its impact is directly related to the
effective time scale of such phonon-induced interband transfer,
which, in turn, depends on the fraction of below-threshold
(ε < �ωBr) electrons, and therefore on the value of E0.

Such highly nontrivial interplay between the conduction-
band energy redistribution and electronic loss due to phonon-
induced interband transfer is fully confirmed by the two
simulated experiments of Fig. 5. For a given initial excitation
peak with an excess energy E0 (see solid curves in the
left panels), the conduction electrons experience a sequence
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FIG. 5. (Color online) Same quantities as in Fig. 3, but in the presence of both intra- and interband carrier-phonon scattering. While for
small excess energy (E0 = 10 meV) interband scattering processes affect both the energy and space distributions (compare upper panels with
those of Fig. 3), for higher excess energy (E0 = 50 meV) interband scattering has a negligible impact (compare lower panels with those of
Fig. 3).

of Br-phonon emissions and/or absorptions, giving rise to
corresponding phonon replica in the excitation charge dis-
tribution. The resulting time scale of interband scattering is
then related to the number of emitted phonons needed to
enter the below-threshold energy region, and thus increases for
increasing values of E0. Such a behavior is fully confirmed by
the time evolution of the total excess density reported in Fig. 6,
which shows that, by increasing E0 from 10 to 50 meV, the net
interband carrier transfer is reduced by more than one order of
magnitude. The relevant conclusion is that for excess energies
E0 > �ωBr the room-temperature wave-packet propagation is
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FIG. 6. (Color online) Time evolution of the total excess density
corresponding to the two simulated experiments of Fig. 5: E0 =
10 meV (solid curve) and E0 = 50 meV (dashed curve) (see text).

again essentially dispersionless up to the micrometric scale
also in the presence of interband scattering.

To conclude this section, we observe that the energy and
space carrier distributions shown in Figs. 3 and 5 have been
chosen as the most suitable quantities to specifically address
the problem of the wave-packet dispersion. The density
matrix obtained by solving Eq. (6)—or equivalently its related
Wigner function—encodes further information, however, its
description is beyond the purposes of the present paper. A
similar analysis, carried out on parabolic quantum wires within
the Wigner function formalism can be found, e.g., in Ref. [44].

4. Effects of the chemical potential

So far, all the described simulated experiments (see Figs. 3
and 5) have been performed for a value of the chemical
potential μ corresponding to the charge neutrality point:
μ = 0. We now want to discuss the effects of the chemical
potential on the wave-packet propagation. In particular, one
would expect that, as the chemical potential is increased
or decreased, the change in the occupation of initial and
final electronic states available for electron-phonon scattering
alters the relative weight of intra- and interband scattering
contributions [see Eq. (28)]. Furthermore, one expects that,
away from the charge neutrality point μ = 0, the magnitudes
of conduction- and valence-band carriers become different.

To analyze these effects, the simulated experiments of Fig. 5
have been repeated with varying the value of the chemical
potential. Figure 7 shows snapshots of the wave-packet spatial
distribution taken 2 ps after the initial condition for different
values of μ. The upper and lower panels refer to the same two
excess energy values of Figs. 1, 3, and 5, namely, E0 = 10 and
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FIG. 7. (Color online) Snapshot of the wave-packet spatial dis-
tribution after 2 ps at room temperature for different values of
the chemical potential: μ = 0 (thin solid), μ = 40 meV (dashed),
and μ = −80 meV (dashed-dotted). Upper and lower panels refer
to E0 = 10 and 50 meV, respectively. A very weak dependence is
observed on the chemical potential, which becomes appreciable only
when zooming near the peaks, as shown by the two insets (see text).

50 meV, respectively. As one can see, the wave-packet spatial
profile exhibits a weak dependence on μ. Similarly, a small
modification was found on the energy-relaxation process, and
has not been reported here. Surprisingly, such independence
occurs even for small values of excess energy E0, where the
interband contribution has been shown to modify the intraband
results, as discussed above (see Figs. 5 and 6). Furthermore,
only a minor difference turns out to arise for μ �= 0 between
the magnitudes of the conduction and valence band carrier
distributions: the relative difference of the maximum heights
is less than 2%.

