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Fractal butterflies of chiral fermions in bilayer graphene: Phase transitions and emergent properties
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We have studied the influence of electron-electron interaction on the fractal butterfly spectrum of Dirac
fermions in biased bilayer graphene in the fractional quantum Hall effect (FQHE) regime. We demonstrate that
the butterfly spectrum exhibits remarkable phase transitions between the FQHE gap and the butterfly gap for
chiral electrons in bilayer graphene, when the periodic potential strength or the bias voltage is varied. We also
find that, in addition to those phase transitions, by varying the bias voltage one can effectively control the periodic
potential strength experienced by the electrons. The electron-electron interaction causes the butterfly spectrum
to exhibit new gaps inside the Bloch sub-bands not found in the single-particle case. We expect that both the
observed phase transition and other new features in the butterfly spectrum of interacting Dirac fermions will be
of great interest to researchers from diverse fields.
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I. INTRODUCTION

The dynamics of an electron on a two-dimensional periodic
lattice subjected to a magnetic field has been of interest in
physics and mathematics for several decades. The eponymous
Harper introduced in 1955 [1] the Hamiltonian for a Bloch
particle on a square lattice in a magnetic field, the solution of
which [2] resulted in the famous Hofstadter butterfly spectrum.
One of the most interesting features of the spectrum is its
self-similar nature, indicating that it is a member of the class
of fractal patterns. The Harper equation has been extensively
studied in mathematics, where a rigorous mathematical proof
that the Hofstadter butterfly is a representative of a Cantor
set and therefore is a fractal spectrum has been presented (the
so-called ten Martini problem) [3]. In the field of physics,
the butterfly spectrum has been viewed as the quantum phase
diagram with infinitely many phases [4]. There were several
attempts to realize the butterfly spectrum experimentally in
many branches of physics, viz., optics [5], acoustics [6],
cold atoms [7], and nanoscale superlattices [8]. Finally, in
2013, monolayer or bilayer graphene [9,10] placed on a
hexagonal boron nitride substrate with rotational misalignment
between graphene and the substrate revealed the unique fractal
pattern of the butterflies [11–13] in the energy spectrum of
noninteracting Dirac fermions. That particular arrangement
of graphene on the substrate resulted in the moiré pattern,
which actually introduces a large-scale periodicity in the
Hamiltonian of the system, and the fractal butterfly pattern was
the result of splitting of the moiré minibands (secondary Dirac
cones) by the magnetic field that are exhibited in the mag-
netoconductance probe [14]. After that exciting experimental
discovery of the fractal butterflies, more recent studies (both
theoretical [15] and experimental [16]) have focused on the
influence of the electron-electron interaction on the butterfly
spectrum. Electronic properties of Dirac fermions in mono-
layer and bilayer graphene have been exhaustively studied
in recent years [9,10,17]. In a strong perpendicular magnetic
field, interacting Dirac fermions [18] display the fractional
quantum Hall Effect (FQHE) states [19] in monolayer [20]
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and bilayer graphene [17,21], that has also been experimentally
observed [22]. The interaction effects in the fractal butterflies
are, of course, more complex in the fractional quantum Hall
effect regime, where one observes an interplay between the
quantum Hall effect gap and the Hofstadter gap [23].

Interestingly, in this work we find that the butterfly spectra
exhibit remarkable phase transitions for chiral electrons in
bilayer graphene. We found that bilayer graphene has the
unique advantage that it offers the possibility to essentially
control the periodic potential strength via the bias voltage
and therefore control the transition between two quantum
phases. At small values of the periodic potential strength,
the system can be described as interacting electrons in high
magnetic fields and therefore we enter the regime of the FQHE.
By increasing the periodic potential strength, we observe a
phase transition into the Hofstadter butterfly spectrum which
now includes the electron-electron interaction. The important
observation of our present work is that the electron-electron
interaction results in the generation of new gaps in the
butterfly spectrum inside the Bloch sub-bands, not expected
in the single-particle case. This has important implications
for experimental observation of these effects in graphene
butterflies [24]. Our prediction (and eventual experimental
confirmation) of new quantum phase transitions in the FQHE
regime will be interesting for researchers in various subfields
of physics. For example, as the interaction effects can be
investigated experimentally for cold atoms in optical lattices,
our predictions will perhaps motivate further experiments
in that direction [7]. Our work will also be of interest to
researchers active in the field of quantum Hall effect, as it
will extend previous studies of quantum phase transitions in
the integer quantum Hall effects [4] to the FQHE regime.
Of course, it will also be interesting for researchers working
with graphene superlattices on top of the hexagonal boron
nitride [24].

