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Electronic transport in Si:P δ-doped wires
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Despite the importance of Si:P δ-doped wires for modern nanoelectronics, there are currently no computational
models of electron transport in these devices. In this paper we present a nonequilibrium Green’s function
model for electronic transport in a δ-doped wire, which is described by a tight-binding Hamiltonian matrix
within a single-band effective-mass approximation. We use this transport model to calculate the current-voltage
characteristics of a number of δ-doped wires, achieving good agreement with experiment. To motivate our
transport model we have performed density-functional calculations for a variety of δ-doped wires, each with
different donor configurations. These calculations also allow us to accurately define the electronic extent of a
δ-doped wire, which we find to be at least 4.6 nm.
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I. INTRODUCTION

Phosphorus doping in silicon with atomic precision has led
to a variety of new nanostructures on the silicon platform [1].
Foremost among these are metallic wires that are “one atom
tall and four atoms wide” [2]. These wires are made using
a δ-doping technique that combines scanning-probe lithog-
raphy with molecular-beam epitaxy [3–6]. This technique
achieves both high-density carrier concentrations and excellent
two-dimensional (2D) confinement of phosphorus atoms in
silicon [7,8]. For example, 2D doping densities of one in
four inside a (001) silicon monolayer (i.e., 0.25 ML) have
previously been reported [9]. These high donor densities
result in spatially confined electron transport when an in-
plane voltage bias is applied to the nanostructure [10,11].
Therefore, these systems have similar quantum mechanical
properties to undoped silicon nanowires which are confined
structurally [12–14]. The electronic properties of Si:P systems
have applications for quantum computing and quantum com-
munication technologies [15–17]. In this paper, we examine
some of these properties for a phosphorus in silicon (Si:P)
δ-doped wire [2,10,11,18–20] using density-functional theory
(DFT), effective-mass theory (EMT), the nonequilibrium
Green’s function (NEGF) formalism, and tight-binding (TB)
theory.

The long spin-coherence times and large Bohr radius of
the phosphorus donor electron in silicon make this material
an interesting candidate for spin-based devices and other
nanoscale electronics [21–24]. Si:P δ-doped wires might
be used as the interconnects between stationary and flying
qubits [18,25], low-resistivity source-drain contacts for na-
noelectronics [2,26], or one-dimensional (1D) spin chains
for confined magnon transport [27–29]. The modern δ-doped
wire is a quasi-1D row of phosphorus atoms oriented in the
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[110] crystallographic direction, with a width of 1.54 nm in
the lateral [11̄0] direction which is equivalent to two dimer
rows (2DRs) on the reconstructed (001) silicon surface [2,11].
In addition, because the placement of phosphorus atoms on
the (001) plane is indeterministic [9,30], a variety of donor
configurations are possible within a realistic wire.

Computational models of Si:P δ-doped wires are limited to
our density-functional model (Ref. [31]) and the empirical
TB model of Ref. [32], where the NEMO3D package is
used to describe the equilibrium electronic properties of a
Si:P δ-doped wire [2]. There are currently no computational
models of electron transport in a δ-doped wire. However,
electronic transport in a Si:P δ-doped layer has previously
been investigated using a semiclassical model [33].

In this paper we calculate the electronic properties of a
Si:P δ-doped wire for a variety of donor configurations. We
investigate the effects of donor disorder and accurately define
the electronic extent of a δ-doped wire. The current-voltage
(I-V) characteristics of two δ-doped wires have recently been
reported experimentally [11]. Therefore, we expand on our
density-functional model by using it to develop the first
computational model for electronic transport in a δ-doped wire.
We calculate the I-V characteristics for the two δ-doped wires
which have been reported experimentally and investigate the
change in these characteristics for wires with larger in-plane
widths. This computational model has wide applicability
because it scales easily to large system sizes, which are needed
to simulate realistic devices.

II. EQUILIBRIUM ELECTRONIC PROPERTIES
OF δ-DOPED WIRES

In this section we present the results of our density-
functional calculations for the equilibrium electronic proper-
ties of a variety of δ-doped wires. The equilibrium properties
are those for which the potential difference between the source
and drain contacts is equal to zero. Of particular interest
are those properties relating to the spatial confinement or
electronic extent of the donor electrons perpendicular to the
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axis of the wires. We make an important distinction between
two closely related concepts: the electronic width and the
electronic extent of the wires. The electronic width is defined
as a measure of spread for the probability density of the donor
electrons perpendicular to the wire axis (for example, the full
width at half maximum of this probability distribution). This
width is sometimes referred to as the “effective electronic
diameter” of the wires [2]. The electronic extent of the wires is
defined as the minimum distance of lateral separation at which
two wires do not affect each other’s equilibrium electronic
properties. Therefore, the electronic extent is the minimum
distance at which two wires must be separated so they behave
exactly as they do in isolation. By contrast, the electronic width
is the region within which it is most likely to find the donor
electrons.

