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Entangling two quantum bits by letting them interact is the crucial requirement for building a quantum
processor. For qubits based on the spin of the electron, these two qubit gates are typically performed by exchange
interaction of the electrons captured in two nearby quantum dots. Since the exchange interaction relies on tunneling

of the electrons, the range of interaction for conventional approaches is severely limited as the tunneling amplitude
decays exponentially with the length of the tunneling barrier. Here, we present an approach to couple two spin
qubits via a superconducting coupler. In essence, the superconducting coupler provides a tunneling barrier for
the electrons which can be tuned with exquisite precision. We show that as a result exchange couplings over a
distance of several microns become realistic, thus enabling flexible designs of multiqubit systems.
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I. INTRODUCTION

Semiconductor based electron-spin qubits have made sig-
nificant progress towards scalability. Single qubit gate fidelities
demonstrated in some devices meet the requirements for
quantum error correction [1,2], with other approaches not
being far behind [3-5]. Two qubit gates have also been realized
[6,7], and adequate fidelities seem within reach [2]. However,
all these gates act over a very limited range of typically
less than 1 um, which severely constrains scalability as the
resulting small qubit spacing leaves little room for wiring and
local control electronics. For example, a surface code archi-
tecture [8], which is the currently most promising mainstream
approach to error correction, requires a two-dimensional (2D)
lattice of qubits with nearest-neighbor coupling. One possible
solution is to use charge coupling. Simulations indicate that the
coupling range can be extended to at least 10 um with floating
electrostatic couplers [9] while maintaining a strength com-
parable to that demonstrated in experiments with immediately
adjacent qubits [6]. With this coupling strength, the currently
achievable level of charge noise [10] still leads to coherence
times that are two orders of magnitude too short to reach
the required gate fidelities. Another possibility is to transfer
electrons between qubits, e.g., using surface acoustic waves
[11,12] or electrostatic gates [13]. First evidence indicates that
the spin projection can be preserved during such a transfer
[13,14]. While one may hope that one can also achieve spin
coherent transfer, this remains to be shown experimentally.
Furthermore, these approaches entail a rather cumbersome
complexity of the device and its operation.

A very attractive remedy would be to directly extend
the range of tunnel or exchange coupling between localized
electron spins representing a qubit. In principle, this could
be achieved with a very long and shallow tunnel barrier, but
in practice disorder would lead to localization on a scale
of a few hundred nm. Here, we theoretically analyze the
possibility to use a superconductor that is tunnel coupled to
the qubit electrons (Fig. 1) to mediate such coupling over
extended distances without being limited by localization.
Qualitatively, the main idea is to use extended quasiparticle
states for coupling while relying on the gap to freeze out
all the low-energy degrees of freedom in the coupler, thus
suppressing decoherence.

1098-0121/2015/92(23)/235401(6)

235401-1

PACS number(s): 03.67.Lx, 73.21.La, 74.45.4c, 85.35.Gv

A key question is what coupling range and strength can
be achieved with this approach. To address this question for
a simple model system, we compute the exchange coupling
between two distant electrons (e.g., localized in semiconductor
quantum dots) that are tunnel coupled to a 2D superconducting
ground plane and can be detuned electrostatically with respect
to the latter. We derive an expression relating the mediated
coupling strength to that achievable with direct coupling via the
Green’s function of the superconductor, considering both the
ballistic and disordered case. Using realistic estimates of the
relevant parameters, we find that a micron-scale coupling with
a practically useful strength of 10 to 100 MHz is achievable.

An important qualitative result is that the decay length
of the coupling is determined by the detuning between the
quantum dot levels and the upper edge of the superconducting
gap. This detuning can be controlled with high precision via
gate voltages. Therefore, the decay length can be substantially
larger than the superconducting coherence length. This result is
in contrast to alternative proposals [15,16] considering crossed
Andreev reflection as coupling mechanism in a similar setting
and finding a decay on the scale of the coherence length.

The remainder of the paper is organized as follows. In
Sec. II, we discuss the general setup and present its Hamilto-
nian. Section III discusses the results for the case of a clean
superconductor. These results are contrasted in Sec. [V with the
results for the disordered case. In Sec. V, we present realistic
experimental parameters that allow an exchange coupling over
a distance of several microns. Some technical details about the
disorder average are moved to the Appendix.

