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Understanding double-resonant Raman scattering in chiral carbon nanotubes:
Diameter and energy dependence of the D mode
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We present a theoretical model to describe the double-resonant scattering process in arbitrary carbon nanotubes
(CNTs). We use this approach to investigate the defect-induced D mode in CNTs and unravel the dependence of
the D-mode frequency on the CNT diameter and on the energy of the resonant optical transition. Our approach is
based on the symmetry of the hexagonal lattice and geometric considerations; hence the method is independent
of the exact model that is chosen to describe the electronic band structure or the phonon dispersion. We finally
clarify the diameter dependence of this Raman mode that has been under discussion in the past and demonstrate
that, depending on the experimental conditions, in general two different dependencies can be measured. We
also prove that CNTs with an arbitrary chiral index can exhibit a D mode in their Raman spectrum, in contrast
to previous symmetry-based arguments. Furthermore, we give a direct quantification of the curvature-induced
phonon frequency corrections of the D mode in CNTs with respect to graphite.
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I. INTRODUCTION

Carbon materials such as graphene and single-walled
carbon nanotubes (CNTs) have attracted much scientific
interest in the past decades [1,2]. Their extraordinary prop-
erties have made them a perfect candidate for applications
in novel electronic devices such as transistors or sensors
[3–5]. Here, devices with precisely designed electronic and
optical properties, which may be realized by functionalization
of the CNTs, are most important [6–8]. The success of
a functionalization is often monitored by investigating the
increase of the Raman D-mode intensity [9]. This mode
stems from transverse optical (TO) phonons around the K

points of the graphene Brillouin zone and is activated by
breaking the translational invariance, thus relieving selection
rules [10]. Although the defect-related origin of the D mode
had been known for a long time, the underlying Raman
processes remained unclear [11]. Thomsen and Reich [12]
solved this longstanding question by introducing the double-
resonant scattering theory for graphitic systems, explaining
the anomalous dispersion of certain Raman modes, e.g., the D

and 2D modes, with laser excitation energy [13]. However, the
double-resonant D mode was thought to exist only in CNTs
where the conduction (valence) band had a local minimum
(maximum) at 2π/(3a) of the Brillouin zone [14], where a is
the translational period of the CNT. This relation is particularly
true for armchair carbon nanotubes and other metallic tubes
with R = 3, i.e., (n1 − n2)/(3n) = integer [1,15], where n

is the greatest common divisor of the chiral indices n1 and
n2. In contrast, semiconducting CNTs were predicted to
not exhibit a D mode with the same systematic excitation
energy dependence of its frequency [14]. However, recent
experiments on semiconducting CNT samples enriched with
single chiral indices demonstrated the existence of a D mode
in CNTs that do not satisfy the aforementioned restriction
[16]. Furthermore, there is an ongoing discussion about the
dependence of the D-mode frequency ωD in CNTs on the tube
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diameter and the transition energy. During the past decade
many different explanations have been postulated, which are
still under discussion. For instance, Souza Filho et al. [17]
demonstrated an inverse diameter dependence of the D-mode
frequencies, whereas Refs. [18,19] discussed a dependence
proportional to the tube diameter. Thus, the systematics of
these scattering processes is still not fully understood and
needs clarification.

In this work, we derive a universal, geometrical model
that describes the dependence of the resonant phonon wave
vector in the double-resonant scattering process on the tube
diameter and the transition energy of the process for all tubes
with arbitrary chiral indices, revoking the previously predicted
restriction of the D mode to particular CNTs. Our model is
based on the symmetry of the hexagonal lattice only and is
thus universally valid, no matter which approximation for the
electronic band structure or phonon dispersion is used. We
apply this model to investigate the diameter dependence of the
D mode in CNTs for the resonant optical transition, which
is still under discussion. We point out that, depending on
the specific experimental conditions, in general two different
diameter dependencies can be observed. Furthermore, we
highlight the importance of nanotube curvature effects on the
phonon frequencies to explain the experimentally observed
dispersion of the D mode. Finally, we derive a diameter
correction for the D-mode frequencies in CNTs with respect
to the D-mode frequency in graphite.

II. SIMULATION DETAILS

All geometric considerations in this paper are based on
the symmetry operations of the hexagonal lattice of graphene.
Hence, within the framework of zone folding, the results do not
depend on the choice of the model to describe the electronic
band structure or the phonon dispersion.