A. Density-functional theory

The SIESTA package was used to apply the Kohn-Sham
self-consistent density-functional method in the generalized-
gradient approximation [34–36]. This method was used to
calculate the equilibrium electronic properties of the Si:P δ-
doped wire shown in Fig. 1(a). This wire is made of a single
row of phosphorus atoms that have been doped into one dimer
row (1DR) of the reconstructed (001) silicon surface and will
therefore be referred to as the single-row wire. The single-
row wire represents the 1D limit to scaling of the in-plane
width of a phosphorus wire in silicon [37]. A supercell for
the single-row wire is shown in Fig. 1(b), where the axis of
the wire is oriented in the [110] direction. This supercell has
dimensions of 0.77 × 5.40 × 5.46 nm3, which corresponds to
at least 2.7 nm of bulk silicon “cladding” perpendicular to the
wire axis [38]. To avoid surface effects in the calculations,
periodic boundary conditions are applied to the supercells. In
Fig. 1, the periodic boundaries are shown as blue lines. The

FIG. 1. (Color online) (a) A 2D schematic of the single-row wire
showing only part of the donor plane and (b) a 3D schematic
of an orthorhombic supercell for the single-row wire, with silicon
atoms (white spheres), phosphorus atoms (red spheres), the periodic
boundaries of the supercell (blue lines), and a dotted line drawn
between where the 2DRs would appear on a reconstructed (001)
silicon surface.

A B C

D E F

FIG. 2. (Color online) 2D schematics of double-row wires A–F
(see labels) showing only part of the donor plane with silicon
atoms (white spheres), phosphorus atoms (red spheres), the periodic
boundaries of the supercell (blue lines), and a dotted line drawn
between where the 2DRs would appear on a reconstructed (001)
silicon surface. The periodic boundaries are drawn such that there is
always a donor atom at the origin of the supercells.

length of the supercell in the [11̄0] and [001] directions is
therefore determined by the amount of bulk silicon cladding
that is needed to isolate the phosphorus wire from its periodic
images.

We have also performed density-functional calculations on
the Si:P δ-doped wires shown in Fig. 2. These wires have been
doped into 2DRs of the reconstructed (001) silicon surface [37]
and will be referred to as double-row wires A–F (see labels in
Fig. 2). Double-row wires A–F represent all donor configu-
rations which can result from adsorption of PH3 molecules
onto a 2DR-wide and 0.77-nm-long region on the Si(001)
surface, which is also periodic in the [110] direction [37].
For double-row wire B, we have previously found that by
using 2.7 nm of bulk silicon cladding perpendicular to the
wire axis, the minima of the occupied bands in the resulting
band structure are converged to within 10 meV [31].

To reduce the periodicity of the donor atoms in the
[110] direction, we would need to at least double the length
of the supercell in this direction [37]. When the length
of the supercell is doubled in one direction, the number
of atoms in the supercell also doubles. This results in an
impractical eightfold increase in the computation time of
density-functional calculations. Therefore, the length of the
supercells in the [110] direction is limited to 0.77 nm for
all wires considered herein. For double-row wires A–F, the
lengths of the supercell in the [110] and [001] directions are
the same as that for the supercell shown in Fig. 1(b). However,
the length of the supercell in the [11̄0] direction is larger so
that there is always at least 2.7 nm of bulk silicon cladding
perpendicular to the wires.
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An optimized double-ζ polarized basis set of localized
atomic orbitals [39] and norm-conserving Troullier-Martins
pseudopotentials[40] were used to variationally solve for the
ground-state electron density of these δ-doped wires. The
lattice constant of bulk silicon was found to be 5.4575 Å
using this basis set, which is in good agreement with the
experimental value of 5.431 Å [41]. The exchange-correlation
energy was calculated using the Perdew-Burke-Ernzerhof
exchange-correlation functional [42]. Total energies were
converged to within 10−4 eV using a Methfessel-Paxton
occupation function of order 5 with an electronic smearing
of 0.026 eV. The mesh energy grid cutoff used was 300 Ry.
A 6 × 1 × 1 Monkhorst-Pack k-point grid was used to sample
the Brillouin zone (BZ), which has previously been shown
to give good results for double-row wire B [31]. The atomic
positions of the silicon atoms were not geometrically opti-
mized after phosphorus substitution because their positions are
not significantly affected by this substitution [43,44]. Further
details of our density-functional calculations are available in
Refs. [31,39,43].

B. Probability density of donor electrons

The probability density for the donor electrons in the
single-row wire is shown in Fig. 3. This probability density
has been calculated by integrating the local density of states
(LDOS) between the conduction-band (CB) edge and the
equilibrium Fermi level of the single-row wire band structure
shown in Fig. 4. Therefore, this probability density is a
mixture of the states with minima �1, �2, and �1 (which
are labeled in Fig. 4). We can assume that the donor electrons
occupy the bands in this energy range because the valence
band of bulk silicon is fully occupied at equilibrium and so
the only bands that are available for the donor electrons are
those of the CB. Experimental measurements of these systems
are performed at T = 4.2 K and so we can also ignore the
effects of electronic smearing (due to thermal motion) in
this calculation [2,11]. The LDOS is calculated for the full
supercell on a three-dimensional (3D) Cartesian grid, which
is then line averaged along the [001] direction (perpendicular
to the donor plane) to make the probability density shown in

FIG. 3. (Color online) The local density of states for the single-
row wire (integrated between �1 and the equilibrium Fermi level and
then line averaged in the [001] direction) showing the probability
density of the donor electrons (dark) with marked positions for
phosphorus atoms (×), out-of-plane silicon atoms along the wire
axis (◦), and in-plane silicon atoms (+).

FIG. 4. The band structure for the single-row wire between � and
3
4 XORT (solid lines) with the equilibrium Fermi level (dashed line) and
the band structure for bulk silicon (shaded region). The CB minimum
of bulk silicon has been set to energy zero and the point XORT is at

1
2
√

2
2π

a
in the [110] k-space direction. For means of comparison, this

band structure has been calculated using a supercell with the same
dimensions as the supercells of double-row wires A, B, D, and E.