In order to explain such seemingly counterintuitive behav-
ior, it is useful to describe the effect of the relevant interband
scattering channel, namely Br phonon modes, via a simple
two-level toy model, which involves just one single conduction
(c) and a single valence (v) state. More specifically, we shall
denote with εc/v = ±�ωBr/2 the corresponding energy levels,
with fc/v the corresponding electron populations, and with
Pcv = WN◦

Br and Pvc = W (N◦
Br + 1) the interlevel absorption

and emission rates, respectively (N◦
Br denoting the Breathing

mode Bose occupation number). Within the conventional semi-
classical picture, the time evolution of the electron population
is described by the following Boltzmann-like equation:

dfc

dt
= (1 − fc)Pcvfv − (1 − fv)Pvcfc = −dfv

dt
. (31)

Writing the two electron populations as fc/v = f ◦
c/v ± f

(f denoting the deviation from the thermal-equilibrium
distribution f ◦

c/v) and neglecting quadratic terms in f ,
Eq. (31) reduces to

df

dt
= −�f, (32)

where

�(μ) = (Pcv + Pvc)

(
1 − f ◦

vc(μ)

2N◦
Br + 1

)
, (33)

with f ◦
vc(μ) = f ◦

v (μ) − f ◦
c (μ) denoting the difference be-

tween valence and conduction Fermi-Dirac functions. Equa-
tion (32) shows that the initial excess population f undergoes
an exponential-decay dynamics according to the μ-dependent
decay rate in Eq. (33), whose relative change with respect to
the μ = 0 case is given by

�(μ) ≡ �(μ) − �(0)

�(0)
, (34)

i.e., a positive, finite, and symmetric function of μ. This implies
that the decay rate � in Eq. (33) is minimal for μ = 0 and
increases with |μ|, reaching a saturation value for |μ| → ∞.
It is, however, straightforward to verify that for the parameters
of the simulated experiments reported in Fig. 7, namely,
T = 300 K, |μ| = 40 meV, and �ωBr  20 meV, the relative
change in Eq. (34) is only 3%. Moreover, also for |μ| → ∞
the latter never exceeds its limiting value of about 7%. We
emphasize that such extremely weak μ dependence is ascribed
to the room-temperature regime considered here. Indeed,
at T = 77 K, the 3% value obtained at room temperature
increases to about 140%, which implies a strong μ dependence
in the low-temperature limit, as expected. Regardless of the
specific μ dependence, our analysis shows that the impact of
interband carrier-phonon scattering is always minimum for
μ = 0.

V. SUMMARY AND CONCLUSIONS

We have investigated in detail the impact of carrier-
phonon coupling on the dynamics of an electron wave
packet propagating in metallic SWNTs, utilizing a recently
developed density-matrix approach [37] that enables us to
account for both energy dissipation and decoherence effects.
The recent study in Ref. [35] has been extended in various
aspects in this paper: (i) we have considered the case of
nonequilibrium carrier distributions; (ii) we have included
interband carrier-phonon coupling; (iii) we have analyzed
the effects of dissipation and related decoherence phenomena
on the wave-packet energetic distribution; and (iv) we have
discussed the effects of the chemical potential. Based on our
analysis, we can extend the conclusion that in metallic SWNTs
the shape of the wave packet is essentially unaltered, even in
the presence of intraband as well as interband electron-phonon
coupling, up to micrometer distances at room temperature.
More specifically, our investigation has shown that, in spite
of a significant energy-dissipation and decoherence dynamics,
electronic diffusion in metallic systems is extremely small
as well as nearly independent of the wave-packet energetic
distribution, namely, excess energy and chemical potential.
Our results thus indicate that metallic SWNTs constitute
a promising platform to realize quantum channels for the
nondispersive transmission of electronic wave packets.
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APPENDIX A: ELECTRON-PHONON COUPLING COEFFICIENTS

In this Appendix, we provide the explicit expression for the g
qξv±
αα′ coefficients appearing in the electron-phonon coupling

Hamiltonian (4), focusing on the case of a metallic SWNT [ν = 0 in Eq. (2)]. The coefficients can be obtained from the 2 × 2
electron-phonon matrices given for the sublattice basis in Refs. [39,41], by changing to the eigenvector basis α defined in Eq. (3).
Recalling that in g

qξv±
αα′ multilabels for the electronic states are α = (k,b) and α′ = (k′,b′), the conservation of total momentum

implies that the g
qξv±
αα′ exhibit the form

g
qξv±
αα′ = g

ξv

k,k±q;b,b′ δk±q,k′ , (A1)

where the g
ξv

k,k±q;b,b′ acquire the following expressions:

gLAv
k,k±q;b,b′ = −

√
� |q|

2NMvL
e−iv(θ−θ ′)/2

[
g1f

s(|q|)
(

1 + bb′

2
cos

θ − θ ′

2
+ i v

1 − bb′

2
sin

θ − θ ′

2

)

