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Quantum vacuum photon modes and repulsive Lifshitz–van der Waals interactions
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The bridge between quantum vacuum photon modes and properties of patterned surfaces is currently being
established on solid theoretical grounds. Based on these foundations, the manipulation of quantum vacuum
photon modes in a nanostructured cavity is theoretically shown to be able to change the Lifshitz–van der
Waals forces from attractive to repulsive regime. Since this concept relies on surface nanopatterning instead of
chemical composition changes, it drastically relaxes the usual conditions for achieving repulsive Lifshitz–van
der Waals forces. As a case study, the potential interaction energy between a nanopatterned polyethylene slab
and a flat polyethylene slab with water as the intervening medium is calculated. Extremely small corrugation
heights (<10 nm) are shown to be able to change the Lifshitz–van der Waals force from attractive to repulsive,
the interaction strength being controlled by the corrugation height. This new approach could lead to various
applications in surface science.
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I. INTRODUCTION

Many fundamental aspects and practical issues in the
physics of interfaces are related to controlling interactions
between surfaces [1,2]. In his seminal article [3], De Gennes
pointed out the importance of van der Waals and electrostatic
forces in adsorption, adhesion, and wetting phenomena.
Recently, it became obvious that controlling forces between
macroscopic bodies or surfaces are crucial for a variety of
applications such as mechanics of nanomachines, stability
of colloids, and communication between biological cells
[1,2,4,5].

The growing interest in nanoelectromechanical systems
urges the scientific community to study in depth van der Waals
and electrostatic interactions within nanostructured systems
[6,7]. In particular, looking at nanostructures in the theoretical
framework of dispersive (van der Waals) interactions turns out
to be of great interest, bothfrom fundamental perspectives and
for quantum based-technologies [8]. In order to understand the
influence of surface corrugations on Lifshitz–van der Waals in-
teractions between macroscopic bodies, many approaches have
emerged, each one addressing specific corrugation geometries
[7]. On one hand, additive methods, such as the proximity force
approximation and the pairwise summation, appear to be the
most employed when describing interactions between smooth
corrugated surfaces at short and long separation distances,
respectively [7,9]. On the other hand, when considering
corrugated surfaces with small correlation lengths (of the
order of the separation distance), nonadditive methods such
as scattering or perturbative approaches are required in order
to take into account diffraction and correlation effects which
occur at the nanoscale [7,10]. However, it is noteworthy that
refinements of the above-mentioned approaches have led to
their progressive convergence for a specific corrugation size
and shape [7].
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This article focuses on small-correlation-length nanostruc-
tures with steep features. In this case, the assimilation of
the surface corrugation to a graded effective refractive index
layer is relevant [11–13] and allows simplifying greatly the
application of nonadditive methods while still taking fully into
account electrodynamical coupling between features as ex-
plained below. Motivated by recent theoretical [13–15] and ex-
perimental [16] studies, we introduce the novel concept of ma-
nipulating quantum vacuum photon modes at the sub-10-nm
scale in order to turn Lifshitz–van der Waals interactions from
attractive to repulsive.

The article is organized as follows. After this introduction
(Sec. I), we present in Sec. II the theoretical framework used
for the description of Lifshitz–van der Waals interactions and
we explain our theoretical approach to calculate the interfacial
energy in the case of steep nanocorrugated surfaces. The
relevant approximation used to describe steep nanocorrugated
surfaces is introduced and justified in Sec. III. In Sec. IV we
report on computational results and discuss how sub-10-nm
corrugations allow us to control quantum vacuum photon
modes and, in this way, to turn the Lifshitz–van der Waals
force from attractive to repulsive. Perspectives and general
remarks are finally provided in Sec. V.