Fig. 3. The probability distribution is normalized such that the
integral of this probability density over the supercell is equal
to the number of donor electrons inside the supercell. In Fig. 3,
a distance equivalent to two supercells is shown in the [110]
direction.

The donor electrons are partially delocalized along the
axis of the phosphorus wire in Fig. 3. There is significant
probability density not only on the phosphorus atoms but also
on the intervening silicon atoms both in and out of plane.
The majority of the probability density is localized to the
atomic sites along the axis of the wire. Figure 3 shows that
there is strong spatial confinement of the donor electrons
perpendicular to the axis of the wire. The probability density
decays sharply with distance from the wire axis in the [11̄0]
direction. The majority of the probability density can be seen
to be localized to ±0.5 nm of the wire axis and, therefore,
one may conclude that ∼1 nm is a good approximation for the
electronic extent of the wire. However, as we demonstrate, this
is not a valid approximation. Indeed, we show in Sec. II D that
even ∼2 nm is a poor approximation for the electronic extent
of the single-row wire.

Figure 5 shows the probability densities for double-row
wires A–F. These probability densities have been calculated in
the same way as Fig. 3. In each subfigure, there is significant
overlap between the wave functions of the two rows of
phosphorus atoms. The presence of this overlap is independent
of whether the rows are staggered relative to one another or
aligned (compare the probability densities of double-row wires
A–C with those of double-row wires D–F). If the overlap
between the two rows of phosphorus atoms is large enough
such that they behave as a single wire, then the electronic width
of this wire is strongly dependent on the donor configuration.
The electronic width varies by as much as ∼1 nm over
double-row wires A–F and, therefore, we expect a similar
variation between the width of a realistic wire.

Overall, it is difficult to determine the electronic extent of
a δ-doped wire from these probability densities. Instead, we
use the band structure of the wires and, in particular, energy

235420-3



SMITH, DRUMM, BUDI, VAITKUS, COLE, AND RUSSO PHYSICAL REVIEW B 92, 235420 (2015)

A B C

D E F

FIG. 5. (Color online) The local density of states for double-row wires A–F (integrated between the �1 minimum and the equilibrium
Fermi level and then line averaged in the [001] direction) showing the probability density of the donor electrons (dark) with marked positions
for phosphorus atoms (×), out-of-plane silicon atoms along the wire axes (◦), and in-plane silicon atoms (+).

splittings between the band minima to determine the electronic
extent of a δ-doped wire.

C. Band structure of δ-doped wires

The band structure of bulk silicon calculated using a
1280-atom orthorhombic (ORT) supercell is shown as the gray
shaded region in Fig. 4. There are two CB edges shown for bulk
silicon, which are each doubly degenerate, one at � and the
other at 0.46XORT, where XORT = 1

2
√

2
2π
a

in the [110] k-space
direction. An explanation of the location of the bulk CB edges
in this band structure is given in the Appendix. The band
structure of the single-row wire is shown as solid lines in Fig. 4.
The nuclear potential of the phosphorus atoms has moved the
CB edges into the bulk band-gap region. The degeneracy of
these CB edges or valleys has been broken, resulting in the
appearance of four separate valleys. The minima of these four
valleys are labeled as �1, �2, �1, and �2 in Fig. 4.

It is well-known for δ-doped systems that an enhancement
of the valley-orbit interaction due to spatial confinement will
break the sixfold degeneracy of the bulk silicon CB edge,
resulting in a valley splitting (VS) [43–46]. In Fig. 4, the 1D
confinement caused by the donor potential has moved the CB
edges into the bulk band-gap region and lifted their degeneracy
by a VS. We report two different VSs for the single-row wire;
one at �, labeled �1-�2, and another at k = 0.46XORT, labeled
�1-�2. The magnitude of the �1-�2 splitting is found to be
109 meV, which is within 10 meV of the same VS reported
for δ-doped layers [43]. It has also been reported for δ-doped
layers that CB valleys with higher curvature are moved further
into the bulk band-gap region [46,47] and this is shown for the
single-row wire in Fig. 4. In addition, we find that the VS is
larger for CB valleys with higher curvature. The magnitude of
the �1-�2 splitting is found to be 21 meV, which is 19% of
the �1-�2 splitting.

The position of the Fermi level shows three of the four
CB valleys to be occupied at equilibrium: the �1, �2, and
�1 bands. The �1 and �2 minima at k = 0.46XORT in the
[110] k-space direction are symmetrically equivalent to two
CB edges at k = −0.46XORT. This is due to the symmetry
of the path � → XORT, which is discussed in the Appendix.

Therefore, for the single-row wire, we predict four conducting
modes to be available for electron transport at low voltage
biases.

The band structures for double-row wires A–F are shown
in Fig. 6. The location of the bulk silicon CB edge for double-
row wires C and F is at k ≈ 0.38XORT, not k ≈ 0.46XORT,
as discussed in the Appendix. For the double-row wires, the
larger nuclear potential of more phosphorus atoms moves the
CB valleys further into the bulk band-gap region compared
to the single-row wire. The minima of these valleys are again
labeled as �1, �2, �1, and �2. For all double-row wires (except
double-row wire D) there is a third CB valley minimum at the
� point, labeled as �3 in Fig. 6. The position of the Fermi
level shows five CB valleys (including �3) to be occupied at
equilibrium for double-row wires A, C, E, and F. We expect
there to be eight available conducting modes for the double-
row wires, which is twice the number of available conducting
modes the single-row wire has. However, there are only seven
available conducting modes for double-row wires A, C, E, and
F and six for double-row wires B and D when the symmetry
of the path � → XORT is taken into account.