II. THEORETICAL FRAMEWORK

We consider bilayer graphene with Bernal (AB) stacking in
an external periodic potential with square symmetry [15,25–
27]. We label the layers of bilayer graphene by the indices 1
and 2 and assume that the periodic potential is present only
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in layer 1. The single-particle Hamiltonian in a magnetic field
(without the periodic potential) is written [9,10,17,28]

Hbi
ξ = ξ

⎛
⎜⎜⎝

U
2 vF π− 0 0

vF π+
U
2 ξγ1 0

0 ξγ1 −U
2 vF π−

0 0 vF π+ −U
2

⎞
⎟⎟⎠, (1)

where π± = πx ± iπy , π = p + eA/c, p is the two-
dimensional electron momentum, A = (0,Bx,0) is the vector
potential, vF ≈ 106 m/s is the Fermi velocity in graphene, U

is the interlayer bias voltage, γ1 ≈ 0.4 eV is the interlayer
hopping integral, and ξ = 1 for the K valley and ξ = −1 for
the K ′ valley. The corresponding wave function is described
by a four-component spinor (ψA1

,ψB1
,ψA2

,ψB2
)T for valley

K and (ψB2
,ψA2

,ψB1
,ψA1

)T for valley K ′, where ψA and
ψB are wave functions of sublattices A and B, respectively.
We consider the fully spin-polarized electron system and
therefore disregard the Zeeman energy. The eigenfunction of
the Hamiltonian (1) then has the form

�n,j =

⎛
⎜⎜⎝

ξC1ϕn−1,j

C2ϕn,j

C3ϕn,j

ξC4ϕn+1,j

⎞
⎟⎟⎠, (2)

where C1,C2,C3,C4 are constants and ϕn,j is the electron wave
function in the nth Landau level (LL) with the parabolic dis-
persion, taking into account the periodic boundary conditions
(PBCs) [19,29]:

ϕn,j (x,y) = 1√
Lyπ

1/2�02nn!

∞∑
k=−∞

e
i

�2
0

(Xj +kLx )y

× e
− (x+kLx+X

j
)2

2�2
0 Hn

(
x + kLx + Xj

�0

)
, (3)

where Xj = 2πj�2
0/Ly , �0 = √

c�/eB is the magnetic length,
Hn(x) are the Hermite polynomials, and Lx and Ly describe the
size of the system. In the wave function (2) the LL index n can
take the values −1,0,1, . . . and we assume that if the LL index
of ϕn,j is negative then it is identically equal to zero. Then,
for n = −1 the wave function (2) is �−1,j = (0,0,0,ϕ0,j ) and
there is only one energy level corresponding to this case. For
n = 0, C1 = 0 and there are three energy states. Following
the convention for indexing the energy levels introduced in
Ref. [17], we label the states for n = −1 and 0 as 0(ξ )

i ,
where i = −2,−1,1,2 is the label of states in ascending order
of the energy values. In particular, for valley K the state
corresponding to n = −1 has the index 0(+)

−1 and 0(−)
1 for valley

K ′.
The complete many-body Hamiltonian for this system can

be written as

H =
Ne∑
i

[
Hbi

ξ + V (xi,yi)
] + 1

2

Ne∑
i �=j

Vij . (4)