II. THEORETICAL APPROACH

Over the last decades, the Lifshitz–van der Waals approach
of interfacial interactions in macroscopic systems has been
widely investigated, both theoretically and experimentally
[17–23]. Although usually attractive, the interaction potential
energy may become repulsive if particular conditions are
satisfied [24]. Let us first consider a body (1) interacting
with a body (2) via an intervening medium (3) (Fig. 1). Let
us also consider for the moment that each element of this
macroscopic system has a planar geometry (for now body 2
is treated as a flat homogeneous slab) and is characterized by
a dielectric function ε(iξ ), where iξ is the imaginary angular
frequency. It is well established that repulsive Lifshitz–van der
Waals interactions between the two bodies can take place if
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FIG. 1. (Color online) Bodies 1 and 2 interacting via an interven-
ing medium 3. The two bodies are separated by a distance L. R1 (R2)
is the Fresnel reflection coefficient of slab 1 (slab 2). The surface of
body 2 is nanopatterned with corrugations that are described by a
graded effective medium.

the following condition is satisfied [24]:

ε1(iξ ) < ε3(iξ ) < ε2(iξ ), (1)

where εi is the dielectric function of the ith component of
the system. Equation (1) cannot be satisfied if the intervening
medium is vacuum. Therefore, a liquid or a gas is needed
to satisfy Eq. (1) for given slab materials [24]. Moreover, in
practice, Eq. (1) imposes tight constraints on the choice of both
the materials and the intervening medium, which makes the
experimental observation of repulsive Lifshitz–van der Waals
interactions challenging [25,26].

Hereafter, we introduce an original approach to modify
Lifshitz–van der Waals interactions from a very different
perspective, beyond the constraint set by Eq. (1). By tuning
the virtual photon exchange between the two bodies, via
nanopatterning of the surface of one of them (Fig. 1), it is
possible to obtain a repulsive interaction potential energy,
without any modification of the chemistry of materials, i.e.,
without changing their dielectric functions. The nature of
the Lifshitz–van der Waals force—repulsive or attractive—is
solely the result of controlling light-matter quantum interac-
tions at the nanoscale.

The concept briefly described above is based on the
fundamental interplay between physics of confined media
and optical cavities. Here, the concept of confined space is
applied to the particular geometry of a planar-like cavity
[27–29] (Fig. 1). Actually, the present approach relies on
the joined effects of electromagnetic (EM) confinement and
surface patterning at the nanoscale, which are exploited to
modify the interaction potential energy. In addition, since
the studied system can be regarded as an optical cavity, it is
possible to establish a formal link between optical properties
of the cavity (quality factor Q, for instance) and Lifshitz–van
der Waals forces between the slabs forming that cavity.

At the macroscopic level, the force, and thus the interaction
potential energy, between two planar surfaces is related to
the lowest (zero-point) energy state of the EM field, arising
from the existence of virtual photons of energy 1

2 �ω at all
available frequencies which are exchanged between the two
surfaces [7]. The interaction potential energy U can be written
as [30] U (L) = 1

2

∑
k �(ωk(L) − ωk(L → ∞)), where ωk is

the angular frequency of the kth vacuum photon mode available
between the two surfaces separated by a length L (Fig. 1). U (L)
can then be easily related to the density of EM states ρ(ω,L)
of the system such that U (L) = 1

2 �
∫

ω(ρ(ω,L) − ρ(ω,L →
∞))dω. The quantity ρ(ω,L) can be obtained from classical
electrodynamics.

The tuning of the zero-point energy is possible thanks to
the presence of surfaces (boundaries), i.e., the presence of
allowed modes of the EM field within the cavity [5,7]. Taking
this fact into account, the force appears at the macroscopic
level as the result of a manifold of vacuum photon modes
occurring because the EM field must meet the appropriate
boundary conditions at each surface. Moreover, these vacuum
photon modes can be altered by patterning the surfaces [27],
i.e., EM-field boundaries.

As explained above, the interaction potential energy con-
sidered in the present case results from the exchange of virtual
photons between two interacting bodies. By summing the
individual energies related to each mode available within the
cavity, we can retrieve the total energy of the system from the
photon density of states. Based on these arguments, we apply
the so-called scattering approach [7] to calculate the interaction
potential energy between two bodies facing each other.
Accordingly, the interaction potential energy U is given by

U (L) = �

2π

∑
m=s,p

∫
d2k//

(2π )2

∫ ∞

0
dξ

× ln(1 − Rm
1 (iξ,k//)Rm

2 (iξ,k//)e−2κL), (2)

where L is the separation distance between the bodies,

κ =
√

ξ 2

c2 + |k//|2, Rm
1 (Rm

2 ) is the generalized complex
reflection coefficient of the first body (second body) in the m

polarization state (s or p state), k// is the parallel component
of the photon wave vector, and iξ is the imaginary angular
frequency [31]. It is noteworthy that, in this method, the
nanopatterned slab (here body 2) is treated as a graded
effective medium (see [13] and discussion below).