The magnitudes of the �1-�2 and �1-�2 splittings are
different for each of the double-row wires and, therefore,
these VSs must be dependent on donor configuration. It
has previously been reported for δ-doped layers that the
magnitude of the �1-�2 splitting is dependent on the in-plane
configuration of the donor atoms [45]. Figure 6 shows the
magnitude of the VS is affected by whether the two rows of
phosphorus atoms are aligned (A, B, C) or staggered (D, E,
F) relative to one another. The �1-�2 and �1-�2 splittings are
largest for double-row wires A and D. These wires represent
the donor configurations for which the two rows of phosphorus
atoms are laterally separated by the smallest distance. The
�1-�2 and �1-�2 splittings decrease as the distance of lateral
separation increases in Fig. 6.

D. Electronic extent of a δ-doped wire
in the one-dimensional limit

We expect there to be eight available conducting modes for
double-row wires A–F. However, in the previous section, we
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FIG. 6. The band structure for double-row wires A–F between � and 3
4 XORT (solid lines) with the equilibrium Fermi level (dashed line)

and the band structure for bulk silicon (shaded region). The CB minimum of bulk silicon has been set to energy zero and the point XORT is at
1

2
√

2
2π

a
in the [110] k-space direction. For double-row wires C and F, the location of the bulk silicon CB minimum along the path � → XORT

has changed because the length of the supercell in the [11̄0] direction is larger for these wires (see the Appendix).

report seven (and six) available conducting modes for double-
row wires A, C, E, and F (and double-row wires B and D).
Therefore, the number of available conducting modes in these
wires is reduced by something so far unaccounted for. If there
were zero overlap between the wave functions of each row of
phosphorus atoms, the band structure for the double-row wires
would be identical to the band structure of the single-row wire
(except with each band being doubly degenerate). Therefore,
we suggest that �3 is a degenerate pair of �1 and that this
degeneracy has been lifted by an energy splitting which is
proportional to the wave-function overlap between the two
rows of phosphorus atoms [48]. We label this energy splitting
as �1-�3. In Fig. 6, excluding double-row wires A and D, the
�1-�3 splitting decreases as the lateral separation of the two
rows increases; i.e., as the wave-function overlap between the
two rows decreases, so too does the �1-�3 splitting. A similar

FIG. 7. (Color online) The �1-�2 and �1−�3 splittings versus
the lateral separation of two single-row wires when they are aligned
and staggered with respect to each other. The �1-�2 splitting for an
isolated single-row wire is also shown (dashed line).

energy splitting has previously been reported for two adjacent
δ-doped layers [49,50].

In Fig. 7, the �1-�3 splitting is plotted versus the lateral
separation of the two rows of phosphorus atoms (between
0.8 and 4.6 nm). We also plot the �1-�2 splitting versus the
lateral separation of the two rows of phosphorus atoms in
this figure. These energy splittings have been calculated by
using supercells that are larger than those used for double-row
wires A–F [51]. In Fig. 7, the �1-�2 splitting tends towards
the value of the VS calculated for the single-row wire as the
lateral separation of the two rows is increased. By contrast,
the �1-�3 splitting tends towards zero as the lateral separation
is increased. This suggests that �3 is a degenerate pair of �1

and that the wave-function overlap between the two rows of
phosphorus atoms is what breaks this degeneracy.

At a lateral separation of 1.9 nm, two additional CB
valley minima appear at k ≈ 0.46XORT (when the two rows
of phosphorus atoms are aligned), which we interpret as
degenerate pairs of �1 and �2 that have also been lifted
by an energy splitting. These splittings tend to zero as the
lateral separation of the two rows is further increased. When
the lateral separation is equal to 3.5 nm, a fourth CB valley
minimum appears at �, which we suggest is the degenerate
pair of �2. The energy splitting of the �2 degeneracy is equal
to 60 meV at a lateral separation of 3.5 nm and decreases to
37 meV by 4.6 nm; i.e., it has not converged to zero at a lateral
separation of 4.6 nm.

We can now use this analysis of the �1-�3 splitting (and
other energy splittings in �2, �1, and �2) to approximate
the electronic extent of the single-row wire. When the lateral
separation of the two rows of phosphorus atoms is large, the
two rows will each behave as single-row wires. The electronic
extent of the single-row wire is then the lateral separation at
which the energy splittings in �1, �2, �1, and �2 are equal to
zero. The �1-�3 splitting and the energy splittings of the �1

and �2 degeneracies are approximately equal to 6 meV at a
lateral separation of 4.6 nm. This is less than the uncertainty
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in �1, �2, �1, and �2. Therefore, to within the uncertainty of
our density-functional method, the energy splittings in �1, �1,
and �2 are indistinguishable from zero and so the electronic
extent of the single-row wire is approximately equal to 4.6 nm.
However, because the energy splitting in the �2 degeneracy has
not converged to zero by 4.6 nm, this is but a lower bound on
the electronic extent of the single-row wire. Nonetheless, we
expect this to be a good approximation because the occupancy
of the �1 state is much greater than that of the �2 state, as shown
in Fig. 4. For δ-doped wires that are separated by in-plane
distances of less than 4.6 nm, we predict a decrease in the
number of available conducting modes at low voltage biases.

III. ELECTRONIC TRANSPORT PROPERTIES
OF δ-DOPED WIRES

In this section we use the results of our density-functional
calculations to construct a computational model of electron
transport in a Si:P δ-doped wire. We solve for the electronic
transport properties of a δ-doped wire using the general NEGF
approach of Datta and others [13,52–54].