Here the second term is the periodic potential, which is nonzero
only for the components of layer 1 and has the form

V (x,y) = V0[cos(qxx) + cos(qyy)], (5)

where V0 is the amplitude of the periodic potential and
qx = qy = q0 = 2π/a0, where a0 is the period of the external
potential. The last term in Eq. (4) is the Coulomb interaction.
Defining the parameter α = φ0/φ (the inverse of the magnetic
flux through the unit cell measured in units of the flux
quantum), where φ = Ba2

0 is the magnetic flux through the
unit cell of the periodic potential and φ0 = hc/e is the flux
quantum, we consider two magnetic field strength values in
this work corresponding to α = 1/2 and 1/3. The Coulomb
interaction energy (≈e2/ε�0) is around 102 meV for α = 1/2
and 125 meV for α = 1/3, whereas the LL separation is of the
order of 200 meV for these magnetic field strengths. As shown
below the Hofstadter gap is around 5 meV for α = 1/2 and
11 meV for α = 1/3 and is comparable to or larger than the
FQHE gap for 1/3 filling (around 4 meV). This means that
the valley mixing terms due to the Coulomb interaction and
the warping terms due to the band structure of bilayer
graphene [9] will have similar or even less impact on the
Hofstadter gap compared to the FQHE gap. Therefore we
can ignore them in our calculations, based on the results
for the FQHE gap [17,21]. As for the valley mixing due to
the periodic potential, it is expected to be extremely small
due to the two orders of difference between the periodic
potential lattice constant and the bilayer graphene lattice
constant [23,30]. Therefore we ignore the valley mixing due to
the periodic potential as well. Both the interlayer bias voltage
and the periodic potential break spatial inversion symmetry and
therefore the valley degeneracy is lifted in this system [31].

For the many-body problem we consider a system of finite
number Ne of electrons in a toroidal geometry, i.e., the size
of the system is Lx = Mxa0 and Ly = Mya0 (Mx and My

are integers), and we apply PBCs in order to eliminate the
boundary effects. It can be deduced that Ns/(MxMy) = 1/α,

where Ns is the number of magnetic flux quanta passing
through the system or, alternatively, it describes the LL
degeneracy for each value of the spin and valley index and
takes integer values. The filling factor is defined as ν =
p/q = Ne/Ns , where p and q are again coprime integers. In
order to solve this problem we first construct the Hamiltonian
matrix using the Hamiltonian operator (4) and the many-body
states |j1,j2, . . . ,jNe

〉 (besides ji , each single-particle state
is characterized by the LL and valley indices which are not
shown, but are implicitly assumed to be included in the
indices ji) which are constructed from the single-particle
eigenvectors (2). After that we use the translational symmetry
of the system to reduce the size of the Hilbert space. It is
easy to show [19,23,30,32,33] that the translations which
commute with the many-body Hamiltonian (4) and also respect
the imposed PBC are the center-of-mass (CM) translation
operators defined as

T CM(a) =
Ne∏
i=1

Ti(a) (6)

with the translation of the form ap = mβ1a0x̂ + nβ2a0ŷ. Here
Ti(a) is the single-particle translation operator, m and n are
integers which characterize the translation vector ap, and β1

and β2 are again integers which are determined from the
condition that the CM translation operators should commute
with each other for different values of m and n. β1β2 describes
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the degeneracy of the states characterized with the same
eigenvalue of the CM translation operator. The eigenvalues
of the CM translation operator are defined through the CM
momentum of the system, and therefore this approach also
makes it possible to characterize each eigenstate of the system
with its CM momentum. It can be shown [19,30] that the
eigenstates of the CM translation operator have the form

|(s,t)〉 = 1√|L|
|L|−1∑
k=0

e
−i2π

β1s

Mx
k

× |j1 + β1κxk,j2 + β1κxk, . . . ,jNe
+ β1κxk〉, (7)

where s and t are integers defined modulo Mx/β1 and My/β2,
respectively, and characterize both the eigenvalues of T CM(a)
and CM momentum of the system. κx is an integer defined
through the relation Ns = κxMx and |L| defines the size of the
set L which is the set of the states related to each other by the
relation∣∣j ′