II. SETUP

We want to study the exchange-coupling strength in a setup
where two semiconducting spin qubits are coupled via a thin
superconducting film [see Fig. 1(a)]. The total Hamiltonian
H = Hp + Hpcs + Hr consists of three parts which we will
discuss individually in the following. The dots can be modeled
by the Hamiltonian Hp = H; + H, with

H;=¢n;+3U;n;(n; —1). (1

It involves the operator n; = ) _nj, counting the number

of electrons in dot j where nj, :d;adja and d;, are
fermionic operators. The two dots are tunnel coupled via a
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FIG. 1. (a) Sketch of the setup analyzed in the paper. Two
semiconducting quantum dots (white ellipses) are tunnel coupled
with strength I" to a two-dimensional superconducting film (dark
gray). The levels of the dot are tunable by the gate voltages V. (b)
Steps in the virtual process leading to the exchange interaction. The
initial conditions with one electron in each quantum dot are shown
to the left. Given the fact that the electrons are in a singlet state, the
following virtual process which is fourth order in Hr may take place:
the electron in the left dot tunnels into the superconductor, where
it propagates as a quasiparticle above the gap. The electron enters
the second dot, which becomes doubly occupied. The two remaining
tunneling processes reverse the path and take the electron back to
the initial state. Note that the reverse path could be also taken by the
other electron, which leads to a spin flip and explains the factor of 2
in Eq. (4).

Hamiltonian H7 to a thin 2D superconducting film of size
L x L. We measure the energies relative to the chemical
potential of the superconductor and assume the tunability of
the level position €; by nearby gates V;. The parameter U; > 0
describes the Coulomb interaction due to the repulsion of
multiple electrons on a single dot. We note that the eigenener-
gies ey, = €iny + 2Uini(ny — 1) + eny + 1Usnay(ny — 1)
of the dot Hamiltonian Hp only depend on the occupation
ny,n, and not on the spin state of the electrons. This is due to
the absence of a magnetic field in our description of the system.
Note that, if needed, the application of a (weak) magnetic
field can be included perturbatively in the end. We seek a
situation where the states |11) at energy &; | = €; + €, and
|02) at energy &p, = 2€3 4+ U, are almost degenerate with
8¢ = €92 — €11 > 0 much smaller than the typical energy
spacing in the dots. In this situation, we only have to take
the states |1,1) and |0,2) into account. The near degeneracy
can be achieved by setting €, = €, + U, — §¢.

We model the thin film of the superconductor by the
conventional BCS Hamiltonian Hgcs = ) ., Ex ,8,1 +Brs- The
spectrum of the superconductor is given by E; = (§7 + A%)!/?
with A > 0 the energy gap of the superconductor and &, =
h*k? /2m — ; here, m is the electron mass and . is the chem-
ical potential of the superconductor. The fermionic Bogoliubov
operators S, are related to conventional electronic degrees of
freedom via the unitary transformation

crr = urPrr + Ukﬁikiv CT_M = —vfry + “kﬁiu @
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with the parameters uy,v; > 0 determined by uf = 1 — v? =
%(1 + &/ E¢). In the following, we denote with |0) the ground
state of the superconductor and correspondingly |ko) =
,B;ia |0) denote the (single-particle) excitations.

Coupling between the superconductor and the dot is
provided by the tunneling Hamiltonian

Hy = —t Y [c](0)d,, + c[(R)d,,] + H.c.

t .
=< > lekydyy +e R el dy 1+ He.,  (3)
ko

where we have taken into account that the two dots are
separated by a distance R (along the x axis). For simplicity, we
have assumed 7 to be the same in the two dots. In the following,
it will be useful to parametrize ¢ by the tunneling rate I' /i in the
normal state with I' = 27¢%py; here, py = m /2w h* denotes
the density of states of the normal state (per spin). Note that
t and thus I' depend exponentially on the distance from the
quantum dot to the superconducting layer which sets a limit
on the depth of the quantum well in which the dots are formed;
we will comment on this requirement at the end of Sec. V.