A. The nonequilibrium Green’s function formalism

The difficulty of solving for the eigenstates of a many-
body system in the Schrödinger picture is avoided in the
NEGF formalism by replacing the Hamiltonian operator with
a Green’s function matrix. The transport properties of the
system are then calculated from this Green’s function matrix.
Our NEGF model describes a Si:P δ-doped wire using a
TB Hamiltonian matrix, within a single-band effective-mass
approximation, that is defined as

H =
N∑
i

ε |i〉〈i| −
N∑

i,j,i 	=j

t |i〉〈j |, (1)

where ε = −2Dt + U is the on-site energy, t = �
2/2m̄α2 is

the tunneling parameter, i and j are first-nearest-neighbor
donor atoms, and N is the total number of donor atoms. U

is an offset to the on-site energy due to a gate voltage applied
to the wire (with U = 0 eV for a gate voltage equal to zero),
D is the dimension of the device, m̄ is the effective mass of
the donor electrons (discussed below), and α is the distance
between two nearest-neighbor donor atoms.

A Si:P δ-doped wire is divided into three parts: a source, a
drain, and a channel region that separates the two. In general,
Eq. (1) describes the channel region only. However, in our
NEGF model the source and drain contacts are described
as semi-infinite extensions of the channel; therefore, Eq. (1)
is also used to describe the contacts. The retarded Green’s
function matrix is then defined as

G(E) = [(E + iη)I − H − �S − �D]−1, (2)

where E is energy, η is a positive infinitesimal real number,
and �S and �D are the self-energy matrices for the source and
drain, respectively. These are given by

�S,D = τ S,DgS,Dτ
†
S,D, (3)

where τ is the coupling matrix between the contact and the
channel and g is the surface Green’s function for the contact.

We calculate the surface Green’s functions using the iterative
scheme of Sancho et al., which solves the accompanying
Dyson equation to arbitrary precision [55].

The transmission function for the device is written as

T (E) = d × tr(�SG�DG†), (4)

where d is the degeneracy of the single band (discussed below)
and �S and �D are the broadening matrices for the source and
the drain, respectively. These are given by

�S,D = [�S,D − (�S,D)†]. (5)

In the Landauer-Büttiker formalism, the current can then be
calculated using the equation

I = q

h

∫ +∞

−∞
T (E)[fS(E) − fD(E)]dE, (6)

where q is the elementary charge of an electron, h is Planck’s
constant and f (E) is the Fermi-Dirac distribution function for
the contacts, defined as

fS,D(E) = 1

1 + e(E−μS,D)/kBT
. (7)

In Eq. (7), kB is Boltzmann’s constant, T is temperature (in
Kelvin), and μS,D is the chemical potential of the source or
drain, which are given by

μS = μ + VSD

2
(8)

and

μD = μ − VSD

2
, (9)

with μ the equilibrium chemical potential of the wire [56] and
VSD the source-drain bias voltage. For our calculations, the
source-drain bias voltage decays linearly across the channel
region.

The effective mass of the donor electrons is needed to
fully specify the TB Hamiltonian in Eq. (2). This effective
mass can be calculated for the single-row wire from the
occupied CB valleys in the band structure shown in Fig. 4.
The band dispersion in the neighborhood of the CB valley
minima is approximately parabolic [31,46]. The curvature β

of this parabola is related to the effective mass m̄ of the donor
electrons through the equation [31]

�
2k2

2m̄
= βk2. (10)

Therefore, the effective mass of the donor electrons can be
calculated by fitting the parabola to the CB valleys in Fig. 4.
However, it has previously been shown for double-row wire B
that the curvatures of these bands do not change significantly
from their bulk values and so we may use the transverse
and longitudinal effective masses of bulk silicon without
modification [31]. In Fig. 4, the CB valleys at � have high
curvature; they are described by the transverse effective mass
mt of bulk silicon [31]. The CB valleys at |k| ≈ 0.46XORT have
low curvature; they are described by the longitudinal effective
mass ml of bulk silicon [31].

In Sec. II, it was shown for the single-row wire that there
were four conducting modes available for electronic transport
at low voltage biases. Therefore, we describe the single-row
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TABLE I. The values used for the free parameters in our NEGF
model. m0 is the free electron mass.

ml/m0 mt/m0 α (Å) T (K) μ (eV) d

0.9163a 0.1905a 7.718 4.2b 0.12 4

aReference [57].
bReference [11].

wire by one conducting mode that is fourfold degenerate
within a single-band effective-mass approximation by setting
d = 4 in Eq. (4). We set the effective mass of this conducting
mode equal to the average of the effective masses for the
four occupied conducting modes. There are two occupied CB
edges at � and two occupied CB edges at |k| ≈ 0.46XORT. The
average of the effective masses is given by

m̄ = 1

4

(
2mt + 2

ml

2

)
, (11)

where there is a reduction of 1
2 in the longitudinal effective

mass (as discussed in Ref. [31] and the Appendix). The bulk
silicon effective masses ml and mt , and the other parameters
used in our NEGF model, are listed in Table I. The equilibrium
chemical potential μ is equal to the difference between �1

and the equilibrium Fermi level for the single-row wire in
Fig. 4. The atomic spacing α is equal to the distance between
two nearest-neighbor donor atoms in Fig. 1(a). 2D wires with
widths greater than that of the single-row wire are modeled as
many adjacent single-row wires where the lateral separation
of the donor atoms is equal to α and the tunneling parameter
for nearest-neighbor atoms in adjacent wires is equal to t .
Hard-wall boundary conditions are applied in the dimension
perpendicular to the axes of the wires.