1,j
′
2, . . . ,j

′
Ne

〉 = ∣∣j1 + kβ1κx,j2 + kβ1κx, . . . ,jNe
+ kβ1κx

〉
,

(8)

which is finite because ji are defined modulo Ns . Using the
eigenstates (7) the complete Hamiltonian matrix of the many-
body system can be brought into the block-diagonal form,
where each block can then be diagonalized using the exact
diagonalization procedure.

III. RESULTS AND DISCUSSION

In this work we consider the filling factor ν = 1/3 for a
fully spin-polarized system and for α = 1/2 and 1/3. The
period of the external potential is taken to be a0 = 20 nm,
and the interlayer hopping integral is taken to be γ1 =
30 meV [21], which can be achieved by applying an in-plane
magnetic field [17]. The number of many-body basis states
|j1,j2, . . . ,jNe

〉 is determined by the binomial coefficient C
Ne

Ns
,

which is 495 for Ne = 4, 18 564 for Ne = 6, and 735 471 for
Ne = 8 for the filling factor considered in this work. As was
noted above using the CM translation algebra the complete
Hamiltonian matrix can be brought into the block-diagonal
form where each block size is β1β2C

Ne

Ns
/MxMy . For the values

of α considered in this work β1 and β2 can be chosen to
be equal to 1 [30] and MxMy can be determined from the
equation MxMy = Nsα. For example, for Ne = 6 the MxMy =
9 for α = 1/2 and MxMy = 6 for α = 1/3. This matrix size
reduction is smaller than for the case of the system without a
periodic potential, where the relative translation algebra can
be used to reduce the size of the block to p2C

Ne

Ns
/N2

e [19]. Due
to this major disadvantage in the present case and also due
to the additional nonzero matrix elements in the presence of
the periodic potential, evaluation of energy levels for Ne = 8
becomes considerably complicated. Therefore we consider in
this work systems comprising up to Ne = 6 electrons.

In Fig. 1 the regions of the bias voltage where the gap
corresponds to the butterfly region or the FQHE region for
Ne = 4 (a,c) and Ne = 6 (b,d) for LL 0(+)

i are presented by
the color of filled dots. The filled dots are figuratively plotted
on top of the dependence of LLs on the bias voltage, which

FIG. 1. (Color online) The Landau levels for n = −1 and 0 vs
the bias voltage U for two values of α without taking into account
the periodic potential. The numbers next to the curves denote the
corresponding Landau level as described in the text. The regions
where the gap corresponds to the FQHE (butterfly) gap are drawn as
blue (red) dots. Results in (a) and (c) are for Ne = 4 while those in (b)
and (d) are for Ne = 6. In the FQHE and butterfly gap calculations
the periodic potential strength is V0 = 20 meV.

does not take the periodic potential into account. The periodic
potential strength V0 is taken to be V0 = 20 meV. In order
to understand the phase transitions observed in Fig. 1 the
wave functions and also the impact of the bias voltage on
these wave functions should be analyzed for each LL. As
mentioned above, for level 0(+)

−1 the wave function has a nonzero
component only in layer 2 and this remains true for all values
of the bias voltage. Due to the fact that the periodic potential is
present only in the first layer, the wave functions and therefore
also the FQHE gaps do not depend on the bias voltage for
LL 0(+)

−1 and there is no phase transition. In the LL 0(+)
−2 , for

U = 0 the electrons are mostly located in layer 2, although
they have small probability of being in layer 1. Increasing the
bias voltage, both the single-particle and the many-particle
system become even more polarized in layer 2, and therefore
the periodic potential has a negligible impact on this level
as well and we observe the FQHE gap for all values of U .
The situation is different for LL 0(+)

