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We study the effects of a phase difference on Yu-Shiba-Rusinov (YSR) states in a spinful Coulomb-blockaded
quantum dot contacted by a superconducting loop. In the limit where charging energy is larger than the
superconducting gap, we determine the subgap excitation spectrum, the corresponding supercurrent, and the
differential conductance as measured by a normal-metal tunnel probe. In absence of a phase difference only one
linear combination of the superconductor lead electrons couples to the spin, which gives a single YSR state. With
finite phase difference, however, it is effectively a two-channel scattering problem and therefore an additional
state emerges from the gap edge. The energy of the phase-dependent YSR states depend on the gate voltage and
one state can cross zero energy twice inside the valley with odd occupancy. These crossings are shifted by the
phase difference towards the charge degeneracy points, corresponding to larger exchange couplings. Moreover,
the zero-energy crossings give rise to resonant peaks in the differential conductance with magnitude 4e2/h.
Finally, we demonstrate that the quantum fluctuations of the dot spin do not alter qualitatively any of the results.
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I. INTRODUCTION

Yu-Shiba-Rusinov [1–3] states are bound states in an
s-wave superconductor induced inside the energy gap by local
magnetic moments. Individual localized Yu-Shiba-Rusinov
(YSR) states have been observed both by scanning tunneling
spectroscopy of magnetic atoms like Mn or Cr adsorbed on
superconducting Pb or Nb substrates [4–8], and as subgap
states in Coulomb blockaded quantum dots (QDs) coupled to
superconducting (S) leads [9–17]. The quantum dot realization
is based on the spin-1/2 of odd-occupation charge states, and is
therefore free of most of the material dependent complications
for adatoms on a surface, like mixed valence, higher spin, and
magnetic anisotropy. Furthermore, the quantum dot system
allows for electrical tunability of the particle-hole asymmetry
and, to some extent, the exchange coupling between the spin on
the quantum dot and the quasiparticles in the superconductor,
which makes it an ideal system for studying the properties of
individual YSR states.

Recently, sharp subgap states have been observed
with a weakly coupled normal (N) metal lead probing
a superconductor–quantum dot–superconductor (S–QD–S)
junction as illustrated in Fig. 1, where the quantum dot was
formed in a Coulomb-blockaded segment of carbon nanotube
[12] or InAs nanowire [13] spanning a superconducting Al
loop. The gate control allows for determination of even
(spinless) or odd (spinful) charge states of the quantum dot
by even-odd effects (such as absence or presence of Kondo
resonances [13]) of the stability diagram. By tuning the
magnetic flux piercing the Al loop, one may control the phase
difference across the quantum dot, and this device therefore
provides additional information about the phase dependence
of the subgap states. It is this phase dependence of the spin-
induced YSR states, which is addressed in the present paper.

Earlier measurements of supercurrent through phase-biased
Coulomb-blockaded quantum dots [18–21] have already
demonstrated that odd-occupied spin-degenerate dots may

lead to negative (π -phase) supercurrent. Also, a supercurrent
sign reversal, i.e., a π -0 transition, has been shown to take
place when adjusting the gate voltage to move away from
odd occupancy, thereby increasing the ratio of the Kondo
temperature TK to the superconducting gap �, in accordance
with a number of theoretical predictions [22–30]. Whereas the
supercurrent only carries information about the ground state,
the additional spectroscopic information from experiments like
Refs. [12,13] now offers an opportunity to learn more about
the subgap excitations caused by a local magnetic moment.

The nature of subgap states depends on the ratio of the
charging energy EC and the superconducting gap �. For EC >

� and EC � �, where � denotes the elastic broadening of the
dot states due to their coupling to the leads, the natural starting
point for the spinful dot is the Kondo model [31] with exchange
coupling J and with the lead conduction electrons described by
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FIG. 1. (Color online) Sketch of the device studied here (follow-
ing the experiments in Refs. [12,13]), comprised of a Coulomb-
blockaded QD (green) tunnel coupled to superconducting leads (blue)
with an applied phase difference φ controlled by a magnetic flux.
A backgate voltage is adjusted to provide a single spin-1/2 on the
QD, and the resulting phase-dependent YSR states are probed by a
normal-metal tunnel probe (yellow).
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BCS Hamiltonians. As we show below, in absence of a phase
difference across the junction, this reduces to a single-channel
YSR problem. For weak exchange coupling TK � �, where
the ground state is a doublet, the YSR state is an excited singlet
state consisting of a single quasiparticle in the lead bound to
the dot spin. As the exchange coupling is increased the excited
state crosses zero energy and the ground state changes abruptly
to spin singlet [32–34] at TK ∼ �, where TK is the Kondo
temperature. For even larger values TK � �, the ground state
can be described as the well-known Kondo singlet.

In the opposite limit, EC < �, the natural starting point
for understanding the subgap states is a model where the
superconducting electrons are integrated out, giving rise to
a local pairing on the dot with strength �, which was studied
by Meng et al. [35]. It gives a mixing of states with occupation
N ± 1 when the average occupation is N . With odd average
occupation there will be two subgap states split by �, as found
already in the single orbital Anderson model [35]. Even though
the two cases EC < � and EC > � are naturally described in
different languages, the physical situations are similar. In both
cases, the excited states correspond to an extra quasiparticle
bound by the local spin. For EC > � the bound particle resides
mainly in the superconductor in the form of a YSR state,
while for EC < � it resides mainly on the dot because of
the hybridization of 0 and 2 electrons. The two situations are
illustrated in Fig. 2. For the experiments reported in Refs.
[13,17] the relevant limit is � < EC , which is also the limit
considered in this paper.

For a multilevel quantum dot, the finite level spacing δE

will also affect the simple evolution of ground states when
δE ∼ TK,�. In this paper we thus restrict our attention to
small dots, for which the level spacing is the largest energy
scale, and �,� � EC ∼ δE, complementary to the � � EC

regime studied by Meng et al. [35]. Furthermore, we restrict
our attention to gate voltages adjusted to accommodate odd
occupation and hence a net spin-1/2 on the quantum dot, which
will be described within an effective cotunneling (Kondo)
model. For the main part of the paper, however, the dot spin
is treated as classical (nonfluctuating), being polarized in a
fixed direction. We will show that this approximation does not
modify the physics substantially (at least for weak dot-lead
coupling), while considerably simplifying the calculations.