B. I-V characteristics of δ-doped wires

In this section we present I-V characteristics for two
δ-doped wires that have recently been measured in experi-
ment [11]. One of the wires has a width of 4.6 nm, which
is equivalent to six dimer rows (6DRs) on the reconstructed
(001) silicon surface. The other wire has a width of 1.5 nm,
which is equivalent to 2DRs on the same surface. In addition,
we present I-V characteristics for wires that have widths larger
than 4.6 nm. For means of comparison, all the wires have a
channel region with a length of 47 nm (which is equal to the
length spanned by the 6DR wire in experiment [11]).

The I-V characteristics of the 6DR wire are shown in
Fig. 8(a). The I-V curve for U = 0 eV shows a linear response
when a nonzero source-drain bias voltage is applied to the
6DR wire. This linear response is characteristic of metallic
conduction and is in good agreement with experiment [11].
The size of the current is approximately 2 times greater than
in experiment when U = 0 eV (see Fig. 1(e) of Ref. [11]).

In Fig. 8(b), the I-V curve for U = 0 eV shows a linear
response when a bias voltage is applied to the 2DR wire. The
size of the current is approximately 6 times greater than in
experiment when U = 0 eV (see Fig. 1(f) of Ref. [11]) and is
exactly half that of the 6DR wire. Therefore, when U = 0 eV
there are double the number of available conducting modes
in the 6DR wire than in the 2DR wire. The ratio of the two

FIG. 8. (Color online) Current versus source-drain bias voltage
for the (a) 6DR and (b) 2DR wire over a range of offset energies U .
A negative offset energy is equivalent to a positive gate voltage in
experiment.

currents is also equal to two when U = −0.12 eV, as shown in
Fig. 9(a). The doubling in the number of available conducting
modes is confirmed by the transmission functions T (E) for the
two wires in Fig. 9(b) [compare the transmission function of
the 6DR wire with that of the 2DR wire at E = μ in Fig. 9(b)].

The gradient of these I-V curves is equal to the differential
conductance G = dI/dVSD of the wires, which, when divided
by e2/h, is equal to the number of conducting modes that are
available for electron transport. To model the application of a
gate voltage to the wires, we add a nonzero offset energy U to
the diagonal terms of the Hamiltonian matrix [58] describing
the channel region [see Eq. (1)]. An applied gate voltage will
change the occupancy of the conducting modes in the wire and
thereby change the conductance of the device.

Beginning with the I-V curve for U = 0.13 eV in Fig. 8(a),
the differential conductance of the 6DR wire increases as U

is decreased to zero and then becomes increasingly negative.
A negative offset energy in our NEGF model is equivalent
to a positive gate voltage in experiment and, therefore, this
trend is in good agreement with experiment [11] (where the
differential conductance increases as increasingly positive gate
voltages are applied to the 6DR wire; see Fig. 1(e) of Ref. [11]).
A negative offset energy moves the unoccupied conducting
modes to lower energies, making them available to conduction
electrons and thereby increasing the conductance of the device.
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FIG. 9. (Color online) (a) Current versus source-drain voltage
bias for wires with a variety of in-plane widths when U = −0.12 eV.
(b) The transmission function T (E) versus energy E for each of these
wires showing the position of the equilibrium chemical potential μ

when U = −0.12 eV.

Alternatively, a positive offset energy moves the occupied
conducting modes to higher energies, emptying these states
of electrons and resulting in zero current because there are no
longer any states available to conduction electrons [as shown
in Fig. 8(a) for U = 0.13 eV].

I-V curves for the 2DR wire are shown in Fig. 8(b) for
the same offset energies that are applied to the 6DR wire in
Fig. 8(a). The relationship between these offset energies and
the differential conductance of the 2DR wire is the same as
that of the 6DR wire up to U = 0.11 eV. Beyond that point,
the differential conductance for the 2DR wire increases when
U = −0.30 eV and then remains constant as U is made more
negative (as shown for U = −0.40 eV and U = −0.50 eV).
Therefore, when U = −0.30 eV, the current in the 2DR wire
has reached saturation because all of the conducting modes
are occupied. By contrast, in the wider 6DR wire there remain
conducting modes at higher energies that can be made available
to conduction electrons by applying larger gate voltages.

Finally, in Figs. 8(a) and 8(b) there is a nonlinear I-V
response for U = 0.12 eV (i.e., for U = μ). When the offset
energy is equal to the equilibrium chemical potential, the mean
energy of the conduction electrons is equal to the energy of
the CB edge. The application of a source-drain voltage bias
broadens the energy of the conduction electrons but it also

increases the energy of the CB edge. Therefore, it is possible
for the rate of change in the energy of the CB edge to be
greater than the rate of change in the energy broadening of
the conduction electrons. If this is the case, then although
the current will increase as the source-drain bias voltage is
increased, the change in the current will decrease [as shown in
Figs. 8(a) and 8(b) for U = 0.12 eV]. This nonlinearity is not
the same as the nonlinear response reported experimentally for
the 2DR wire (see Fig. 1(f) of Ref. [11]).

In general, there is good agreement between experiment
and our results for the I-V characteristics of the 6DR wire.
It is obvious that the results for the 6DR wire are in better
agreement with experiment than the 2DR wire. This is the case
for both the size of the current and the change in the current
versus source-drain bias voltage. Therefore, we conclude that
the 6DR wire is well described by a ballistic model of electron
transport, whereas the narrower 2DR wire is not. It is likely that
a single-band effective-mass approximation is able to repro-
duce the low-temperature transport properties of the 6DR wire
because the electron transport occurs at low voltage biases and,
therefore, the higher energy modes of the silicon band structure
are insignificant. This is promising for device simulation
because our NEGF model scales easily to large system sizes.