1 and 0(+)
2 . For U = 0 the

electrons in 0(+)
1 are mostly localized in layer 1 and therefore

the periodic potential has a drastic impact in this case.
In monolayer graphene the magnitude of the periodic

potential V0 = 20 meV for Ne = 4 and 6 and for both values
of α closes the FQHE gap and opens the butterfly gap [23].
It should be pointed out that for α = 1/2 there is no gap in
the butterfly spectrum for noninteracting electrons, but the
electron-electron interaction opens a gap [15]. However, for
α = 1/3 the gap is due to both the Hofstadter gap observed
in the single-particle case and the contribution from the
electron-electron interaction. Therefore, the gap for LL 0(+)

1
corresponds to the butterfly gap for low values of the bias
voltage U . The electrons in 0(+)

2 are mostly localized in layer 2
and therefore the periodic potential has only a minor effect on
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FIG. 2. (Color online) The dependence of FQHE and butterfly
gaps for Ne = 4 electrons on the bias voltage U and the Landau levels
0(+)

1 and 0(+)
2 for two values of α, with the periodic potential strength

V0 = 20 meV. The line corresponding to the FQHE (butterfly) case
is depicted in red (blue). The region of the bias voltage U where the
gap corresponds to the FQHE gap is marked in cyan.

them. Hence for the 0(+)
2 LL the FQHE gap is observed for low

values of the bias voltage U . By increasing the bias voltage
U there is an anticrossing between these two LLs (0(+)

1 and
0(+)

2 ) and thereafter the layer polarization in each LL changes
drastically. In particular, for the LL 0(+)

1 at the bias voltage
U = 250 meV the probabilities of electrons being localized
in layer 2 and of the electrons in LL 0(+)

2 being localized in
layer 1 are already ≈0.95. This results in a phase transition
in both LLs; namely, the gap in the LL 0(+)

1 which initially
represented the butterfly gap now corresponds to the FQHE
gap. The opposite behavior occurs for the LL 0(+)

2 .
The closure of the FQHE gap by the external periodic

potential also occurs in monolayer graphene [23]. However,
in bilayer graphene one can control the actual strength of the
periodic potential experienced by the electrons essentially by
applying the bias voltage. The implications of this interesting
result will be discussed below. The described behavior is
almost the same for both values of α = 1/2 and 1/3. The
essential difference between these two cases is that the butterfly
gap for α = 1/3 is substantially bigger than that for α = 1/2.
Therefore the bias voltage U required to observe the phase
transition from the butterfly region to the FQHE region for
the LL 0(+)

1 is bigger for α = 1/3 than for α = 1/2. Similar
studies for the K ′ valley exhibit the same phase transitions for
the LLs 0(−)

−2 and 0(−)
−1 in the negative energy region.

In Fig. 2, the dependence of both the FQHE and the butterfly
gaps for Ne = 4 electrons on the bias voltage U for Landau
levels 0(+)

1 and 0(+)
2 and for two values of α is shown for

V0 = 20 meV. The region of the bias voltage U where the
gap corresponds to the FQHE and the butterfly gap is also
indicated. As was already pointed out, the layer polarization
of the electrons changes drastically near the anticrossing point
of the LLs 0(+)

1 and 0(+)
2 and the consequence of that can be

FIG. 3. (Color online) The dependence of FQHE and butterfly
gaps for Ne = 4 electrons on the periodic potential strength V0

for Landau levels 0(+)
1 and 0(+)

2 and for the bias voltages U = 0
and 200 meV, and α = 1/2. The line corresponding to the FQHE
(butterfly) is depicted in red (blue). The region of the periodic
potential strength V0 where the gap corresponds to the FQHE gap
is marked in cyan.

clearly seen in the dependence of the gaps on the bias voltage
U . In Fig. 2, in the regions further away from the anticrossing
point the gaps are almost constant and fall rapidly to zero when
approaching the anticrossing point. Also it can be clearly seen
that the FQHE gap is almost the same for both LLs and for
both values of α, whereas the butterfly gap is almost twice
as big for α = 1/3 compared to that of α = 1/2 as explained
above.