The paper is organized as follows. In Sec. II an effective
Kondo model for an odd-occupied quantum dot coupled to
superconducting leads is introduced. In Sec. III we derive the
subgap states within the polarized-spin approximation. The
corresponding nonlinear tunneling conductance to an auxiliary
normal lead is discussed in Sec. III B, with a few technical
details relegated to Appendix A, and finally the supercurrent
through the phase-biased S-QD-S junction is addressed in
Sec. III C. In Sec. IV we briefly compare the results from
the polarized-spin approximation with the perturbative (in
dot-lead coupling) results including the full quantum dynamics
of the dot spin, which we derive in Appendix B.

II. THE MODEL

We consider a quantum dot tunnel coupled to two super-
conducting leads, capacitively coupled to a gate electrode, and
subjected to an applied magnetic field. The coupling to the

FIG. 2. (Color online) Schematics of the two situations EC > �

and EC < �. In both cases there is a subgap state in the odd diamond.
For large � it appears because of hybridization of the N = 0 and N =
2 charge states by the superconductor, while for large EC it appears
because of hybridization between the dot electron and quasiparticles
in the leads, forming a bound state, which is the YSR state. In both
cases the average occupation on the dot is equal to one and the subgap
states have similar dependencies on gate voltage. In this paper we
focus on the situation (a) with EC > �.

normal metal electrode is also included for the purpose of
doing transport spectroscopy.

The quantum dot connected to these three leads is modeled
by a single orbital Anderson-type model:

H = HN + HLR + HD + HT. (1)

The superconducting leads are described by the effective
Bardeen-Cooper-Schrieffer (BCS) mean-field Hamiltonian

HLR=
∑
αkσ

ξkσ c
†
αkσ cαkσ −

∑
αk

(�αc
†
αk↑c

†
α,−k↓ + �∗

αcα,−k↓cαk↑),

(2)

where ξkσ = ξk + σgceB/2 and ξk = εαk − μα are the con-
duction electron dispersions. Here α = L/R labels the two
superconducting leads and k and σ are lead orbital and spin
quantum numbers, respectively. The leads are assumed to have
bandwidth 2D with ξk ∈ [−D,D]. The Landé g factor in the
superconductors is denoted by gce, the magnetic field by B,
and the complex superconducting order parameters by �α =
�eiφα . Here we for simplicity take the two order parameters
to be of equal magnitude. The normal-lead Hamiltonian is

HN =
∑
kσ

(εNkσ − μN )c†Nkσ cNkσ , (3)
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with a bias voltage applied to this lead μN − μα = V .
Assuming the level spacing in the quantum dot to be large,
we model it by a single orbital:

HD =
∑

σ=↑,↓
εdd

†
σ dσ + Un↑n↓, εdσ = εd + σgdB/2, (4)

where d†
σ creates an electron in the orbital with spin σ , U is the

charging energy on the quantum dot, εd is the level position,
which is controlled by the gate voltage, and gd is the g factor
in the dot (which can be different from gce).

The coupling between the leads and the dot is described by
the tunneling Hamiltonian

HT =
∑
αkσ

(tαc
†
αkσ dσ + t∗αd†

σ cαkσ ), (5)

where tα denote the lead-dot tunneling amplitudes and the lead
index α is extended to run through L, R, and N .

We focus on the odd-occupied spinful cotunneling regime
well inside the corresponding Coulomb diamond, where

2πνF |tα|2 ≡ �α � −εd,U + εd, (6)

with νF denoting the density of states at the Fermi level.
A standard Schrieffer-Wolff transformation [36,37] then

leads to the following effective cotunneling (Kondo) model for
the spin-1/2 coupled to the normal and two superconducting
leads:

H = HN + HLR + Hd,B + HJ + HW, (7)

where the Zeeman term for the quantum dot spin reads

Hd,B = gdBSz, (8)

with Si denoting the spin operator on the dot. The transfor-
mation is valid for �/U � 1 and |gce − gd|B/U � 1 [38].
For the polarized-spin approximation considered in the next
section, the Zeeman term for the dot spin has no influence, but
it will become important in Appendix B where the magnetic
field dependence of the quantum corrections are discussed.
The exchange cotunneling term reads

HJ =
∑

i = x,y,z

α′k′σ ′αkσ

Jα′αSic
†
α′k′σ ′τ

i
σ ′σ cαkσ , (9)

where τ i denotes the Pauli matrices, and the potential
scattering term is

HW =
∑

α′k′,αk,σ

Wα′αc
†
α′k′σ cαkσ . (10)

Here the exchange and potential scattering amplitudes are
given by

Jαα′ = 4

1 − x2

tαtα′

U
, Wαα′ = 2x

1 − x2

tαtα′

U
, (11)

where x parametrizes the dimensionless gate voltage as

x = 1 + 2εd

U
. (12)

Note that the Anderson model always gives antiferromagnetic
exchange J > |W | � 0 inside the odd occupied diamond
x ∈ [−1,1] and that W breaks particle-hole symmetry and
therefore vanishes at the particle-hole symmetric point x = 0,

defining the middle of the Coulomb diamond. We also define
the following dimensionless coupling constants:

gαα′ = πνF Jαα′S, g = gLL + gRR,

wαα′ = πνF Wαα′ , w = wLL + wRR,
(13)

to be used extensively below.

III. POLARIZED-SPIN APPROXIMATION

We start by considering the case where the spin operator in
Eq. (9) is treated as a classical variable with a fixed direction
S ≈ Sẑ. In this approximation the problem is similar to the
original problem considered by Yu, Shiba, and Rusinov [1–3],
but now with two superconductors having different phases. In
Appendix B we show that this approximation is justified when
gdB � g2�. At zero field the excitation energies calculated
within this approximation correspond to the correct result at
weak coupling (g � 1) only after rescaling g by a factor of 3.
For now, we use the polarized-spin approximation in order to
discuss the spectroscopy.