For short separation distances (L � 10 nm), Eq. (2) is well
approximated by the so-called Hamaker formula [32],

U (L) = − A132

12πL2
, (3)

where A132 is the effective Hamaker constant of the system,
which can be deduced from the numerically computed energy,
i.e., Eq. (2).

In the case where the intervening medium is vacuum,
Eq. (2) appears to be efficient since it reproduces experimental
results well [13]. In this case, using Eqs. (2) and (3), it is
possible to retrieve the Hamaker constant A12 of the system
[A12 ≡ A132, where (3) is omitted when the intervening
medium is vacuum]. Using the same procedure, it is also
possible to retrieve the Hamaker constant A11 of the flat
surface. The effective Hamaker constant A22 of the patterned
surface, on the other hand, can be deduced indirectly from the
well-known relation [2] A12 = √

A11
√

A22 by using values of
A12 and A11 calculated from Eqs. (2) and (3).

For numerical convenience [33,34], instead of computing
A132 directly via Eq. (2) to obtain the interaction potential
energy, we compute the effective Hamaker constant of the
system [hereafter, (3) stands for fluid] from the well-known
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relation [2,33,34]

A132 = (
√

A11 −
√

A33

)(√
A22 −

√
A33), (4)

where Aii are the Hamaker constants of the corresponding me-
dia, which are obtained from the above-described procedure.
The repulsive interaction potential energy is reached when
A132 is negative [cf. Eq. (3)]. Therefore, according to Eq. (4),
this condition is fulfilled when

A22 < A33 < A11. (5)

The condition imposed by Eq. (5) goes beyond the
constraint set by Eq. (1). Indeed, when considering a nanopat-
terned surface, as in the present case, Eq. (1) cannot be used
since dielectric functions are those of flat materials. On the
other hand, Eq. (5) allows us to bypass this problem since the
effective Hamaker constant of the nanopatterned surface can
be calculated by the above-described procedure. Therefore,
Eq. (5) has a more general application since it can be used
simultaneously for both flat and nanopatterned surfaces.

III. MODELING AND SIMULATION DETAILS

Let us now develop the case of a practical two-body system
consisting of two polyethylene (PE) slabs facing each other
and separated by a distance L. In order to fulfill Eq. (5), we
choose water (medium 3) as the intervening medium. It must be
pointed out that such a configuration does not match Eq. (1).
The first slab (slab 1) has a flat (planar) surface, while the
second one (slab 2) is nanostructured, with cones of height h

arranged on a hexagonal lattice with a lattice period chosen
to be a0 = 10 nm (Fig. 1). We choose a fixed cone base
radius of r = 5 nm and a variable cone height h (ranging
from 10 to 100 nm) in order to alter the optical properties of
the surface. Indeed, such a geometry is known to improve the
antireflection behavior of the surface, which in turns alters the
vacuum photon modes of the system [13,35]. Moreover, since
the PE surface is hydrophobic [1], we can assume a Cassie
state [36] between water and the corrugated PE surface [13].
As a consequence, the void space between cones is filled by
air, and water is localized above the top of the cones only.

At wavelengths below 20 nm, the PE permittivity is close
to unity [37] and thus only vacuum modes above this spectral
range are relevant. Since the lattice period is shorter than
the relevant wavelength range, the patterned surface can be
described by an effective material, i.e., an effective medium
approach (EMA), with a graded permittivity εeff(z) along its
thickness such that

εeff(z) = 1 + (εPE − 1)f (z), (6)

where εPE is the PE dielectric function, f (z) is the filling
fraction, given by f (z) = πr(z)2/S with S = a2

0

√
3/2, and

r(z) is the radius of the circular section of the cones at
coordinate z.