The dependence of both the FQHE and the butterfly gaps
for Ne = 4 electrons on the periodic potential strength V0 for
Landau levels 0(+)

1 and 0(+)
2 is shown in Fig. 3 for the bias

voltages U = 0 and 200 meV, and for α = 1/2. The same
dependence for α = 1/3 is shown in Fig. 4. The region of the
periodic potential strength V0 where the gap corresponds to
the FQHE and the butterfly gaps is also indicated. In Figs. 3
and 4, similar phase transitions between the FQHE and the
butterfly gaps are observed as well, although the dependence
of the gap on the periodic potential strength V0 is almost linear
in comparison to the dependence on the bias voltage U . No
phase transition is observed for the LL 0(+)

2 and U = 0 meV,
because as was noted above in this case the electrons are mostly
localized in layer 2 and the periodic potential has almost no
impact on the physical system. This feature is not observed
for U = 200 meV, because as we noted above application of a
bias voltage gradually polarizes the electrons for the LL 0(+)

2
from layer 2 to layer 1 and the effect of the periodic potential
is apparent already for U = 200 meV. A similar behavior is
observed for LL 0(+)

1 , where the application of the bias voltage
results in widening of the FQHE gap region for both values
of α. While the butterfly gap is almost linear for α = 1/3 in
Fig. 4, which indicates that the main contribution here is due
to the Hofstadter gap (single particle), for α = 1/2 (Fig. 3) it
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FIG. 4. (Color online) Same as in Fig. 3 but for α = 1/3.

deviates from the linear behavior in some cases. This indicates
that the butterfly gap due to the interaction is highly nontrivial.

While the closure of the FQHE gap and opening of the
butterfly gap due to the external periodic potential occurs
in monolayer graphene [23], one cannot control the periodic
potential strength in that system. Therefore, there is no direct
means to vary the periodic potential strength in the experiment.
Our work indicates that in bilayer graphene this is achieved by
applying a bias voltage on the sample. In fact, the variation of
the bias voltage offers us the ability to control the polarization
of the electrons between the two layers, which essentially
translates to the control of the strength of the periodic potential.
Further, it also exhibits the phase transition between the FQHE
gap and the butterfly gap. The obtained phase transitions
can be observed through Hall conductance measurements on
bilayer graphene placed on a hexagonal boron nitride substrate.

By changing the bias voltage potential from 0 to 300 meV
and keeping the electron density unchanged the transitions
between the fractional (corresponding to the FQHE gap) [19]
and the integer (corresponding to the butterfly gap) [34] Hall
conductances could possibly be observed in the experiment.
Therefore the obtained results of the current paper can have
significant implications for experimental realization of the
fractal butterflies in the FQHE regime.

IV. CONCLUSION

In conclusion, we have utilized the exact diagonalization
scheme to study the FQHE and the butterfly gaps in bilayer
graphene in the presence of the applied interlayer bias voltage
and for the filling factor ν = 1/3. We have considered the case
when the external periodic potential is present in one layer
and have illustrated the effect of varying both the periodic
potential strength and the bias voltage on the FQHE and the
butterfly gaps. Two values of the parameter α were considered,
namely, α = 1/2 and 1/3. We found that by varying either the
periodic potential strength or the bias voltage for some Landau
levels in both valleys a phase transition from the FQHE gap
to the butterfly gap or vice versa can be observed. While the
periodic potential strength is characteristic of the sample used
in the experiment and cannot be varied directly, our finding
shows that, by varying the bias voltage, change of the periodic
potential strength actually experienced by the electrons can be
achieved, which can have a huge impact on the experimental
investigation of the fractal butterflies in the FQHE region.
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4018 (1996); 83, 5559 (1999); Phys. Rev. B 39, 7971 (1989);
V. M. Apalkov, T. Chakraborty, P. Pietiläinen, and K. Niemela,
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