We start by diagonalizing the exchange, and potential
scattering terms in L/R space, omitting the coupling to the
normal lead. This diagonalization is possible because they
share the same matrix structure in L/R-lead space

Jαα′ = Jαα′ and Wαα′ = Wαα′ , (14)

where

αα′ =
(

cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
, (15)

with coupling asymmetry parametrized by an angle θ defined
by

(cos θ, sin θ ) = (tL,tR)/t, t =
√

t2
L + t2

R. (16)

Notice that θ = π/4 corresponds to symmetric coupling
tL = tR . By means of a gauge transformation, the phases of
the individual pairing potentials in the contacts �α can be
combined to a phase difference φ = φL − φR , appearing only
in the scattering terms via the matrix :

αα′ →
(

cos2 θ eiφ/2 sin θ cos θ

e−iφ/2 sin θ cos θ sin2 θ

)
. (17)

This matrix has eigenvalues 0 and 1 with corresponding
eigenvectors:

v0 =
(

eiφ/2 sin θ

− cos θ

)
, v1 =

(
cos θ

e−iφ/2 sin θ

)
, (18)

and a unitary transformation that diagonalizes Jαα′ and Wαα′

is therefore achieved with

U =
(

cos θ eiφ/2 sin θ

e−iφ/2 sin θ − cos θ

)
, (19)

leading to the following transformed cotunneling terms:

HJ + HW =
∑
kk′σ

(σJS + W )c̃†1kσ c̃1k′σ , (20)

where the new operators c̃0k and c̃1k are defined as(
c̃1k

c̃0k

)
= U

(
cLk

cRk

)
. (21)

235422-3
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From expression (20) it is evident that the channel correspond-
ing to eigenvalue 0 does not couple to the cotunneling terms.

However, with finite phase the two channels are not
independent and therefore the problem remains effectively
a two-channel problem. In order to see this, we write lead
Hamiltonians in Nambu space

H0 = 1

2

∑
kσ

C
†
kσ

(
ξk + σgceB/2 �

� −ξk + σgceB/2

)
Ckσ ,

(22)
with Nambu 4-spinors defined as

Ckσ = (cLkσ ,cRkσ , − σc
†
L−k−σ , − σc

†
R−k−σ )T . (23)

Notice that since H0 is diagonal in lead space, a unit matrix in
lead space is implied on each of the four matrix elements in
(22). After the rotation (21), which in Nambu space reads

C̃kσ =
(

U 0
0 U ∗

)
Ckσ , C̃

†
kσ = C

†
kσ

(
U † 0
0 UT

)
, (24)

the lead Hamiltonian becomes

H0 = 1

2

∑
kσ

C̃
†
kσ

(
ξk + σgceB/2 �P

�P † −ξk + σgceB/2

)
C̃kσ ,

(25)
where P = U †U ∗, which evaluates to

P =
(

cos2 θ + eiφ sin2 θ −i sin(2θ ) sin(φ/2)
−i sin(2θ ) sin(φ/2) cos2 θ + e−iφ sin2 θ

)
. (26)

From the expression for P , we now see that for φ = 0 the
two channels are not independent, and the problem therefore
remains a genuine two-channel scattering problem.

A. Subgap spectrum from T matrix

We are interested in understanding the structure of the
subgap states and therefore we study the T matrix for spin
σ given by

T R
σ (ω) = Vσ

[
1 − GR

0 (ω − σgceB/2)Vσ

]−1
, (27)

with the diagonalized exchange, and potential scattering terms
extended to Nambu space as

Vσ =

⎛
⎜⎝

σJS + W 0 0 0
0 0 0 0
0 0 σJS − W 0
0 0 0 0

⎞
⎟⎠, (28)

whereby

HJ + HW = 1

2

∑
kk′σ

C̃
†
kσVσ C̃k′σ . (29)

The local Green’s function corresponding to (25) is found as

GR
0 (ω) =

∑
k

[
ω −

(
ξk �P

�P † −ξk

)]−1

= − πνF√
�2 − ω2

⎛
⎜⎝

ω 0 a� −ic�

0 ω −ic� a∗�
a∗� ic� ω 0
ic� a� 0 ω

⎞
⎟⎠,

(30)

where the k integration was performed assuming a constant
density of states νF and assuming that |ω| < � � D. The
lead asymmetry and the phase difference are encoded in the
dimensionless coefficients

a = cos2 θ + eiφ sin2 θ, (31)

c = sin(2θ ) sin(φ/2). (32)

The condition for poles in T R
σ is

det
[
1 − GR

0σ (E − σgceB/2)Vσ

] = 0, (33)

and after some algebra one finds two roots for each spin,
corresponding to YSR states at energies

E±,σ = σgceB/2 − σc±�√
(1 + u)2 + 4g2

[(1 + u)(1 + χu)

+2g2 ± 2g
√

g2 + u(1 − χ )(1 + χu)]1/2, (34)

with the following shorthand notation:

χ = 1 − sin2(2θ ) sin2(φ/2), u = w2 − g2,

c− = sgn(1 + χu), c+ = 1.
(35)

Here we have assumed g > 0; the corresponding solutions for
g < 0 simply have opposite spins, and hence are given by
E±,−σ .

In the rest of this section we examine the dependence of the
subgap states on the coupling strengths and the phase differ-
ence. For zero phase difference φ = 0, and antiferromagnetic
coupling g > 0, Eq. (34) gives the following subgap energies:

Eσ = −σ�
1 + w2 − g2√

(1 + w2 − g2)2 + 4g2
, g > 0. (36)

This is the result obtained by Yu, Shiba, and Rusinov [1–3].
In the case when there is no exchange coupling, i.e., g = 0,
Eq. (34) yields the usual expression for the Andreev bound
state [39–43]:

E0
±,σ = ±σ�

√
1 − τ sin2

φ

2
, τ = w2 sin2(2θ )

1 + w2
, (37)

where τ denotes the normal state transmission of the junction.
The energies of the four bound states are plotted as dashed

curves against gate voltage and phase difference for different
cases in Fig. 3. The color scale refers to the differential
conductance for the system with an added normal lead (see next
section). In Figs. 3(a) and 3(b) we plot the bound-state energies
for zero phase difference and weak and strong coupling to
the superconductors, respectively. The difference between
Figs. 3(a) and 3(b) can be understood from the position of
the YSR states at x = 0 (where W = 0) and φ = 0:

Eσ = −σ
1 − g2

1 + g2
. (38)