The calculcations of electronic band structures and phonon
dispersions in this work are based on the POLSYM code in
the sixth-nearest-neighbor approximation [20]. This package
uses the modified group projector technique and includes
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FIG. 1. (Color online) Illustration of the double-resonant scat-
tering process between two energetically equivalent minima in the
helical band structure of a (5,3) tube. The transition energy is labeled
as Eii , the position of the electronic minimum as kmin, and the resonant
phonon wave vector as qres. The translational period is denoted with
a; q reflects the number of subbands in linear representation.

curvature effects in the calculations of the band energies and
phonon frequencies. Electronic bands and phonon dispersions
are calculated for all 274 chiral tubes with diameters between
5 and 25 Å. Furthermore, we use an experimental graphite
phonon dispersion from Ref. [21] for an alternative calculation
of the D-mode frequencies and for comparison with the
POLSYM-derived frequencies.

We model the double-resonant scattering process in CNTs
by assuming that scattering occurs mostly between equivalent
minima in the electronic band structure (compare Fig. 1) [16].
As demonstrated by previous works, the double-resonance
process is dominated by the incoming resonance with excitonic
transitions at Van Hove singularities in the electronic band
structure [22,23], justifying our assumption. Furthermore, we
assume that the phonon frequency �ωphonon = 0 meV, as the
resonant phonon wave vectors in the double-resonance process
depend only weakly on the energy of the involved phonons
[24]. These assumptions do not affect the general validity of
our results in this work.

III. RESULTS AND DISCUSSION

As we mainly consider chiral CNTs, it is convenient to use
the helical representation of the wave vector and electronic
bands for the following analysis [1,25,26]. In the zone-folding
approach, the electronic band structure in helical quantum
numbers is given by the cut of the helical wave vector k̃z with
the electronic π and π∗ bands of graphene along its path in
reciprocal space. The helical wave vector is given by

k̃z = 1

n
(−n2 k1 + n1 k2) + k⊥(n1,n2), (1)

where k1 and k2 are the reciprocal lattice vectors of graphene
(compare Fig. 2) and k⊥ describes the distance in reciprocal
space of the m̃th helical subband from the subband containing
the � point of graphene. This offset can be calculated from
n1 and n2 and is nonzero only if n > 1 [1,25]. For n = 1, the
helical wave vector connects two � points, which are given
by �0 = (0,0) and �1 = (−n2,n1) in units of k1 and k2 (see
Fig. 2). Along k̃z, the electronic band structure and phonon
dispersion presents a quasicontinuous dispersion (compare
Fig. 1), in analogy to kz in linear representation. For a more

FIG. 2. (Color online) Illustration of the dependence between the
electronic transition and the resonant phonon wave vector for a
coprime tube, i.e., n = 1. The black solid line denotes the helical
vector of a (3,2) tube. The solid orange circles mark a minimum in
the electronic band structure (kmin) and the corresponding resonant
phonon wave-vector length (qres), which is twice kmin. The open red
circles denote the closest K points to kmin and qres, respectively. As
can be seen easily, the distance 2h = K2 − qres is always twice the
distance h = K1 − kmin.

detailed derivation of the helical wave vector k̃z and an
introduction to the concept of backfolding the helical wave
vector we refer the reader to the Supplemental Material [27]
and Refs. [25,26].

The D mode results from a double-resonant intervalley
scattering process, including a TO phonon and a defect [12,14].
In Fig. 2 we show the systematics of the D-mode scattering
process for a (3,2) tube. Our approach is of course valid for all
other tubes having more than one subband (see Supplemental
Material [27]). Without loss of generality, we assume that the
minimum in the band structure of a CNT occurs at the position
where the helical vector crosses a K-M-K′ high-symmetry
line, which can be identified with the border of the hexagons
in Fig. 2. The minimum shall have the k-vector kmin (measured
from the � point); hence the resonant phonon wave vector in
the D-mode scattering process has the length qres = 2 kmin.
This implies the so-called q ≈ 2 k rule. We label the K point
closest to the electronic minimum as K1 and refer to its
distance to kmin as h. In general, the distance h is a measure
for the transition energy; i.e., a smaller value for h means a
lower energy and vice versa. The three points �, kmin, and
K1 form a triangle, which is indicated by the dark-gray area
in Fig. 2. By similarity transformation of this triangle, we
obtain the light-gray triangle formed by the points �, qres,
and K2. It is an intrinsic property of the hexagonal Brillouin
zone that doubling the length of the vector between � and a
K point (K1 in Fig. 2) again corresponds to a K point in the
two-dimensional Brillouin zone of graphene (K2 in Fig. 2).
If K1 is the closest K point to kmin, then K2 is the closest
K point to qres. Since all sides of the larger triangle were
doubled, the distance K2 − qres is now twice the distance h.
This means that an electronic transition with a distance h