There are a number of approximations in our NEGF
model that could explain the discrepancies between theory
and experiment. For the 6DR wire these include the value of
the free parameters in Table I, the boundary conditions, the
average of the effective masses, and the degeneracy of the
single band in our effective-mass approximation. However,
changing these properties will never reproduce the nonlinear
response reported experimentally for the 2DR wire [11]. To
reproduce this nonlinearity, we suggest it is necessary to extend
our NEGF model to include donor disorder and nonballistic
transport. In this paper we have chosen to present the simplest
model of electron transport in a Si:P δ-doped wire and,
therefore, leave the investigation of these approximations to
the subject of future work.

The transmission functions and equilibrium chemical po-
tentials for wires with widths of 2DR, 4DR, 6DR, 8DR, and
10DR are shown in Fig. 9(b). In this figure, U is constant across
all wires and is equal to −0.12 eV. The transmission functions
and values of the equilibrium chemical potentials for each
of these wires show that the number of available conducting
modes increase as the width of the wires increase. Therefore,
the I-V characteristics for the wider wires in Fig. 9(a) have
larger differential conductances than the narrower wires. The
energy of the lowest conducting modes decrease as the width
of the wires increase, as shown in Fig. 9(b). The spatial
confinement of the donor electrons, perpendicular to the wire
axis, decreases as the width of the δ-doped wire increases,
thereby moving the conducting modes to lower energies in
a fashion similar to that of the eigenenergies of an infinite
potential well. This decrease in spatial confinement also
decreases the energy splittings between the conducting modes,
which is shown in Fig. 9(b) as a narrowing of the steps in the
transmission functions. Finally, it should be noted that the
width of the steps in the transmission functions are related to
the �1-�3 splitting [59]. Otherwise, the transmission functions
for the 2DR, 4DR, 6DR, 8DR, and 10DR wires would vary
only by a multiplicative constant.
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IV. CONCLUSIONS

The band structure of a δ-doped wire has been calculated
for a variety of donor configurations. We find a VS at �, in
agreement with previous density-functional calculations of δ-
doped layers. In addition, for δ-doped wires composed of more
than a single row of phosphorus atoms, we find another energy
splitting at �. This energy splitting (�1-�3) is not caused by the
valley-orbit interaction but by wave-function overlap between
the adjacent rows of phosphorus atoms. The �1-�3 splitting
is then used to calculate the electronic extent of the single-
row wire, which is found to be at least 4.6 nm. When two
single-row wires are separated by in-plane distances of less
than 4.6 nm, the resulting energy splittings reduce the number
of available conducting modes and, therefore, conductance at
low bias voltages.

Furthermore, we present a NEGF model for electron trans-
port in a Si:P δ-doped wire. We calculate the I-V characteristics
of a variety of δ-doped wires which have different in-plane
widths, achieving good agreement with experiment. These
wires show a linear response to an applied bias voltage, which
is characteristic of the metallic conduction that is observed
in experiment. We also show that the conductance can be
controlled by applying a gate voltage to the wires. In the future
this NEGF model could be extended to include donor disorder
and nonballistic transport.
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APPENDIX: BAND FOLDING IN δ-DOPED WIRES

Band folding in δ-doped wires has also previously been
discussed in Refs. [31] and [32]. In this section we expand
on our original discussion from Ref. [31] in greater detail. We
analyze the band structure of the δ-doped wires with respect to
the band structure of bulk silicon. It is well known that silicon is
an indirect band-gap semiconductor with a sixfold degenerate
CB edge [60]. These six CB edges are located at k0 ≈ 0.85 2π

a

in the first BZ of the face-centered-cubic (fcc) Bravais lattice,
one along each of the six 〈100〉 directions (where a is the
lattice constant of bulk silicon). The band structure of bulk
silicon calculated using a two-atom fcc unit cell is shown in
Fig. 10, where XFCC is a point of high symmetry in the first
BZ of the fcc unit cell and the path � → XFCC lies along
one of the 〈100〉 directions in reciprocal space [61]. The CB
edges are located at k0 ≈ 0.85XFCC in Fig. 10 as |XFCC| = 2π

a
.

The band dispersion in the neighborhood of the CB edges is
approximately parabolic [31,46] and, therefore, in reciprocal
space these CB edges can be represented in 3D by spheroidal
surfaces of constant energy centered at k0 [62], as shown in
Fig. 11(a). The spheroidal surfaces are anisotropic because the
curvature of the band dispersion in silicon is anisotropic.

Figure 10 also shows the band structure of bulk silicon
calculated using an eight-atom simple cubic (sc) unit cell.

FIG. 10. The band structure of bulk silicon calculated using a
two-atom fcc unit cell (solid lines) and an eight-atom sc unit cell
(squares). These band structures were calculated using the method
described in Sec. II A with a 6 × 6 × 6 Monkhorst-Pack k-point
grid.

From a comparison of the two band structures, we see the
location of the CB edges and, therefore, spheroids in reciprocal
space is dependent on the real-space unit cell that is used for the
calculation, which is a result of band folding as discussed in our
earlier work (see Appendixes 1 and 2 of Ref. [43]). In Fig. 10,
the BZ is folded about k = π

a
due to a doubling in the length of

the supercell in the [100] direction from 2.73 Å (for the fcc unit
cell) to 5.46 Å (for the sc unit cell). When the length of the unit
cell is increased in one dimension, the length of the BZ in the
equivalent reciprocal dimension is decreased. The CB edges
are thereby folded along their corresponding reciprocal space
dimension towards the � point [63] at k = (0,0,0). The CB
edges have been folded from k0 ≈ 0.85 2π

a
to k0 ≈ 0.15 2π

a
in

Fig. 10 and this is also shown in Fig. 11(b) by the translation
of the spheroids along each of the cardinal k axes towards
k = (0,0,0).