The use of the EMA has to be justified with great care.
Indeed, this approximation usually requires the separation
distance L to be equal to or larger than the lattice parameter
a0 of the periodically nanostructured surface [14]. The reason
is that the distance is one of the main parameters determining
the nature of the EM modes (radiative or evanescent) involved
in the calculation of the Lifshitz–van der Waals interaction.

In the case of a separation distance shorter than the lattice
parameter, evanescent modes are dominant and are able to
reproduce the details of the nanostructure, thereby invalidating
the EMA [38,39]. However, in the present situation, the EMA
remains valid for separation distances shorter than the lattice
parameter. This nonintuitive result emerges from the weakness
of the coupling between diffracted and specular orders due to
both the optical properties of PE and the steepness of the
corrugation (see Appendix A for a detailed justification of the
use of the EMA).

The impact of the choice of water as the intervening
medium has to be examined. Indeed, as a polar liquid,
water induces an electrostatic double-layer at both surfaces
facing each other, giving rise to an additional electrostatic
repulsive force between them which, in experiments, could
screen the Lifshitz–van der Waals repulsive force treated
here. However, when considering the Cassie state regime,
the electrostatic double-layer is located only on the top of
the cones, which become steeper with increasing cone height.
As a consequence, the electrostatic double-layer associated
with the steep nanocorrugated PE surface becomes extremely
small, leading to a dramatic decrease in the electrostatic
repulsive interaction (see Appendix B). Therefore, in the
present situation, the electrostatic repulsive interaction can be
neglected compared to the Lifshitz–van der Waals interaction
for any corrugation height.

The cornerstone of the present approach is related to the
fact that tuning the antireflective properties of the bottom
slab (thanks to nanocorrugations) allows us to tailor the
virtual photon exchange within the cavity formed by the top
flat PE slab and the bottom corrugated PE slab [13]. Since
the presence of virtual photons causes dispersive interaction
energy between slabs, it enables the control of the magnitude of
attraction/repulsion between the two surfaces by only playing
on the photon mode density inside the cavity.

IV. RESULTS AND DISCUSSION

As explained previously, the use of a fluid as the intervening
medium left no choice but to compute the individual Hamaker

FIG. 2. (Color online) Hamaker constant A22 of a nanopatterned
polyethylene slab (see inset) as a function of the cone height h.
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FIG. 3. (Color online) Hamaker constant A132 of a flat polyethy-
lene (PE)/patterned PE system immersed in water (schematic in the
inset) as a function of the cone height h.

constants of each component of the system in the first step.
We calculate from previously reported data [13] the effective
Hamaker constant A22 of the corrugated PE slab using Eq. (2)
and Eq. (3) for various cone heights (Fig. 2). Knowing the
Hamaker constant A11 of a flat PE surface (A11 = 0.36 eV)
[40] and the Hamaker constant A33 of water (A33 = 0.23 eV)
[2], we then calculated the Hamaker constant A132 of the
whole system from Eq. (4), as a function of the cone height
(Fig. 3). A strong decrease in the Hamaker constant A132 with
increasing cone height is observed, going from positive to
negative values (Fig. 3). Here, the zero-crossing point for A132

takes place at h0 ≈ 3 nm. This critical point is reached when
A22 = A33 [dotted horizontal (red) line; Fig. 2], in accordance
with the fact that a repulsive interaction is achieved only
if Eq. (5) is satisfied. Therefore, the interaction potential
energy becomes positive, i.e., a repulsive force (Fig. 4), for
h > h0 as soon as the Hamaker constant A132 of the system
becomes negative (see [41]). It is noteworthy that, due to the
small zero-crossing-point value h0, it could be experimentally
difficult to achieve a progressive transition from attractive to
repulsive force while increasing the cone height (see [42] and
[43]). Thus, observation of this progressive transition would
require a higher h0 value, which could be achieved by using flat
materials with Hamaker constants A22 (h = 0) higher than the
Hamaker constant A33 of the intervening medium (by at least
one order of magnitude; see Fig. 2). Furthermore, owing to the
Cassie-state regime of the present model, such materials are
difficult to find [1]. Consequently, the transition from attractive
to repulsive regimes cannot be easily observed or significantly
modified (i.e., the h0 value stays in the same range for most of
the materials).