As we are considering the exchange effect mediated by
the superconductor, an important parameter will be the energy
difference between the initial state &, ; = 2¢; + U, — d¢ and
the intermediate state gy 1 + E;x = €, + Ej with the electron
in the superconducting wire. For the latter to be an excited
state, we demand that |e;; — &9,1| < A. In particular, we are
interested in a situation where €, —&01 = €2 + U, — ¢ is
smaller but not much smaller than A (i.e., the level of dot 1 is
tuned close to the gap edge). We parametrize this by the energy
offset M = A — (e, + U, — §¢) > 0 between the initial state
with one electron in each dot and the intermediate state where
the electron of dot 1 is transferred to the superconductor. Note
that M can be tuned independently of §¢ by e;.

In this situation, the dominant contribution for the exchange
comes from a virtual process where we start from |1,1) going
over to a state |0,1) plus a low-energy excitation in the
superconductor, then we reach |0,2) before we retrace the
steps [see Fig. 1(b)]. In order that this exchange interaction
can lead to a reduction of the ground-state energy, the spins
of the electrons in the initial |1,1) state have to be in a singlet
as otherwise the |0,2) state is forbidden by Pauli exclusion.
The interaction thus assumes the form He, = }11 o1 -0, with
J > 0 the energy difference between the singlet (which is
lowered in energy) and the triplet state (which is unchanged).

Assuming that the spins are in the singlet |1,1s) =
2-12(df,d}, — d],d},)|0), we compute the lowering of the
ground-state energy in fourth-order perturbation theory in
the tunneling Hamiltonian Hy (the triplet energy does not
change as discussed above). We obtain J = aI'?/8s with the
dimensionless coupling constant

2
|5 (0.2:01H7[0.1:k0)(0.1: ko' | Hr |1, 15:0)
“=13 2

2 e1,1 — €01 — Ex

ko

1 2
= szng(R;A—M)\, )
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where we have introduced the Green’s function of the
superconductor

o0
g(r;E) = —i / dt (0lc, (r)e' E-Hecs) /R T (()]0)
0

d*k u,%e”‘"
Q) E — E;

&)

that we will compute in the following. Note that because
we are interested in values £E = A — M < A, we do not
need to distinguish between advanced and retarded Green’s
functions. The exchange interaction J = «Jy is thus given by
the product of the bare result Jy = I'?/8s which would be
achievable in the case the dots were in direct contact and a
distance dependent renormalization factor o« < 1 describing
the reduction due to the finite spatial separation. Note that in
Egs. (4) and (5) we have assumed that the superconductor is
in the ground state without quasiparticle excitations present,
which requires that the electron temperature is much smaller
than the superconducting gap A.

III. CLEAN SC

In the case of a clean superconductor, it is straightforward
to evaluate Eq. (5). Going over to polar coordinates and
assuming M < A < p and kpr > 1 yields the semiclassical
expression

,00 2T d¢ ez(kF+Ek/hvp)rcos¢
g(r;E) = Sk
2 E—A—E22A

e[kpr im/A+i&r/hvp

d <
«/an_l:r Sy £2/2A
xA V2
= 'OO(MkFr> cos(kpr 4+ 3m/4)e™%, (6)

with the effective coherence length & = hvp/+/8AM that is
a factor (A /M)'/? > 1 longer than the bare coherence length
& = hvp/m A. In Eq. (6), we have taken into account that for
the relevant part of the integral we have & ~ hvp(k — kr) <
A such thatui ~ 1 and Ex ~ A + £7/2A.

Having evaluated the Green’s function in the semiclassical
limit, we are in the position to evaluate the dimensionless
coupling constant & = 2 cos?(kz R + 37 /4)ap with

A

8 RE 7
Ar Mk RS @)

o) =

The cos® dependence of o originates in our model from the
tunneling at a point (i.e., momentum-independent tunneling
amplitudes). In a realistic situation, the diameter d of the
dot is large such that krd > 1. In this case, the result
will be modified. In particular, the tunneling amplitude will
depend on the momentum mismatch between the dot and the
superconductor. A careful consideration of these effects turns
out to be rather subtle and beyond the scope of the present work
(see, e.g., Ref. [17]). When comparing the results for a clean
to a disordered superconductor in Sec. V, we use «g to ease
comparison between the clean and the disordered case. This
corresponds to replacing cos® by its typical value 1/2. In this
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way, we avoid the dependence of the results on microscopic
details that are relevant only in the clean case.