For Fig. 3(a), where g = 0.5 at x = 0, the upper YSR state
moves down and crosses zero as x approaches the charge
degeneracy points at which g diverges. In contrast, in Fig. 3(b),
where g = 1.5 at x = 0, the YSR state has already crossed
zero at x = 0 due to stronger coupling. Interestingly, the zero
energy crossings correspond to a change of parity of the ground
state, cf. the discussion in Ref. [8]. Adding now a finite phase
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FIG. 3. (Color online) The figure shows the YSR state energies
V = E±,σ given in Eq. (34) as dashed lines. The YSR energies are
plotted as a function of dimensionless gate voltage x = 1 + 2εd/U

in (a)–(d), and as function of phase difference in (e)–(h). x = 0
corresponds to the middle of the odd diamond and x = ±1 are
the charge degeneracy points, see Eqs. (11) and (12). The lines
are overlayed on contour plots of the differential conductance [see
Fig. 1 and Eq. (39)] using gNN = 0.1 and the parametrization of
the couplings given in Eq. (A4). The arrows indicate the spin of the
excited states. The exchange coupling at the middle of the diamond
is set to g(x =0) = 0.5 in (a), (c), (e), and (g) and to g(x =0) = 1.5
in (b), (d), (f), and (h). In (a), the YSR states are seen to cross
zero energy when the effective exchange coupling increases as x is
changed from 0 to 1 towards the charge degeneracy points. (b) With
a stronger coupling, the eye-shaped feature in the middle becomes
smaller, and for strong enough coupling it disappears. (c) With finite
phase difference, two new bound states appear. (d) A finite phase
difference reduces the effective exchange coupling and restores the
eye-shaped crossings. The detailed phase evolution is shown in (e)
and (f) for a cut in gate voltage corresponding to x = 0.5. While
(a)–(f) are for a symmetrically coupled junction (θ = π/4), (g) and (h)
show the phase dependence for an asymmetrically coupled junction
(θ = π/3). Note that the finite-bias degeneracy at φ = π is lifted by
the asymmetry.

difference, Figs. 3(c) and 3(d) reveal the two-channel nature
of the problem, with two bound states above and below the
zero energy.

In Figs. 3(e)–3(h) we plot the dispersion of the bound state
with phase difference. In general, a finite phase difference
is seen to to shift the value of the coupling at which the
energy levels cross zero to higher values. In the plots,
θ = π/4 corresponds to symmetric coupling tL = tR , see
Eq. (16). For the particle-hole symmetric point x = 0 and
symmetric coupling θ = π/4, we see that the two excitations
are degenerate at φ = π .

It is interesting to compare the above features with the
experimental results by Chang et al. [13]. They show conduc-
tance plots similar to Figs. 3(a) and 3(b) for three different
ranges of backgate voltage, corresponding to different devices
with either strong or weak coupling, as well as one device
right at the transition where the YSR states touch at zero
energy in the middle of the diamond at x = 0. Furthermore,
Chang et al. show the phase dependence for different fixed
gate voltages similar to Figs. 3(e) and 3(f) and with similar
qualitative features: only weak gate dependence in the weakly
coupled device, and a restoring of the zero-energy crossings at
finite phase difference for the stronger coupled devices.

We have seen that a finite phase difference results in
two subgap states at positive energy. Interestingly, the same
situation occurs for a magnetic impurity coupled to an s±
superconductor, i.e., a superconductor with two bands, where
the pairing potentials have different signs in the two bands [44].
Note that if the two superconductors have different pairing
potentials, but with same sign, there is only one bound state
within the smallest of the two gaps.

B. Conductance to the normal-metal tunnel probe

The YSR subgap states derived above can be observed
by means of tunneling spectroscopy from a normal metal
lead, as illustrated in Fig. 1 and experimentally carried out
in Refs. [12,13]. We assume the N -dot tunneling rate to
be larger than any relaxation rate between the YSR state
and the quasiparticle continuum in the superconductors, thus
ruling out the single-electron tunneling currents which were
recently demonstrated to be important for analyzing scanning
tunneling spectroscopy of Mn adatoms on a Pb(111) surface
[45]. In this case, the current is carried exclusively by elastic
Andreev reflections and the differential conductance between
the normal lead and the superconducting region can be
obtained from the S matrix in the normal lead as [46–49]
(at zero temperature)

dI

dV
= e2

h
Tr[2 − SeeS

†
ee + SheS

†
he], (39)

where See and She are the scattering amplitudes at energy eV

for an incident electron to be reflected as an electron or a hole,
respectively. The amplitudes See and She can be obtained from
the retarded T matrix in Eq. (27), which we write here as
(setting B = 0 for simplicity)

TR(ω) = V
[
1 − GR

0 (ω)V
]−1

, (40a)

V = SJσ 3 + Wτ 3, (40b)

where τ i and σ i are Pauli matrices representing particle-hole
and spin space, respectively, and J and W are 3 × 3 coupling
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FIG. 4. (Color online) Differential conductance dI/dV in units
of 2e2/h between the normal electrode and the superconducting leads,
see Fig. 1. The different lines correspond to constant phase cuts (φ =
0,π/2,π ) in Figs. 3(e)–3(h), as indicated at the top of the figure. The
left panels (a) and (c) are for weak coupling, [g(x =0) = 0.5], while
the right panels (b) and (d) are for stronger coupling [g(x =0) = 1.5].
The top panels (a) and (b) are for symmetric coupling θ = π/4, while
the bottom panels (c) and (d) are for asymmetric coupling θ = π/3.
In all cases the gate voltage is set to the particle-hole symmetric
point x = 0, and the coupling to the normal lead was chosen to be
gNN = 0.1.

matrices in lead space, with elements Jαα′ and Wαα′ for α,α′ =
L,R,N .

The unperturbed momentum-summed Green’s function is a
diagonal matrix in lead space, where for the superconducting
leads α = L,R it is

GR
0,αα(ω) = − πνF

(ω + iη) − �α(τ 1 cos φ − τ 2 sin φ)√
|�α|2 − (ω + iη)2

,

where η is a positive infinitesimal. For the normal lead, the
Green’s function simplifies to GR

0,NN (ω) = −iνF π , assuming
the normal-lead density of states νF to be the same as for the
two superconductors, since any difference can be absorbed into
the tunneling matrix elements. The S matrix is now expressed
through the T matrix as

S(ω) = 1 − 2πiνF T(ω), (41)

and the amplitudes See and She are found as submatrices of S
with α′ = α = N and component (2,1) in electron-hole space
for She and (1,1) for See. The calculation can be carried out
analytically, but is quite lengthy. In Appendix A we provide
an analytical expression for dI/dV when the coupling to the
superconducting leads is symmetric, θ = π/4, see Eq. (A1).

In Fig. 4 we present the differential conductance when
the subgap states are probed by the normal lead. The traces
correspond to vertical cuts in Fig. 3. The coupling is chosen
to be gNN = 0.1: weak enough to resolve the YSR states
as distinguishable conductance peaks, and large enough to
actually see them. For the cases with two bound states, both
states give rise to peaks in dI/dV , but with different widths.
Assuming φ = 0, θ = π/4, x = 0, and gNN � gLL = gRR ,
the width of the subgap conductance peak can be found from
Eq. (A1) to be proportional to gNN�(1 − E2

σ /�2), with Eσ

from (36), implying very sharp peaks close to the gap edges,

and an overall scale set by the width gNN� of a deep YSR
state. When the voltage is resonant with subgap states the
differential conductance is close to 2e2/h, except when the
two subgap states are degenerate at zero energy, in which case
they add up to exactly 4e2/h [cf. Fig. 3(h)], or for a symmetric
junction (θ = π/4) when they are degenerate at finite energy
for φ = π , where the conductance is exactly zero [cf. Figs. 3(e)
and 3(f)].