Such a dramatic modification of the dispersive energy of the
system arises from the strong decrease in the Hamaker constant
A22 of the nanopatterned PE slab as the cone height increases
(note the logarithmic scale in Fig. 2). Phenomenologically, this
result can be explained by the fact that the increase in the cone
height h causes the decrease in the reflection coefficient of the
nanopatterned PE slab R2. Consequently, the quality factor Q

FIG. 4. (Color online) Interaction potential energy between PE
slabs as a function of the cone height.

of the Fabry-Perot cavity also decreases [Fig. 5(a)] since [44]

Q = −2π
1

ln(R1R2(1 − A3)2)

2L

λ
, (7)

where Ri = |Ri |2 and A3 is the optical absorption loss of the
intervening medium (3) for a single path in the cavity (i.e., A3

is given by Beer-Lambert law). Moreover, the mean value of
the quality factor 〈Q〉 was calculated by integration of Eq. (7)
in the relevant spectral range, from 50 to 300 nm [Fig. 5(b)].
We observe a decrease in 〈Q〉 as the cone height increases,
down to 49% of the initial value (i.e., for flat slabs) [Fig. 5(b)].
As Q decreases, the EM energy stored in the Fabry-Perot
cavity is reduced [44]; i.e., the number of vacuum photon
modes available within the cavity and that contribute to the
interaction potential energy U (L) ∝ ∑

k �ωk(L) diminishes.
Therefore, the attractive behavior of the interaction potential
energy becomes weaker while, owing to the geometry of
the studied system and the choice of materials, the repulsive
behavior becomes stronger. Overall, controlling the optical
properties of the cavity enables us to tune the strength of
the attractive/repulsive force. It is noteworthy that such an
interpretation, although based on solid physical ground (i.e.,
the energy storage in an optical cavity), relies on a heuristic
approach and still requires the establishment of a direct
theoretical link between the quality factor and the Lifshitz–van
der Waals interaction.

V. CONCLUSION

In conclusion, we have shown theoretically that extremely
small and steep nanoscopic corrugations on the surface of
one of two interacting bodies are able to turn Lifshitz–van
der Waals interactions from attractive to repulsive, as well
as to control the strength of the interactions by changing the
corrugation height. The present approach is appealing since it
offers the possibility of achieving a repulsive interaction only
by nanopatterning one of the surfaces. Therefore, constraints
with respect to the choice of materials [24–26] are relaxed. In
the end, we are aware of the fact that an experimental proof
of the concept is a very difficult task due to the engineering
complexity related to the achievement of the pattern depth
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FIG. 5. (Color online) (a) Quality factor Q of the Fabry-Perot
cavity formed by a flat polyethylene slab and a patterned polyethylene
slab. Q is given vs the wavelength for various cone heights. (b) Mean
value (integration over wavelength) of the quality factor of the cavity
described above. Both slabs are separated by water.

of just a few nanometers. However, in the light of a recent
experimental study [16], the presented concept could open new
perspectives on the control of attractive/repulsive interactions
by nanopatterning. Indeed, fabricated patterns could be used to
control macroscopic interactions in a variety of applications,
ranging from biology [45] to materials science, for controlling
wettability, adhesion, and adsorption [1,2].
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APPENDIX A: JUSTIFICATION OF THE EFFECTIVE
MEDIUM APPROACH

Although the EMA is fully relevant in optics when dealing
with the far field, it could beargued that it is inappropriate
for describing the near field, which plays a nontrivial role
in the calculation of the interaction potential energy at short
distances [46,47]. Indeed, the evanescent near field exhibits
lateral fluctuations which are expected to mimic the surface
corrugation [48]. Therefore, the EMA is a priori inappropriate
in describing these fluctuations accurately. However, the
careful analysis described below leads us to qualify this
restriction in the specific case of subwavelength periodically
patterned surfaces. The specular order couples with all the
evanescent diffracted orders, which are all coupled together as
well. As a result, they constitute the fluctuating near field.
Let us formally examine such couplings in the theoretical
framework of the rigorous coupled-wave analysis method
[49]. The Fourier series expansion of the dielectric constant is
written