IV. DISORDERED SC

In order to treat the case of a disordered superconductor it
is useful to go over from the Green’s function g(r; E) to the
Gorkov Green’s function

Pk (E + et
(n)? E?—E}

G(riE) = ®)

as the latter has better analytical properties allowing us to set
up perturbation theory in terms of Feynman diagrams [18]. In
the limit M < A < u that we are interested in, we have

E + & - u,%
E2—E} E—E

€))

such that the two Green’s functions G and g can be used
interchangeably. It is a well-known result [18] that under an
impurity average the Gorkov Green’s function is simply given
by G(r; E) = G(r; E)e"/?* with £ the mean free path in the
disordered system.

In order to obtain the exchange coupling through a
disordered superconductor, we should average « over disorder.
It is important to note that the impurity average (denoted by
the overline) cannot simply be performed separately on the
two Green’s functions constituting «. The reason is that this
neglects interference effects which are relevant for a disordered
sample with long phase-coherence length. In fact, impurity
scattering that involves both Green’s functions even becomes
dominant at large distances due to the emergence of a new
length scale, which in the diagrammatic language is subsumed
by the ladder diagrams forming the diffuson.

Following ideas of Refs. [19,20], we calculate the diffuson
approximation of the product of the Green’s function entering
« in the Appendix. We obtain the result (E < A)

d’k

o )2G(k E)Gk — ¢, E)

__ TTPo A?

T T2 (A2 — E2)[(A2— E2)\/2 4+ hDg?/2] (10)

with the diffusion constant D = vg£/2; here, G(k; E) denotes
the Fourier transform of G(r; E). The expression (10) is valid
for weak disorder with krf > 1 and for ¢ < kr. Using this
expression, we can obtain the result for the disorder-averaged
exchange coupling (g,¢ are the polar coordinates of q):

A qu eich0s¢

8mpoM J (2m)* J2AM + hDg?/2

1/2
_ AKo(R/€p) Ag, )
Mkl 2Qm) PMkptR2¢

with &p = /LE/2.

When comparing the ballistic result (7) to the diffusive
result (11) there are two major differences.

(i) The exponential decay is controlled by different length
scales & versus &p.

o =
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(ii) The algebraic decay of the former is given by R~!
whereas the latter decays more slowly with the power R~!/2
[21].

V. ESTIMATE OF THE COUPLING STRENGTH

We would like to end by discussing realistic length scales
R over which the superconducting film can be employed
in order to exchange couple two spin qubits. Starting from
realistic values Jy >~ h(1 — 10) GHz for the direct exchange
coupling of two qubits, we aim at achieving a dimensionless
coupling constant o ~ 1073 in order to end up with useful
exchange-coupling constants J =~ h(1 — 10) MHz. For the
superconductor we propose aluminum with a gap parameter
A/kp =2.2K, which corresponds to a coherence length
& =23 um for a clean sample. Aluminum has a Fermi
velocity vy = 2.0 x 10%m/s that implies a Fermi wave vector
kr =17nm~!. The most crucial parameter which makes
it possible to increase « is the detuning M. Some of the
requirements bounding M from below are that the detuning
should be held stable over the time of exchange interaction and
that the smearing of the superconducting gap y (the so-called
Dynes parameter) should be much smaller than M. Recent
experiments have shown that y can be as small as 1076 A [22].
Given this input, we take a conservative choice of M = 1 ueV
which corresponds to M/A =5 x 1073. As a result, we
obtain the clean effective coherence length & = 36 um and
the dimensionless coupling constant ¢y of Eq. (7) (see Fig. 2)

o = O.94nme_R/36Mm (12)
R

in a clean system as it is, for example, obtained by epitaxial
growth [23]. For a distance of R = 1 um this evaluates to
ap = 9.1 x 10~*. We note that the value of « is completely
dominated by the prefactor. Thus, we expect that the analysis
becomes more favorable for the case of disordered aluminum
as is obtained, for example, by sputtering.