The band structure of bulk silicon calculated using a 1280-
atom ORT supercell [for example, see Fig. 1(b)] is shown as
the gray shaded region in Fig. 4. There are two CB edges at
energy zero: one at � and the other at k ≈ 0.16 2π

a
. These are

each doubly degenerate and, therefore, represent four of the six
CB edges of bulk silicon. The other two CB edges are located
at k ≈ −0.16 2π

a
and are not shown as they are symmetrically

equivalent to those at k ≈ 0.16 2π
a

. The locations of the CB
edges in reciprocal space are dependent on the supercell that
is used for the calculation and the resulting band folding of the
sc (and ultimately fcc) band structure. Therefore, the location
of the CB edges for the 1280-atom ORT supercell can be
predicted from the band structure calculated using the 8-atom
sc unit cell and simple geometric arguments.

To see how the sc band structure can be used to calculate
the location of the CB edges for the 1280-atom ORT supercell,
consider the simulation cell for a Si:P δ-doped layer. We use a
16-atom tetragonal (TET) unit cell to represent δ-doped layers
because the phosphorus atoms are doped in plane at densities
of 0.25 ML and the supercell needs to include at least four
silicon atoms in the donor plane (so one of these atoms can be
substituted by a phosphorus atom for a doping density of one
in four) [39,43].
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FIG. 11. (Color online) A 3D representation of the sixfold degenerate CB minimum of bulk silicon showing the CB valleys as spheroidal
surfaces of constant energy centered at k0 for (a) a fcc unit cell and (b) the same representation for a sc unit cell, where the spheroids have been
translated along each of the cardinal k axes towards k = (0,0,0). (c) A 2D representation of the six CB minima for a TET supercell, where the
spheroids in (b) have been folded to the kxky plane, and (d) a 1D representation of the six CB minima for an ORT supercell, where the ellipses
in (c) have been folded onto the line kx = ky . The width of these ellipses perpendicular to the line kx = ky go to zero in the limit as the length
of the ORT supercell in the [11̄0] direction tends to infinity. These surfaces have been colored as a guide for the eye only; there is no other
meaning intended by the colors.

The TET unit cell is rotated by 45◦ about the [001] axis
compared to the 8-atom sc unit cell. This rotation does not
affect the location of the CB edges in reciprocal space, only
their relative position in the first BZ of the TET unit cell. The
length of the TET unit cell in the z (i.e., [001]) direction is the
same as that of the sc unit cell. If the length of the TET unit cell
in the [001] direction is increased, it becomes a TET supercell
and this folds the CB edges in the kz direction towards �. If
this TET supercell is large enough to separate the δ-doped
layer from its periodic images in the [001] direction, then the
CB edges in the kz direction are folded to the � point [64].
This folding is shown as a “flattening” of the spheroids to
the kxky plane in Fig. 11(c). In this figure, there are CB
edges located at � and k ≈ 0.15 2π

a
in the [100] direction

and, indeed, these have previously been reported for a TET
supercell [43].

The length of the simulation cell must also be large
in the [11̄0] direction for a Si:P δ-doped wire so the 1D
confinement of the donor electrons can be modeled accurately.
In addition, the length of the simulation cell in the [11̄0]
direction will be different from the length of the simula-
tion cell in the [001] direction (for atomistic simulations)
because of the different crystallographic symmetries in each
of these directions. Therefore, we must use an ORT super-
cell rather than a TET supercell to simulate the δ-doped
wires.

The ORT supercell is elongated in the [11̄0] direction
compared to the TET supercell, which shortens the equivalent
reciprocal space dimension of the first BZ (parallel to the [11̄0]
k-space direction and perpendicular to the line kx = ky). The
four CB edges at k ≈ 0.15 2π

a
in Fig. 11(c) are thereby folded

along the [11̄0] k-space direction towards the line kx = ky , as
shown in Fig. 11(d). Two of the six CB edges are located at
k ≈ 1√

2
0.15 2π

a
≈ 0.11 2π

a
along the line kx = ky in Fig. 11(d)

and another two at k ≈ −0.11 2π
a

along the same line. There
is also a 1√

2
contraction of the valleys for these four CB edges

as a result of this folding and, ultimately, the 45◦ rotation of
the ORT supercell (relative to the sc unit cell) [31]. This 1√

2
contraction of the valleys causes an effective doubling in the
curvature of the band dispersion and, therefore, a reduction of
1
2 in the corresponding effective mass [31]. In addition, the CB
edges are only approximately folded onto the line kx = ky .
This approximation is only exact in the limit as the length
of the ORT supercell in the [11̄0] direction tends to infinity.
Therefore, the CB edge along the path � → XORT in Fig. 4
is located at k ≈ 0.46XORT ≈ 0.16 2π

a
rather than k ≈ 0.11 2π

a

(where XORT = 1
2
√

2
2π
a

in the [110] k-space direction). For
double-row wires C and F, where the length of the ORT
supercell in the [11̄0] direction is larger, the same CB edge
is located at k ≈ 0.38XORT ≈ 0.13 2π

a
in the [110] k-space

direction [65].
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