ε(z,ρ) =
∑

g

εg(z)eig.ρ, (A1)

where ρ denotes a real-space vector in the primitive cell with
basis vectors a1 and a2 (Fig. 6), and g is a reciprocal lattice
vector. By virtue of Floquet-Bloch theorem, the electric E and
displacement D fields expand as

E(z,ρ) =
∑

g

Eg(z)ei(g+k//).ρ, (A2)

D(z,ρ) =
∑

g

Dg(z)ei(g+k//).ρ . (A3)

Since D = ε0ε(z,ρ)E, we can rewrite Dg(z) as

Dg(z) =
∑

g′
ε0εg,g′Eg′ (z), (A4)

where g′ is another reciprocal lattice vector and the Fourier
matrix element εg,g′ expresses the coupling between diffracting
orders g and g′. When describing the cone by cylinder stack,

FIG. 6. (Color online) Primitive cell of the periodic patterned
structure under study. In computations, the cone is described by a
stack of cylinders of radius a ∈ [0,r].

235418-5

http://www.ptci.unamur.be
http://www.ceci-hpc.be


DELLIEU, DEPARIS, MULLER, KOLARIC, AND SARRAZIN PHYSICAL REVIEW B 92, 235418 (2015)

FIG. 7. (Color online) Dielectric function εs of polyethylene.
Arrowed values are those used for numerical simulations (see Fig. 9).

εg,g′ in a given layer is written as

εg,g′ = εmδg,g′ + (εs − εm)
2πa2

σ

J1(| g − g′ | a)

| g − g′ | a
, (A5)

where a is the cylinder radius at coordinate z (Fig. 6), J1 is
the first-order Bessel function, εm is the dielectric constant of
the surrounding medium (here vacuum), εs is the dielectric
constant of PE, δg,g′ is the Kronecker symbol, and σ is the
primitive cell surface (Fig. 6). Due to the subwavelength size
of the corrugation period, mode coupling [Eq. (A5)] gives rise
to evanescent waves propagating along the surface.

Careful examination of Eq. (A5) indicates that the coupling
constant εg,g′ vanishes in two limit cases: (i) for low refractive
index contrast, i.e., εs → εm, and (ii) in the topmost layers
where the cylinder radius a becomes very small and ultimately
tends to 0 (note that lima→0

J1(|g−g′ |a)
|g−g′ |a = 1

2 ). As a consequence,
in both limit cases, due to the extremely weak coupling,
evanescent waves tend to vanish within the cavity. In the
present study, limit case i is always reached at wavelengths
equal to or shorter than 30 nm because of the dielectric
properties of PE, i.e., Re(εs) → 1 and Im(εs) → 0 (Fig. 7).
On the other hand, since evanescent waves propagate near the
very top of the cones, and given the steepness thereof (i.e.,
a → 0), limit case ii is always satisfied. These predictions
need, however, to be verified by numerical simulations.

In order to probe the evanescent waves inside the cavity,
we numerically simulated, by finite-difference time domain
[50,51] homemade code, the diffracted field patterns which
originate from oscillating dipoles inserted inside the cavity.
These simulations model the EM field coming from quan-
tum fluctuations inside the cavity. Both the actual three-
dimensional structure [Fig. 8(a)] and its corresponding EMA
description [Fig. 8(b)] were simulated using a cone height of
40 nm and a separation distance of 5 nm as an illustration.
The EM responses to dipole excitation of both configurations
were probed through normalized field intensity maps (Fig. 9).
Maps are drawn for each computational cell (dashed lines in
Fig. 8) and display only the diffracted field, i.e., with dipole
radiation removed. The wavelengths of the radiating dipole

FIG. 8. (Color online) Sketches of the configuration used in
finite-difference time-domain simulations for the cone array structure
(a) and its corresponding EMA description (b). The lighter (red) arrow
denotes an oscillating dipole and dashed lines show the limits of the
computational cell. One dipole is inserted in each cell and periodically
repeated.