+ g2 v
b + b′

2
cos

(
3η + θ + θ ′

2

)
− g2 i

b − b′

2
sin

(
3η + θ + θ ′

2

)]
, (A2)

gTAv
k,k±q;b,b′ =

√
� |q|

2NMvT
e−iv(θ−θ ′)/2g2

[
v

b + b′

2
sin

(
3η + θ + θ ′

2

)
+ i

b − b′

2
cos

(
3η + θ + θ ′

2

)]
, (A3)

gLOv
k,k±q;b,b′ = −23/2

�vF

a2
0

√
�

2NMωLO
e−iv(θ−θ ′)/2sgn(q)

[
b + b′

2
i v cos

(
θ + θ ′

2

)
+ b − b′

2
sin

(
θ + θ ′

2

)]
, (A4)

gTOv
k,k±q;b,b′ = −23/2

�vF

a2
0

√
�

2NMωTO
e−iv(θ−θ ′)/2sgn(q)

[
b + b′

2
i v sin

(
θ + θ ′

2

)
− b − b′

2
cos

(
θ + θ ′

2

)]
, (A5)

gBrv
k,k±q;b,b′ = 1

R

√
�

2NMωBr
e−iv(θ−θ ′)/2

[
g1f

s(|q|)
(

1 + bb′

2
cos

θ − θ ′

2
+ i v

1 − bb′

2
sin

θ − θ ′

2

)

− g2 v
b + b′

2
· cos

(
3η + θ + θ ′

2

)
+ g2 i

b − b′

2
sin

(
3η + θ + θ ′

2

)]
, (A6)

where θ = sgn(k) π/2 and θ ′ = sgn(k ± q) π/2 are shorthand

notations for the polar angles θk and θk±q of the electron
wave vectors k and k ± q in the metallic SWNT. In the
above equations, N denotes the number of unit cells, R the
nanotube radius, M = 19.9 × 10−27 kg the mass of a carbon
atom [31], a0 = 1.44 Å is the lattice spacing, and η is the
SWNT chirality angle (e.g., η = 0 for zigzag and η = π/6 for
armchair SWNT [38]). The values for vL,vT,ωTO,ωLO and ωBr

are given in Sec. II. Furthermore, g1 = 30 eV and g2 = 1.5 eV
are the coupling constants related to deformation potential and
bond-length change [39], respectively, while f s(|q|) denotes
the screening function given in Ref. [45]. The hermiticity of the
electron-phonon coupling (4) ensures g

ξv

k,k±q;b,b′ = g
ξv∗
k±q,k;b′,b,

whereas the additional relation g
ξv

k,k±q;b,b′ = g
ξ−v∗
−k,−k∓q;b,b′ stems

from time-reversal symmetry.

APPENDIX B: ANALYSIS OF INTRABAND FORWARD
SCATTERING PROCESSES

In this Appendix, we show that in a metallic SWNT
the electron diffusion dynamics is not affected by intraband

forward carrier-phonon scattering. To begin with, a comment is
in order here. At the level of the electron-phonon Hamiltonian,
each term in Eq. (4) can be written as a sum of forward and
backward processes, where a forward (backward) contribution
can be defined as a quantum-mechanical transition where
the electron group velocity in the final state α has the
same (opposite) direction as the one in the initial state
α′. However, in our approach based on the density matrix,
two states are involved in ρv

α1,α2
, and quantum-mechanical

transitions (α1,α2) → (α′
1,α

′
2) may in general mix backward

and forward Hamiltonian contributions. For these reasons, we
shall utilize here the term “forward” (“backward”) for those
processes where the group velocity is preserved (changed)
for both density-matrix indices. A similar distinction can
be made between intra- and interband processes, and we
shall refer to intraband transitions as the ones where both
initial and final states are in the same band. In terms of the
above definitions, the case of intraband forward transitions
characterizes processes where the sign of both carrier wave
vectors k1 and k2 is preserved. We shall now argue that they
do not contribute to the spatial electronic diffusion.
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To this purpose, we first consider the structure of the
nonlinear scattering superoperator (6) and focus on the low-
excitation regime considered in our simulated experiments.
We note that, by inserting Eq. (17) into Eq. (6) and neglecting
quadratic terms in ρv