from K1 results in a resonant phonon vector with a distance
2h from K2 (at the same angle with respect to the closest
K point). Thus, h and 2h are indicative of the energy of
the transition and the D-mode frequency; i.e., a larger value
2h in general means a larger TO phonon frequency and vice
versa. From this we can deduce two important results: First,
tubes with large diameters and thus lower transition energies
exhibit a systematically lower D-mode frequency for the
resonantly enhanced transition compared to small-diameter
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FIG. 3. (Color online) (a) Distance between the resonant phonon wave vector and the closest K point as a function of the tube diameter
for the resonantly enhanced scattering process obtained by a sixth-nearest-neighbor tight-binding model for electronic band structures and
phonon dispersions. (b) Calculated D-mode frequency ωD as a function of the tube diameter. (c) Calculated D-mode frequency as a function
of the laser energy. The experimentally observed jumps between the different transitions are indicated. The legend from panel (a) also applies
to panels (b) and (c). Resonant phonon wave vectors, transition energies, and phonon frequencies were obtained from a six-nearest-neighbor
tight-binding model using the POLSYM code [20] (see text).

tubes. Second, different transitions in a CNT exhibit different
D-mode frequencies. Although these results seem trivial at first
glance, they enable a deeper understanding of the D mode in
CNTs.

If we now also consider trigonal warping effects in the
electronic band structure, the electronic minimum may not be
exactly on the K-M-K′ high-symmetry direction, but slightly
shifted away. This would lead to a slightly different distance
h and angle between kmin and K1. Nevertheless, the distance
between the resonant phonon wave vector qres and K2 is again
2h. Hence, this relation is independent from the exact position
of the electronic minimum, which may differ depending on
the model used in the band structure calculations. Thus,
our results are universally valid as long as zone folding is
an appropriate model to describe the properties of CNTs
[28–30].

Figure 3(a) presents the calculated distance between the res-
onant phonon wave vector and the closest K point for different
optical transitions as a function of the tube diameter d. As
can be seen, the distance 2h decreases with a 1/d dependence.
Ergo, the resonantly enhanced TO phonon frequency decreases
likewise. Furthermore, energetically higher transitions have a
larger distance 2h for the same tube diameter, corresponding
to higher D-mode frequencies. Since the distance 2h directly
depends on the energy of the optical transition of a tube,
we observe a close correspondence between the dependence
shown in Fig. 3(a) and the so-called Kataura plot [31]. By
translating the vector qres − K2 into a phonon frequency
using the POLSYM-calculated phonon dispersions, we obtain
the D-mode frequencies shown in Fig. 3(b). As discussed
before, a larger value for 2h reflects a larger TO phonon
frequency and vice versa; thus, the systematics of this plot
again resembles the systematics of the Kataura plot. We
observe a decreasing D-mode frequency with increasing tube
diameter. Furthermore, electronic transitions with a higher
energy show an increased frequency.

If we plot the D-mode frequency as a function of the
transition energy in Fig. 3(c), we observe an interesting feature
in the D-mode dispersion. The dispersion of the branches is
not continuous. In fact, a small jump in frequency between

different electronic transitions is observed. This frequency
jump has been reported previously in resonance Raman studies
on enriched CNT samples [23,32,33]. As we discuss below,
the observed jump is a direct consequence of curvature effects
on the phonon frequencies and thus cannot be explained
using a simple zone-folding approach. Considering a zone-
folding tight-binding model without any curvature effects,
only the helical vector would depend on n1 and n2, but
not the electronic bands nor the phonon dispersion. Hence,
two different tubes with different diameters but the same
transition energy, i.e., same distance h, would exhibit the same
D-mode frequency, i.e., same distance 2h. Thus, by neglecting
curvature effects, the experimentally observed frequency jump
cannot be explained. However, it is well-known that phonons
in carbon nanotubes show a strong dependence on the tube
diameter due to curvature effects and rehybridization of σ

and π orbitals [34]. For instance, in semiconducting tubes,
the �-point TO phonon frequency (G− mode) decreases
with decreasing tube diameter [35–37]; a similar diameter
dependence of the TO branch is expected around the K point.
Thus, two different tubes with different diameters but similar
transition energies will not have the same D-mode frequency;
i.e., the smaller tube will have a lower frequency compared to
the larger tube. Ergo, in a resonant measurement, one would
observe a jump between different transition branches. In our
calculations, this discontinuity is smaller than experimentally
observed. Furthermore, D mode from the ES