C. Supercurrent

At zero temperature, the supercurrent can be found as the
derivative of the ground-state energy EGS with respect to the
phase difference between the two superconducting leads [53]:

IS(φ) = 2
∂EGS

∂φ
. (42)

If the ground-state energy has a single minimum either at
φ = 0 or at φ = π , the junction is classified respectively as a 0
junction or a π junction. In the former (0) case, the supercurrent
is a continuous function of φ with positive slope at φ = 0 and
negative slope at φ = π . In the latter (π ) case, the supercurrent
has negative slope at 0 and a positive slope at π . In cases with
minima both at φ = 0 and at φ = π , a 0′ or a π ′ junction
refers to the global minimum being, respectively, at 0 or π ,
and the supercurrent is now a discontinuous function (with one
discontinuity in the interval φ ∈ [0,π ] and one in the interval
φ ∈ [π,2π ]) with positive slopes both at φ = 0 and at φ = π .

Within the polarized-spin approximation, we find the
continuum to be independent of the phase difference in the
limit of infinite bandwidth. This is is akin to a so-called short
junction [43] and implies that the supercurrent can be obtained
from the subgap excitation spectrum alone, which according
to the standard Bogoliubov–de Gennes formalism is given by

EGS = − 1
2 (|E+| + |E−|) + const. (43)

The resulting phase diagram as a function of the dimensionless
gate voltage x, and the lead-dot tunneling rate � = πνF (t2

L +
t2
R), is depicted in Fig. 5, and examples of supercurrent in the

different phases are shown in Fig. 6. Only for small coupling
constants do we have a sinusoidal current-phase relations:

IS ≈ (�/2) sin2(2θ )(w2 − g2) sin φ. (44)

In some cases the supercurrent is discontinuous, which
is directly related to the subgap states crossing zero energy
and changing their spin [as is evident from Eq. (43)].
Similar behavior of the supercurrent has been demonstrated
experimentally in Ref. [52], where a thermally smoothed
discontinuity was observed at a phase difference φc whose
dependence on gate gate voltage was shown to comply well
with the formula

φc = 2 arccos[
√

γ − (x/h)2]. (45)

This functional dependence on the dimensionless gate voltage
x was derived in the atomic limit (� → ∞) in Ref. [30].
However, in the experiment � ∼ TK , and γ and h were
therefore used as free fitting parameters. Moreover, the data
were also shown to match the result of a quantum Monte Carlo
calculation for the corresponding Anderson model. We note
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FIG. 5. Phase diagram with couplings parametrized by Eq. (11),
in terms of � = νF (t2

L + t2
R), and the dimensionless level position

(gate voltage) x = 1 + 2εd/U . The phase boundaries are independent
of �, and their dependencies on x and θ are indicated, with the func-
tion f (θ ) defined as f (θ ) = [1/2{ sin2(2θ ) +

√
4 + sin4(2θ )}]1/2. In

this diagram the coupling asymmetry parameter was chosen to
θ = π/3, whereas for a symmetric junction with θ = π/4, the 0′-0
boundary will never be reached, consistent with earlier results on the
Anderson model [27,50,51].

here that the same functional behavior follows directly from
Eqs. (34), (42), and (43), with coefficients γ and h defined as

γ = 1

h2
− 1

tan2(2θ )
, h = g sin(2θ ), (46)

which allows extracting the coupling asymmetry and the
dimensionless exchange coupling.

IV. QUANTUM MECHANICAL TREATMENT OF THE SPIN
DEGREE OF FREEDOM

Here we discuss the results for the fully quantum me-
chanical description, where unlike for the polarized-spin

FIG. 6. (Color online) Supercurrent vs phase difference at the
particle-hole symmetric point x = 0, for exemplary values of g and
θ (see inset) corresponding to the four different kinds of Josephson
junctions. Similar results were first obtained in Refs. [27,29] and
experimentally demonstrated in Ref. [52].

FIG. 7. (Color online) Subgap excitation spectrum Eex = Eδ −
E↓, with respect to the ground-state doublet |D↓〉 for particular
channel δ = 1,2. It is assumed that the magnetic field in the
superconductor is screened gce ≈ 0. For antiferromagnetic coupling
gδ = 0.05, the excited state is singletlike, which for high magnetic
fields becomes polarized-spin-like |↑δ,↓〉.

approximation an exact solution is not possible. Therefore,
we resort to perturbation in the cotunneling couplings g and
w, which is valid when the Kondo temperature is much smaller
than the superconducting gap TK � � and the ground state is
a doublet. Details of the calculations can be found in Appendix
B, and here we simply summarize the main findings and
contrast them to the results for the polarized spin found above.

In Appendix B 1 we diagonalize an effective low-energy
single-quasiparticle Hamiltonian. As in the spin-polarized
case, we find two subgap excitation energies when the two
superconductors have a phase difference. The transition energy
from the ground-state doublet to the excited subgap singlet
perturbatively matches the second order expansion (in gαα′ )
of the excitation energy obtained from the polarized-spin
approximation for B = 0 and S = 1

2 , when replacing gαα′ →
3gαα′ in (34).

In Appendix B 2 we show how the subgap excitation
energies at weak coupling g � 1 are shifted in energy by an
external magnetic field. Assuming that the field is screened in
the superconducting leads gce ≈ 0, the transition energy from
the ground-state doublet to the excited-state singlet is found to
approach the polarized-spin result in the limit of high magnetic
field B � g2|�| (see Fig. 7).

Appendix B 3 goes beyond the low-energy single-
quasiparticle Hamiltonian and provides a calculation of the
leading order (g2

αα′ ) correction to the ground-state energy.
With reference to the three-quasiparticle Yosida wave function
ansatz analyzed in Ref. [38], we argue why this shift of
ground-state energy does not modify the excitation energy
found in Appendix B 1.

Finally, this second order shift in ground-state energy
is used in Appendix B 4 to calculate the supercurrent in
the presence of a finite magnetic field via formula (42). In
the perturbative regime, the functional dependence of the
supercurrent on both φ and θ is similar with, and without, the
polarized-spin approximation, but again, only in the large-field
limit do they match exactly.