0.1 ™ T T T T T T
~
~
N
\ N
\ ~
\ \\
0.01} S 4
N ~
~
~ \\
S o N
S \\
0.001 F \&0 Tt~ 0N 1
a N -\‘\-\- Te-
0.0001 1 1 h 1 1 1 1
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FIG. 2. Plot of the dimensionless coupling constant for clean
aluminum () and disordered aluminum (&) as a function of the
distance R of the spin qubits that are coupled. The plot shows both
the results for M/A =5 x 1073 (solid lines) and the results for
M/A =5 x 107* (dashed lines).
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Extrapolating from Refs. [24-26], a realistic value of the
mean free path in aluminum is £ = 100 nm, which translates
to a diffusive coherence length £, = 1.3 um. This yields

0.027 Mm'/ze_R/l'Mm

e (13)

a =
and evaluates for R = 1 um to the more favorable result @ =
1.3 x 1072,

Figure 2 shows that for distances R smaller than a charac-
teristic distance R* the coupling via a diffusive superconductor
is larger than the one through a clean system [27]. For R > R*
this reverses. For the typical case ¢ < &, the characteristic
distance R* is approximately given by

R* ~ %D In(r£/20). (14)

For M/A =5 x 1073, we find numerically that R* = 5.9 um
and that @ is larger than 103 up to R = 3.6 um.

Provided accurate control over the gate voltages, the range
of the exchange coupling can be extended even further. For
example, lowering M by a factor of 10, i.e., for M = 0.1 ueV,
we obtain the dashed lines in Fig. 2. We see that for distances
smaller than R* = 12 um the diffusive material leads to a
stronger exchange interaction. Furthermore, & is larger than
1073 for distances up to R = 11 um.

Note that the operation of spin qubits normally requires
a magnetic field to obtain a Zeeman splitting, which must
be much smaller than the critical field of the superconducting
electrode (about 100 mT for bulk aluminum). Using a thin film
and applying the field in plane can enhance the critical field;
for thin films of thickness below 10 nm, critical fields of the
order of 1T can be achieved [28]. While for GaAs quantum
dots fields on the order of 0.5T are desirable to suppress
nuclear spin dephasing [29], a few mT should be sufficient for
Si quantum dots due to the absence of nuclear spins. Hence
one may expect that at least for the latter the suppression of
superconductivity due to the applied field will not be a limiting
factor.

To achieve a strong interaction with Jy >~ A x 100 GHz, it
is clearly advantageous to utilize a large tunnel coupling ¢.
This requirement is not compatible with conventional GaAs
heterostructures, where electrons are typically located about
100 nm below the surface with surface states leading to a large
energy barrier. We envision solving this problem by shallow
undoped structures with a low Al content in the barrier, thus
reducing the band offset, and high-quality interfaces [23]. In Si,
the possibility to use metal-oxide-semiconductor quantum dots
[2] with a very thin oxide layer or other barriers to passivate
the surface states should more readily enable a sizable 7.

VI. CONCLUSION

We have derived the strength of the exchange interaction
between two spin qubits which are connected via a 2D film of
superconducting material acting as a coupler. We have shown
that the bare exchange interaction for two neighboring dots is
reduced by a dimensionless coupling constant ¢ incorporating
all effects of the finite distance R. We have presented results for
the case of both a clean and a disordered superconductor. We
have shown that for distances R smaller than a characteristic
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distance R* a diffusive superconductor outperforms the clean
one due to the prefactor in o for the former being a factor
(R/€)'/? larger than for the latter. We have shown that a
diffusive superconductor with a moderate mean free path of
£ = 100 nm enables useful exchange coupling strengths over
a distance of more than 10 um. In practice, it would be conve-
nient to use superconducting wires rather than an extended film
to mediate the coupling. In this case the further confinement
would eliminate the R~!'/? decay of the prefactor in Eq. (11),
leaving only the exponential decay and allowing substantially
stronger coupling. This suggests that superconducting wires
might be suitable for mediating an exchange coupling between
quantum dots with a separation large enough to implement
a 2D lattice. An additional advantage is that the coupling
strength can be varied easily and rapidly by changing the
electrostatic potential of the superconductor.
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APPENDIX: CALCULATION OF THE DIFFUSON