11 transition shows
nearly no dispersion with transition energy. We attribute these
discrepancies to the fact that the Kohn anomaly and the
region around the K point in the TO phonon dispersion is not
well approximated by the model for the phonon dispersion.
Since the resonant phonons from the ES

11 transition stem
from a region close to the K point, small deviations in
the phonon dispersion directly influence the results and, in
our case, lead to an overestimated D-mode frequency with
nearly no dispersion. We expect a larger jump and a better
correspondence to the experiments for calculations using a
nonorthogonal tight-binding model or an ab initio approach.
Nevertheless, the existence of a jump can be reproduced in our
simulations, as seen between ES

11 and ES
22 in Fig. 4(c).
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FIG. 4. (Color online) (a) Schematized experimental data of the
D mode in CNTs (after Refs. [32,33]). The solid lines denote fits
to the experimental data for each transition; the numbers at each
line correspond to the diameter of the tubes (in units of Å). The
dashed line indicates the D-mode dispersion in graphite. (b) D-mode
frequency correction as a function of the tube diameter. The red,
dashed line reflects a fit to the data points. Solid symbols were
obtained from panel (a); open symbols are single-tube measurements
from Refs. [32,33]. (c) Curvature-corrected D-mode dispersion from
applying Eq. (2) on the experimental graphite TO phonon dispersion
from Ref. [21]; resonant phonon wave vectors and transition energies
were obtained from a six-nearest-neighbor tight-binding model (see
text). The experimentally observed discontinuity in the dispersion
between different Eii is reproduced.

Next, we investigate the diameter distribution along a given
optical transition Eii . The energy of a transition is inversely
proportional to the CNT diameter; hence, when following a
D-mode branch while decreasing the transition energy [see
Fig. 3(c)], the diameter increases. Along each Eii branch, the
D-mode frequencies are expected to split up into families that
evolve above and below the average laser-energy-dependent

dispersion of ωD . Furthermore, these families are expected
to exhibit differences in their relative intensity; for a more
detailed discussion we refer the reader to the Supplemental
Material [27].

The above presented results finally harmonize the different
conclusions from previous works where a decreasing D-mode
frequency for a decreasing tube diameter was observed [18,19]
or vice versa [17]. It is very important to point out that,
depending on the experimental conditions, one can generally
observe two different dispersion behaviors. By finely tuning
the laser energy and thus measuring every CNT of a single Eii

branch at its resonance energy, we observe a laser-energy-
dependent D-mode dispersion ωD ∝ 1/d. In this scenario,
a higher D-mode frequency corresponds to smaller CNT
diameters due to the mentioned diameter distribution along
the Eii branches. By using only a single laser energy or
just very few laser energies, a different behavior is observed
[18,19]. This experimental condition corresponds to a vertical
cut through the dispersion relation shown in Figs. 3(c) or
4(a). As can be seen from these figures, there are usually
CNTS from different Eii branches in resonance. Along such
a vertical cut, a higher D-mode frequency corresponds to a
higher tube diameter and we observe a diameter-dependent
D-mode dispersion ωD ∝ d. Both cases are distinctly different
and must be separated carefully.