235422-7
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Summarizing theses findings, we find qualitative agreement
between the results found within the polarized-spin approx-
imation and the perturbative results for the full quantum
mechanical treatment. A nonperturbative calculation of the
YSR spectrum and the supercurrent beyond the polarized-spin
approximation could be found by means of a numerical
renormalization group calculation of the T matrix, whereas
the nonlinear Andreev conductance would require an average
of the current operator.

V. CONCLUSIONS

In summary, we have determined the phase dispersion of
the Yu-Shiba-Rusinov states induced by a spinful Coulomb
blockaded quantum dot coupled to two phase-biased super-
conducting leads. At finite phase difference, two channels
are involved in the screening of the dot spin. Consequently,
the phase-biased system exhibits two, instead of one, YSR
states, one of which merges with the continuum at the gap
edge for zero phase difference. We have shown how the
corresponding subgap excitation spectrum is modified by
coupling asymmetry and potential scattering, and established
that the phase difference generally shifts the parity transition,
and the accompanying sign change in the supercurrent, to
larger values of the exchange coupling.

We have solved the problem exactly in the spin-polarized
approximation, and perturbatively in the fluctuating quantum
case (cf. Appendix B), and obtained a closed analytical expres-
sion for the subgap excitation energy [Eq. (34)], which extends

Rusinov’s result [3] to a situation with two superconductors at
a finite phase difference and arbitrary tunnel couplings.

The YSR bound states can for example be observed by a
normal metal tunnel probe connected to the dot, which would
also give information about their spectral weight. We have
therefore calculated the differential conductance in such a
setup. These results should provide a valuable basis for a more
detailed analysis of future experiments like Refs. [12,13].
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APPENDIX A: EXPLICIT FORMULA FOR THE
SYMMETRIC-COUPLING CONDUCTANCE

In the case of symmetric coupling of the quantum dot
to the two superconductors (θ = π/4), we can derive a
simple closed-form expression for the differential conductance
dI/dV . For subgap conductance (|V | < �) we obtain

dI

dV
= 4t+t−f 2 cos2 φ

2 2e2/h[
1 + (t+t− − r+r−)

(
1 − f 2 sin2 φ

2

) + (r+ + r−)f v
]2 + [

(r+t− + r−t+)
(
1 − f 2 sin2 φ

2

) − (t+ + t−)f v
]2 + (v → −v),

(A1a)

and for continuum conductance (|V | > �) we get

dI

dV
= 2f |v|[(r2

+t− + r2
−t+)

(
1 + f 2 sin2 φ

2

) + (t+ + t−)
{
1 + t+t−

(
1 + f 2 sin2 φ

2

)} + 4t+t−f |v|]2e2/h[
1 + (

t+t− − r+r−
)(

1 + f 2 sin2 φ

2

) + (t+ + t−)f |v|]2 + [
(r+t− + r−t+)

(
1 + f 2 sin2 φ

2

) + (r+ + r−)f |v|]2 , (A1b)

with v = V/� and f (V ) = �/
√

|�2 − V 2|, and where trans-
mission and reflection amplitudes for incident electrons in the
superconductors have been identified as

t± = 2(gNS ± wNS)2

1 + (gNN ± wNN )2
, (A2)

r± = g ± w − (gNN ± wNN )t±, (A3)

where gNS ≡ gNL = gNR and wNS ≡ wNL = wNR . Similar
expressions to Eq. (A1) were derived for polarized spin
coupled to a single superconductor [54] and unconventional
superconductor junctions containing subgap states [55]. For
calculations of dI/dV in Fig. 3 when there is finite coupling
asymmetry, the couplings involving the normal lead are
parametrized as

gNL = √
gNN g cos θ, gNR = √

gNN g sin θ,
(A4)

wNα = gNαw/g, wNN = gNNw/g.

APPENDIX B: SUBGAP STATES BEYOND THE
POLARIZED-SPIN APPROXIMATION

In this Appendix we determine the subgap states induced by
the dot spin without doing the polarized-spin approximation
applied in Sec. III. The presence of the spin-flip terms
prohibits a solution along the lines in the main part of the
paper and we therefore revert to a perturbative treatment,
valid for small dimensionless couplings. This problem was
considered already by Soda, Matsuura, and Nagaoka [32]
using Yosida’s wave function ansatz [56]. Since the calculation
using the ansatz is rather technical, it is more instructive
to calculate the subgap spectrum, using an effective single-
quasiparticle model for the case with no potential scattering
at x = 0.

First, the BCS leads are diagonalized by the Bogoliubov
transformation

cαkσ = uαkγαkσ + σvαke
iφαγ

†
α,−kσ̄ , (B1)
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where

uαk =
√

1

2

(
1 + ξk

Eαk

)
, vαk =

√
1

2

(
1 − ξk

Eαk

)
. (B2)

In terms of the Bogoliubov quasiparticle operators γαkσ , the
lead Hamiltonian (2) reads

HLR =
∑
αkσ

Eαkσ γ
†
αkσ γαkσ , (B3)

with eigenenergies

Eαkσ = Eαk + σ
gceB

2
, Eαk =

√
ξ 2
k + |�α|2. (B4)

1. Effective single-quasiparticle model

Next, we express the exchange Hamiltonian HJ in terms
of the Bogoliubov operators. In accordance with the leading
order term in Yosida’s ansatz, we neglect all pairinglike terms
γ
†
a′↑γ

†
a↓ and γa′↑γa↓ in the exchange Hamiltonian and obtain

the following low-energy effective model:

HJ ≈ 1

2

∑
α′k′αk

(
1 + ei(φα′ −φα )

)
Jα′α

[
Sz

(
γ
†
α′k′↑γαk↑ − γ

†
α′k′↓γαk↓

)

+S+γ
†
α′k′↓γαk↑ + S−γ

†
α′k′↑γαk↓

]
(B5)

=
∑
k′k

ψ
†
k′Mψk,

where we have set uk ≈ vk ≈ 1
2 since their energy dependence

only matters for higher order corrections to the subgap
excitation energies. The last line in (B5) is expressed in terms
of the conduction electron 4-spinor

ψ
†
k = (γ †

Lk↑,γ
†
Rk↑,γ

†
Lk↓,γ

†
Rk↓), (B6)

and the matrix

M =
(

Sz S+
S− −Sz

)
⊗

(
JLL JLR

1+eiφ

2

J ∗
LR

1+e−iφ

2 JRR

)

= Ms ⊗ Ml , (B7)

in which Ms operates in spin, and Ml in lead space.
The Hamiltonian (B5) is written in the excitation basis with

γαkσ annihilating the BCS vacuum γαkσ |0〉 = 0, and it can be
diagonalized exactly. After diagonalizing the lead space matrix
Ml we obtain two decoupled channels δ = 1,2,

γ1kσ = aγLkσ + be+iφ/2γRkσ ,
(B8a)

γ2kσ = aγRkσ − be−iφ/2γLkσ ,

where

a =
√

1

2

(
1 + JLL − JRR

Jd

)
, b =

√
1

2

(
1 − JLL − JRR

Jd

)
.