α1α2
, the original scattering term reduces

to the following linear superoperator:

dρv
α1α2

dt

∣∣∣∣
scat

= 1

2

∑
α′

1α
′
2,ξ

(
Pξv

α1α2,α
′
1α

′
2
ρv

α′
1α

′
2
− Pξv∗

α′
1α

′
1,α1α

′
2
ρv

α′
2α2

)
+ H.c., (B1)

with effective (i.e., μ-dependent) scattering rates

Pξv

α1α2,α
′
1α

′
2
= (

1 − f ◦
α1

)
Pξv

α1α2,α
′
1α

′
2
+ f ◦

α1
Pξv∗

α′
1α

′
2,α1α2

. (B2)

In the case of intraband forward scattering processes, the
effective rates P in Eq. (B2) can take a simpler expression.
Indeed for intraband processes, the coefficients g

ξv

k,k±q;b,b′

appearing in Eq. (A1) further simplify to a form g
ξv

k,k±q;b,b′ =
g

ξv

k,k±q;b δbb′ . Moreover, when only intraband forward scatter-

ing is considered, the above g
ξv

k,k±q;b turn out to acquire an
expression that is independent of the magnitude of k, and that
we shall denote as g

qξv

b . This can easily be seen by focusing
on an illuminating example.

Let us consider, for instance, the conduction band (b =
c) and right-moving electrons (λ = r), as illustrated by the
figures shown in Sec. IV. In this case, a direct evaluation of
Eqs. (A2) to (A6) for b = b′ = c and for forward scattering
(i.e., k,k ± q ∈ �r

c corresponding to θ = θ ′ = π/2), and the

use of Eq. (A1) reveal that the g
qξv±
αα′ take the simple form

g
qξv±
αα′ = gqξv

c δk±q,k′ δbb′ δbc. (B3)

Furthermore, as a result of the linearity of the band in the
metallic SWNT, in this case, the energy-conservation function
in Eq. (9) also becomes independent of the magnitude of k:

D
qξ±
αα′ = Dqξ

c
.= lim

δ→0

exp{−[�(vF q − ωqξ )/2δ]2}
(2πδ2)1/4

. (B4)

Inserting Eqs. (B3) and (B4) into Eq. (8), one obtains

A
qξv±
αα′ = Aqξv±

c δk±q,k′ δbb′ δbc, (B5)

with

Aqξv±
c =

√
2π

(
N◦

qξ + 1
2 ± 1

2

)
�

gqξv
c Dqξ

c . (B6)

The related generalized scattering rates in Eq. (7) are thus
given by

Pξv

α1α2,α
′
1α

′
2
= δb1b2,b

′
1b

′
2
δb1b2,cc

∑
q±

∣∣Aqξv±
c

∣∣2
δk1±q,k′

1
δk2±q,k′

2

(B7)

and turn out to be real and positive, just like semiclassical rates
(here, δi1i2,j1j2 is a shorthand notation for δi1j1δi2j2 ).

Inserting Eq. (B7) into Eq. (B2), the explicit form of the
linear superoperator (B1) corresponding to forward scattering
processes acting on right-moving electrons comes out to be

dρv
k1,c;k2,c

dt

∣∣∣∣
scat

= 1

2

∑
qξ±

{∣∣Aqξv±
c

∣∣2[(
1 − f ◦

k1,c

)
ρv

k1±q,c;k2±q,c + f ◦
k1,cρv

k1∓q,c;k2∓q,c

] + H.c.
}

− 1

2

∑
qξ±

{∣∣Aqξv±
c

∣∣2[
ρv

k1,c;k2,c

(
1 − f ◦

k1∓q,c + f ◦
k1±q,c

)] + H.c.
}
. (B8)

The spatial diffusion of the excitation charge density can now be determined by inserting Eq. (B8) into Eq. (30). There, by
means of a proper rescaling of the sum variables k1 and k2, it is easy to show that the contributions arising from the in- and
out-scattering terms [first and second lines in Eq. (B8)] cancel out, and as a result, one obtains that dnr

c/dt |scat vanishes. Along
quite similar lines of reasoning one can conclude that the same result holds for intraband scattering between left-movers (λ = l).

Finally, we stress that the vanishing effect of forward processes on the spatial diffusion, ascribed to a k-space cancellation
between in- and out-scattering terms, applies to intraband scattering only.
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