To finalize our results, we want to give an explicit
expression for the correction of the D-mode frequency as a
function of the tube diameter with respect to the D-mode
frequency in graphite. As pointed out before, the phonon
frequencies in CNTs show a strong dependence on the tube
diameter. This dependence was shown both experimentally and
theoretically for the radial-breathing mode (RBM) [38–40], as
well as for the G− mode [35–37]. However, a direct evaluation
of this dependence for the D mode is still lacking. Starting
from the schematized experimental D-mode dispersion shown
in Fig. 4(a) taken from Refs. [32,33] and the experimentally
known dispersion of the D mode in graphene and graphite
[10,41], we calculate the frequency differences between both
dispersions and plot them as a function of the tube diameter.
Since the D mode in graphene and graphite does not include
any curvature effects, the difference between those dispersions
is a direct measurement of the diameter-dependent correction
of the D-mode frequency. The result of this calculation is
shown by solid and open circles in Fig. 4(b). As expected, the
frequency correction is always negative and converges to zero
for increasing tube diameter. The dashed line reflects a fit to
the data derived from a classical mechanical model (see the
Supplemental Material [27]), using the formula

�ωD(d) = A

⎡⎣√
1 −

(
2.13 Å

d

)2

− 1

⎤⎦. (2)

Here, d is the tube diameter and A is a fit parameter obtained
from fitting the data points in Fig. 4(b) and was determined as
A = 593 cm−1.

In the following, we apply the above result to calculated D-
mode frequencies obtained from a phonon dispersion that does
not include curvature-induced effects. We use the calculated
electronic minima and resonant phonon wave vectors from our
sixth-nearest-neighbor model and obtain the resonant phonon
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frequencies from an experimentally measured TO phonon
dispersion of graphite from Ref. [21]. The CNT diameters
in this calculation were chosen to fit the experimentally
measured nanotubes from Refs. [32,33]; i.e., only tubes with
diameters between 6 and 14 Å were considered. Without
curvature corrections, a linear dependence between transition
energy and D-mode frequency is observed. By applying
the diameter-dependent frequency correction according to
Eq. (2), CNTs with smaller diameter observe a larger frequency
downshift than nanotubes with large diameters with respect to
the graphite D-mode dispersion. Thus, the slope of the laser-
energy-dependent D-mode dispersion in CNTs is reduced
compared to the dispersion in graphite [compare Fig. 4(a)].
As a consequence, a discontinuity opens between different
transitions. In our curvature-corrected D-mode dispersion
from Fig. 4(c), this discontinuity can be seen again most
clearly between ES

11 and ES
22 (approximately 15 cm−1). For

energetically higher transitions, the frequency jump decreases,
e.g., the difference between ES

22 and EM
11 is approximately

9 cm−1. Although the calculated frequency difference is
smaller than experimentally observed, the experimentally
observed discontinuity is reproduced in our simulations and
is shown to be a consequence of the diameter dependence of
phonon frequencies in CNTs.

IV. CONCLUSION

In summary, we derived a theroretical model to describe
the double-resonant scattering process in arbitrary CNTs. We

applied this model to describe the diameter dependence of
the D mode in CNTs for the resonant optical transitions. The
presented approach is independent of the specific calculational
model used for the electronic band structure or phonon
dispersion and is therefore universally valid. We showed that,
depending on the experimental conditions, in general two
different diameter dependencies can be observed, i.e., ωD ∝
1/d along a given Eii branch and ωD ∝ d for measurements
with a narrow range of excitation energies. Furthermore, we
proved that the experimentally observed discontuinity between
different transition branches is due to curvature effects that
alter the TO phonon dispersion at the K point. Finally, we
derived a quantification of the diameter-dependent frequency
correction of the D mode in CNTs with respect to the D mode
in graphite. The presented results answer the longstanding
question regarding the diameter dependence of the D mode
in CNTs. Finally, we want to explicitly point out that our
approach is equally valid for all other double-resonant Raman
modes in CNTs and can be easily expanded to intravalley
scattering processes.
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[22] J. Kürti, V. Zólyomi, A. Grüneis, and H. Kuzmany, Phys. Rev.
B 65, 165433 (2002).

[23] J. Laudenbach, F. Hennrich, M. Kappes, and J. Maultzsch,
Phys. Status Solidi B 249, 2460 (2012).