(B8b)

The corresponding eigenvalues for two channels are

J1/2 = 1

2
(JLL + JRR ± Jd ),

(B8c)

Jd =
√

(JLL − JRR)2 + 4|JLR|2 cos2
φ

2
.

The eigenstates of the spin matrix

Ms,δ =

⎛
⎜⎜⎝

|↑δk,↑〉 |↑δk,↓〉 |↓δk,↑〉 |↓δk,↓〉
1
2 0 0 0
0 − 1

2 1 0
0 1 − 1

2 0
0 0 0 1

2

⎞
⎟⎟⎠ (B9)

are the singlet

|Sδk〉 = 1√
2

(|↑δk,↓〉 − |↓δk,↑〉), λS = −3

2
, (B10a)

and triplet states

∣∣T 0
δk

〉 = 1√
2

(|↑δk,↓〉 + |↓δk,↑〉), |T +
δk 〉 = |↑δk,↑〉,

(B10b)

|T −
δk 〉 = |↓δk,↓〉, λT = 1

2
.

Here λS/T denotes the corresponding eigenvalues and

|σδk,s〉 = γ
†
δkσ |0〉|s〉, with Sz|s〉 = s/2|s〉. (B11)

We note that the states (B10) and (B11) span only the
Hilbert subspace of single particle excitations with respect
to the ground-state doublet |Ds〉 = |0〉|s〉. Expressed in the
singlet/triplet basis (B10), the Hamiltonian now takes the
following simple form:

HLR + HJ =
∑
δk

Ek

(
|Sδk〉〈Sδk| + �j

∣∣T j

δk

〉〈
T

j

δk

∣∣)

− 3

2

∑
δk′k

Jδ|Sδk′ 〉〈Sδk| + 1

2

∑
jδk′k

Jδ

∣∣T j

δk′
〉〈
T

j

δk

∣∣.
(B12)

To find a singlet subgap state from the above Hamiltonian
(B12) we form the linear superposition

|Sδ〉 =
∑

k

Aδk|Sδk〉, (B13)

and solve the stationary Schrödinger equation

(HLR + HJ − E)|Sδ〉 = 0. (B14)

Projecting Eq. (B14) to 〈Sδq | we obtain the equation

Aδq = 3Jδ

2

∑
k Aδk

Eq − E
, (B15)
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which is integrated over q to yield

1 = 3gδIE, (B16)

where gδ = πνF Jδ/2 and the necessary integral IE , for subgap
states with |E| < � and large bandwidth D � � is given by

IE = 1

πνF

∑
q

1

Eq − E
≈ 2

π
ln

∣∣∣∣2D

�

∣∣∣∣
+ 2E

(
1
2 + 1

π
arcsin E

�

)
√

�2 − E2
. (B17)

We note that the subgap triplet solutions can exist for ferro-
magnetic coupling gδ < 0 [32,38,57]. However, the Anderson
model always gives rise to antiferromagnetic exchange, and
therefore there will be no triplet subgap state. Parametrizing
the leading-order energy of singlet solutions as

E0δ = �
(
1 − η2

0δ

)
, (B18)

we finally obtain the perturbative solution valid to lowest
(second) order in gδ ,

|η0δ| = 3
√

2gδ. (B19)

This result matches the second order expansion (in gαα′ )
of the excitation energy obtained from the polarized-spin
approximation for w = 0, B = 0, and S = 1

2 , when the
replacement gαα′ → 3gαα′ is made in (34). This could be
anticipated already by comparing the expectation value of HJ

for the state |↑δk,↓〉 corresponding to a polarized spin and for
the state |Sδk〉:

〈Sδk|HJ |Sδk〉
〈↑δk,↓|HJ |↑δk,↓〉 = 3. (B20)

If the potential scattering term HW is included, the perturbative
result and the polarized-spin approximation still match (see
Ref. [38]).

2. Magnetic field dependence

In the singlet/triplet basis, the Zeeman term takes the
following form:

HB = −B̃
∑
δk

(|Sδk〉
〈
T 0

δk

∣∣ + ∣∣T 0
δk

〉〈Sδk|
)

+ B̄
∑
δk

(|T +
δk 〉〈T +

δk | − |T −
δk 〉〈T −

δk |
)

+ gdB

2

(|D↑〉〈D↑| − |D↓〉〈D↓|), (B21)

where the last term represents the Zeeman splitting of the
ground-state doublet |Ds〉 = |0〉|s〉. In terms of the two po-
tentially different g factors, we have introduced the difference
and average B fields as

B̃ = B

2
(gd − gce), B̄ = B

2
(gd + gce). (B22)

For gd = gce we have B̃ = 0 and the singlet and the triplet are
mixed to form a new eigenstate

|ψδ〉 =
∑

k

(
aδk|Sδk〉 + bδk

∣∣T 0
δk

〉)
. (B23)

Projecting the stationary Schrödinger equation

(HLR + HB + HJ − E)|ψδ〉 = 0 (B24)

to the subspace spanned by |Sδq〉 and |T 0
δq〉 and integrating over

q yields the secular equation∣∣∣∣1 − 3gδ

2 [IE+B̃ + IE−B̃] − gδ

2 [IE+B̃ − IE−B̃]
3gδ

2 [IE+B̃ − IE−B̃] 1 + gδ

2 [IE+B̃ + IE−B̃]

∣∣∣∣ = 0.

(B25)

We start by examining Eq. (B25) in the low magnetic field
limit where |B̃| � |g2

δ�|. Parametrizing the energy as before,

Eδ = �
(
1 − η2

δ

)
, (B26)

we first expand Eq. (B25) to lowest order in

η± =
√

η2
δ ± B̃

�
, (B27)

to obtain the equation

η+η− −
√

2gδ(η+ + η−) − 6g2
δ = 0. (B28)

Expanding now to lowest order in B̃/(η2�), this yields

η4
δ − 2

√
2gδη

3
δ − 6g2

δ η
2
δ −

(
B̃

2�

)2

= 0, (B29)

which has the following leading order perturbative solution:

|ηδ| = 3
√

2gδ

(
1 + 3

16

B̃2

η4
0δ�

2

)
. (B30)

This shows that the energy of the subgap state decreases
quadratically with B̃ for small magnetic fields.