(30, 80, 115, and 155 nm) were selected in order to sample the
spectral range which is relevant to PE, according to its optical
properties. At all these wavelengths except 30 nm, limit case
i is not reached (Fig. 7) but limit case ii is reached near the
top of the cones. In all cases, no significant differences are
observed between the EM responses of the cone array structure
and its EMA description (Fig. 9; relative error less than 2%).
This result demonstrates that the fluctuations of the evanescent
waves resulting from the coupling between diffracted orders

FIG. 9. (Color online) Maps of the normalized intensity of the
diffracted field for different wavelengths in the three-dimensional
structure (left plots) and its EMA description (right plots).

235418-6



QUANTUM VACUUM PHOTON MODES AND REPULSIVE . . . PHYSICAL REVIEW B 92, 235418 (2015)

and specular orders are extremely weak, which therefore well
justifies the use of the EMA in the present case.

Note that, for a cavity made of materials with mobile
charges, surface plasmon polaritons would produce strongly
modulated evanescent waves which would dominate Lifshitz–
van der Waals interactions [47,52]. In this case, the EMA
description would obviously fail. Since PE cannot support
surface plasmon polaritons, the above-mentioned problem is
excluded here.

In summary, the shallowness of evanescent wave fluctu-
ations justifies the use of the EMA in the present situation.
The underlying physical reason is the weak mode coupling
due to both the optical properties of PE and the steepness
of the corrugation. The use of a graded index profile for the
EMA description turns out to be reliable in rendering these
shallow fluctuations. In addition, the EMA avoids numerical
stability issues while dealing with the direct computation of the
scattering matrices of steep three-dimensional structures made
of materials with low-contrast optical indexes, while comput-
ing the Lifshitz–van der Waals force. This is a considerable
advantage of the proposed method.

APPENDIX B: ELECTROSTATIC POTENTIAL ENERGY
CALCULATION

Here, we evaluate the relative contribution of electrostatic
forces to the interfacial interaction in the case of PE slabs
facing each other at a very small separation distance (around
10 nm). Let us first consider two flat surfaces facing each other
and separated by a distance L with a liquid as the intervening
medium. The electrostatic potential energy associated with the
electrostatic double-layer formed at both surfaces is given by
[1]

W (L) = εrε0κ
[
2ψ1ψ2e

−κL − (
ψ2

1 + ψ2
2

)
e−2κL

]
, (B1)

where εr is the static permittivity (dielectric constant) of the
liquid, ε0 is the vacuum permittivity, κ is the inverse of the
Debye length of the liquid, and ψi is the surface potential of
the ith surface.

Replacing now one of the two surfaces with a periodically
nanostructured surface, here an array of cones, and using the

FIG. 10. (Color online) Electrostatic potential energy between
polyethylene slabs as a function of cone height. Note the orders
of magnitude on the y axis in comparison with Fig. 4.

Derjaguin approximation [1], the electrostatic potential energy
is given by

W (L) = 2πεrε0 tan2(α)e−κL

× [
2ψ1ψ2 − (1/4)

(
ψ2

1 + ψ2
2

)
e−κL

]/
κS, (B2)

where α is the opening angle of the cone and S = a2
0

√
3/2. It

is noteworthy that the Derjaguin approximation is valid only if
the Debye length of the liquid is smaller than the lattice period
a0 of the structured surface so that the electrostatic potential
energy is not affected by coupling effects between cones.

In the case study presented in this article, the surface
potential of both PE surfaces is equal to −30 mV [1], the static
permittivity of water is equal to 78.2 J m−1 V−2 [1], and the
Debye length of water is equal to 1.5 nm [1] (the Debye length
of groundwater is used for more realistic considerations). Note
that the value of the Debye length allows one to use Eq. (B2)
since the correlation length (i.e., cone interdistance) is one
order of magnitude larger. The electrostatic potential energy
for various cone heights is shown in Fig 10. The results of this
calculation are discussed in the article.
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