In this Appendix, we apply the ideas of Refs. [19,20] to
the specific case of disordered 2D superconducting film. The
calculation of the impurity average has to be performed in
Nambu space, because the Green’s function has anomalous
components due to the superconducting condensate. All the
Green’s functions can be combined in the matrix Green’s
function

E+ &1+ At
E? — E,g

acting via the Pauli matrices 7; on the Nambu space. Note
that the connection to the Gorkov Green’s function introduced
in the main text is given by G(k; E) = G(k,E),,. We assume
throughout this section that 0 < E < A such that the excita-
tions are virtual and similar to the Matsubara formalism, and
we do not have to worry about retarded and advanced Green’s
functions. If required, the results for £ > A can simply be
obtained by analytical continuation.

We are interested in performing an impurity average in
the potential V(r) =v); 8@ — r;)t3 where r; denotes the
position of the ith impurity. The connection with the mean free
path is given by the Born result hvg /¢ = 27n;v?py where n;
is the density of impurities. The impurity averaged Green’s
function is given by (see Ref. [18])

E+&u+ A

Gk, E) = (A1)

Gk E) = — - A2
(k; E) Pog A (A2)
where E = nE, A = nA, and
hv
n=1+ r (A3)

20(A? — E?)1/2°

In order to calculate the disorder average of a product of
Green’s functions, it is useful to introduce the four matrix
diffusons (7g is the identity matrix):

2
Di(q) = nv2/ a
Qmy?

4Gk E)yt;G(k — q; E)r;. (A4)
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In terms of these, the combination of Green’s functions in
Eq. (10) is given by

d’k 1
WG(’C E)G(k —q;E) = W[DO(CI) + Ds(g)-
(AS5)
The dominant contribution to D; in the weak disorder
limit originates from ladder diagrams which keep the relative
momentum ¢ conserved. The zeroth-order term is given by

d’k = ~
Dfo)(q)=nv2/(2ﬂ)2 3G (k; E)tG(k — q; E)t3. (A6)

As we are interested in small relative momenta ¢, we can
expand and obtain D\”(q) = a; + b;g* with

hvp AZ — AE‘L’]

—2
_ 2 Al _
ag = nv”pg /dék 153Gk, E) 13 = 20 (AT B (AT)

The expansion in g is obtained by the replacement &;_, =
&, — hvpg cos ¢ with ¢ the angle between k and ¢. The first
order in g vanishes due to the integration over ¢. The first
nonvanishing contribution reads

hzv%ai

et (A8)

i

As D(()O) has a term proportional to 7;, we need to calculate

additionally DEO) in order to obtain a closed set of equations.
We obtain the expression

hUF AE — E2‘L'1 (A9)
al| = — —=FF——=—57-
"7 20 (AT B

For completeness, we give also the other expressions

hvg T

20 (A2 — E?)1/2° (A10)

ay; = a3=0.

For further convenience, we denote by D,@ the term in D}O)

proportional to z; such that Dfo) => j fo? 7; by definition.
Summing the ladder diagrams is equivalent to the Dyson
type equations [30]:

Di(q) = D"(@)+ Y D"(q)D;(q). (Al1)

J

The system is closed in the subspace i, j € {0,1}. Solving the
linear system of equations, we obtain the result

0) ©) ~(0) 0) ~(©0)
D;” + (D0,1D1,0 - Do,oDl,l)fi
(0) 0) ©) () ©) 10 *
1 = Dyo— Dy — Dy Dyg+ DyoDyy

Di(q) = (A12)
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Inserting the expressions for D yields the final result

Do(q) = hvp A% — AET (A13)
)= 0 (A2 E2(A2 — E22 + hDq?/2]
valid for small g. For reference, we also give the result
hvop AE — E*g
Di(g) = (A14)

20 (A2 — ED)[(A2 — E?)'2 + hDq?/2]
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The diffuson D, only couples to itself, thus the solution of
Eq. (A11) is simply

Doy = D2 o 2 (A15)
=TT DY)~ 20 (AT=E)Z+hDg?/2’

The D; diffuson vanishes such that only Dy enters the
expression (AS5). From Eq. (AS5), we obtain the result quoted
in the main text.
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