235409-5

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1126/science.1060928
http://dx.doi.org/10.1126/science.1060928
http://dx.doi.org/10.1126/science.1060928
http://dx.doi.org/10.1126/science.1060928
http://dx.doi.org/10.1038/29954
http://dx.doi.org/10.1038/29954
http://dx.doi.org/10.1038/29954
http://dx.doi.org/10.1038/29954
http://dx.doi.org/10.1038/nmat1967
http://dx.doi.org/10.1038/nmat1967
http://dx.doi.org/10.1038/nmat1967
http://dx.doi.org/10.1038/nmat1967
http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
http://dx.doi.org/10.1126/science.1087691
http://dx.doi.org/10.1126/science.1087691
http://dx.doi.org/10.1126/science.1087691
http://dx.doi.org/10.1126/science.1087691
http://dx.doi.org/10.1038/nchem.1010
http://dx.doi.org/10.1038/nchem.1010
http://dx.doi.org/10.1038/nchem.1010
http://dx.doi.org/10.1038/nchem.1010
http://dx.doi.org/10.1021/ja308969p
http://dx.doi.org/10.1021/ja308969p
http://dx.doi.org/10.1021/ja308969p
http://dx.doi.org/10.1021/ja308969p
http://dx.doi.org/10.1098/rsta.2004.1454
http://dx.doi.org/10.1098/rsta.2004.1454
http://dx.doi.org/10.1098/rsta.2004.1454
http://dx.doi.org/10.1098/rsta.2004.1454
http://dx.doi.org/10.1063/1.1674108
http://dx.doi.org/10.1063/1.1674108
http://dx.doi.org/10.1063/1.1674108
http://dx.doi.org/10.1063/1.1674108
http://dx.doi.org/10.1103/PhysRevLett.85.5214
http://dx.doi.org/10.1103/PhysRevLett.85.5214
http://dx.doi.org/10.1103/PhysRevLett.85.5214
http://dx.doi.org/10.1103/PhysRevLett.85.5214
http://dx.doi.org/10.1103/PhysRevB.70.155403
http://dx.doi.org/10.1103/PhysRevB.70.155403
http://dx.doi.org/10.1103/PhysRevB.70.155403
http://dx.doi.org/10.1103/PhysRevB.70.155403
http://dx.doi.org/10.1103/PhysRevB.64.121407
http://dx.doi.org/10.1103/PhysRevB.64.121407
http://dx.doi.org/10.1103/PhysRevB.64.121407
http://dx.doi.org/10.1103/PhysRevB.64.121407
http://dx.doi.org/10.1103/PhysRevB.60.2728
http://dx.doi.org/10.1103/PhysRevB.60.2728
http://dx.doi.org/10.1103/PhysRevB.60.2728
http://dx.doi.org/10.1103/PhysRevB.60.2728
http://dx.doi.org/10.1103/PhysRevB.87.165423
http://dx.doi.org/10.1103/PhysRevB.87.165423
http://dx.doi.org/10.1103/PhysRevB.87.165423
http://dx.doi.org/10.1103/PhysRevB.87.165423
http://dx.doi.org/10.1103/PhysRevB.65.035404
http://dx.doi.org/10.1103/PhysRevB.65.035404
http://dx.doi.org/10.1103/PhysRevB.65.035404
http://dx.doi.org/10.1103/PhysRevB.65.035404
http://dx.doi.org/10.1103/PhysRevB.64.041401
http://dx.doi.org/10.1103/PhysRevB.64.041401
http://dx.doi.org/10.1103/PhysRevB.64.041401
http://dx.doi.org/10.1103/PhysRevB.64.041401
http://dx.doi.org/10.1103/PhysRevB.67.035427
http://dx.doi.org/10.1103/PhysRevB.67.035427
http://dx.doi.org/10.1103/PhysRevB.67.035427
http://dx.doi.org/10.1103/PhysRevB.67.035427
http://dx.doi.org/10.1103/PhysRevB.80.085423
http://dx.doi.org/10.1103/PhysRevB.80.085423
http://dx.doi.org/10.1103/PhysRevB.80.085423
http://dx.doi.org/10.1103/PhysRevB.80.085423
http://dx.doi.org/10.1103/PhysRevB.65.165433
http://dx.doi.org/10.1103/PhysRevB.65.165433
http://dx.doi.org/10.1103/PhysRevB.65.165433
http://dx.doi.org/10.1103/PhysRevB.65.165433
http://dx.doi.org/10.1002/pssb.201200175
http://dx.doi.org/10.1002/pssb.201200175
http://dx.doi.org/10.1002/pssb.201200175
http://dx.doi.org/10.1002/pssb.201200175


HERZIGER, VIERCK, LAUDENBACH, AND MAULTZSCH PHYSICAL REVIEW B 92, 235409 (2015)

[24] P. Venezuela, M. Lazzeri, and F. Mauri, Phys. Rev. B 84, 035433
(2011).

[25] M. Damnjanović, T. Vuković, and I. Milošević, J. Phys. A 33,
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