In the high field limit where |B̃| � |g2
δ�|, we find from

Eq. (B25) to lowest order in gδ that

Eδ = �
(
1 − η2

δ,cl

) − B̃, |ηδ,cl| ≈
√

2gδ, (B31)

which corresponds to neglecting off-diagonal terms in the spin
matrix (B9). For intermediate magnetic field strengths, the
perturbative (in gδ) solution is obtained by numerically solving
Eq. (B28).

Finally, we examine the subgap excitation spectrum in the
case where the magnetic field in the superconducting leads is
screened, i.e., for gce ≈ 0 and B̃ = B̄ = gdB/2. Note that we
assume the magnetic field to be much weaker than the critical
field and hence neglect its influence on the gap. For positive
magnetic field B̃ > 0, the ground state is the lower energy
component of the doublet with E↓ = −B̃ and the resulting
subgap excitation energy Eex = Eδ − E↓, for a particular
channel δ is depicted in Fig. 7. For high magnetic fields,
this excitation approaches the energy of the polarized spin
approximation, Eq. (34). In this case the eigenstate is |↑δ,↓〉 =∑

k A
↑
δk|↑δk,↓〉, where A

↑
δk is determined by projecting the

Schödinger equation to |↑δk,↓〉, with neglected spin-flip terms
S+ and S− in the exchange Hamiltonian (B5). Changing the
sign of the magnetic field simply reverses all spins in the
previous discussion.
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3. Beyond the single-quasiparticle approximation

So far we have examined the excitation spectrum when only
a single quasiparticle is included and the system is effectively
described by the Hamiltonian (B5). We now return to the
original Hamiltonian and investigate the effects of the terms
γ
†
a′↑γ

†
a↓ which were neglected to arrive at (B5). With these

terms included, second order perturbation theory yields the
following shift of the ground-state energy from which the
supercurrent can be deduced:

E(2)
s =

∑
l =Ds

|〈l|H ′|Ds〉|2
E

(0)
s − El

= −
∑
αk

α′k′

(
1

4

Jα′αJαα′ |uα′k′vαke
iφα − uαkvα′k′eiφα′ |2

Eαk + Eα′k′

+ 1

2

Jα′αJαα′ |uα′k′vαke
iφα − uαkvα′k′eiφα′ |2

Eαk + Eα′k′ − s(g − gce)B

+Wα′αWαα′ |uα′k′vαke
iφα + uαkvα′k′eiφα′ |2

Eαk + Eα′k′

)
, (B32)

with |l〉 denoting all possible intermediate states and H ′ =
HJ + HW .

This second order shift in ground-state energy would appear
to influence the observable excitation energies, but when
analyzed in terms of a three quasiparticle Yosida wave function
ansatz (see Ref. [38]), the eigenenergies of the subgap states
are found to be shifted in exactly the same way, and overall the
shift (B32) drops out and the previously obtained second order
result for the excitation energies [Eq. (B19)] remains valid. In
this manner, the Yosida wave function ansatz generates a well
defined perturbative expansion for the energy differences in
the dimensionless couplings g and w.

4. Supercurrent

Going beyond the polarized-spin approximation, we calcu-
late the supercurrent perturbatively from Eqs. (42) and (B32).
For B > 0 the ground state is |D↓〉 and one finds

IS = 2� sin2(2θ )[(w2 − g2)F (0) − 2g2F (B̃)] sin φ, (B33)

to leading order in w and g and with

F (B̃) = 1

�π2ν2
F

∑
kk′

ukvkuk′vk′

Ek + Ek′ + B̃
, (B34)

whereby F (0) ≈ 1/4 for D � �. For zero magnetic field, the
supercurrent simplifies to

IS = �

2
sin2(2θ )(w2 − 3g2) sin φ, (B35)

which always corresponds to a π junction since g > w.
For small magnetic fields with |B̃| � �, we have

F (B̃) − F (0) ≈ − B̃

2π2�
. (B36)

From Eq. (B33) it then follows that a positive B̃ decreases,
and a negative B̃ increases the magnitude of the supercurrent
|IS |. Notice that B̃ can become negative for positive B when
gce > gd.

For large magnetic fields with |B̃| � �, one finds instead

F (B̃) ≈ �

B̃

[
ln2

(
2B̃

�

)
+ π2

6

]
, (B37)

and as F (B̃) vanishes with increasing field, the spin is
polarized, and the supercurrent (44), obtained within the
polarized-spin approximation, is recovered.
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[20] H. I. Jørgensen, T. Novotný, K. Grove-Rasmussen, K. Flensberg,
and P. E. Lindelof, Nano Lett. 7, 2441 (2007).

[21] A. Eichler, R. Deblock, M. Weiss, C. Karrasch, V. Meden,
C. Schönenberger, and H. Bouchiat, Phys. Rev. B 79, 161407
(2009).

[22] I. O. Kulik, Zh. Eksp. Teor. Fiz. 49, 1211 (1965) [JETP Lett.
22, 841 (1966)].

[23] L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Zh. Eksp.
Teor. Fiz. 25, 314 (1977) [JETP Lett. 25, 290 (1977)].

[24] L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Solid State
Commun. 25, 1053 (1978).

[25] L. I. Glazman and K. A. Matveev, Zh. Eksp. Teor. Fiz. 49, 570
(1989) [JETP Lett. 49, 659 (1989)].

[26] B. Spivak and S. Kivelson, Phys. Rev. B 43, 3740 (1991).
[27] A. Rozhkov and D. Arovas, Phys. Rev. Lett. 82, 2788 (1999).
[28] F. Siano and R. Egger, Phys. Rev. Lett. 93, 047002 (2004).
[29] M.-S. Choi, M. Lee, K. Kang, and W. Belzig, Phys. Rev. B 70,

020502 (2004).
[30] C. Karrasch, A. Oguri, and V. Meden, Phys. Rev. B 77, 024517

(2008).
[31] L. I. Glazman and M. Pustilnik, in Nanophysics: Coherence and

Transport, Lecture Notes of the Les Houches Summer School
2004, Vol. 81, edited by H. Bouchiat, Y. Gefen, S. Guéron,
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