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Transition of a two-dimensional spin mode to a helical state by lateral confinement
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Spin-orbit interaction enables electrical tuning of spins, thus facilitating spintronics applications. It leads
to spin precession about a momentum-dependent spin-orbit field. For a diffusive, two-dimensional electron
gas the spin orientation at a given spatial position depends on which trajectory the electron travels to that
point. Under increasing lateral confinement the spin orientation becomes independent on the trajectory and the
formation of a long-lived helical spin mode is predicted. Here we visualize this transition experimentally in a GaAs
quantum-well structure with isotropic spin-orbit interaction. Spatially resolved measurements show the formation
of a helical mode already for nonquantized and nonballistic channels. We find a spin-lifetime enhancement that
is in excellent agreement with theoretical predictions. Lateral confinement of a two-dimensional electron gas
provides an easy-to-implement technique for achieving long spin lifetimes in the presence of strong spin-orbit
interaction for a wide range of material systems.
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I. INTRODUCTION

Electron spins in semiconductor quantum structures are
very promising for future spintronic applications. Spin-orbit
interaction (SOI) in these systems provides a convenient way
for electrical tuning of spins [1–3]. It can be described by
an effective magnetic field about which the electron spins
precess. In a diffusive electron system with intrinsic SOI
(e.g., of Rashba or Dresselhaus type), the effective spin-
orbit field changes after each scattering event. This leads
to a randomization of spin polarization that is, in the case
of an initially homogenous spin excitation, known as the
Dyakonov-Perel (DP) spin-dephasing mechanism [4]. A local
spin excitation evolves into a spin mode that is described by
the Green’s function of the spin diffusion equation [5–7]. For
a two-dimensional (2D) system in the weak SOI limit, this
mode can be calculated analytically for a few special situations,
such as for the persistent spin helix case with equal Rashba
and Dresselhaus SOI [8–12]. In the isotropic limit (either
only Rashba or only linear Dresselhaus SOI), it is described
by a Bessel-type oscillation in space [see Fig. 1(b)] [5]. Its
spin lifetime is only slightly enhanced [5] compared with
the DP time because rotations about varying precession axes
[see Figs. 1(c)–1(e)] do not commute and therefore the spin
polarization at a given position depends on the trajectory by
which the electron reaches that position. If the electron motion
is laterally confined by a sufficiently small channel structure
of width w, the spin motion is restricted to a ring on the Bloch
sphere [see Figs. 1(g) and 1(h)]. In this situation, the spins
collectively precess as they move along the channel direction
[Fig. 1(f)] [13–15]. This regime is entered when the cumulative
spin rotations attributed to the transverse motion are small, i.e.,
if wq0 < 1, where q0 is the wave number of the 2D spin mode.
The spin-orbit length is related to q0 via λSO = 2π/q0. As
a consequence, for a 2D diffusive system, increasing lateral
confinement is predicted [13,14] to result in a suppressed
spin decay proportional to (q0w)2. This effect could be highly
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relevant for spintronics applications because it circumvents the
conventional trade-off between a long spin lifetime and strong
SOI. It has been experimentally explored in different ways,
including measurements of weak antilocalization [16,17], the
inverse spin-Hall effect [18], and time-resolved Kerr rotation
[19]. However, none of these works were able to resolve
the spin dynamics both spatially and temporally, and, thus,
a quantitative investigation of the spin mode in the confined
channel is still lacking.

Here, we experimentally explore the dynamics and spatial
evolution of electron spins in a 2D electron gas hosted in a
symmetrically confined, 12-nm-wide GaAs/AlGaAs quantum
well where the linear Dresselhaus SOI is much larger than the
Rashba or the cubic Dresselhaus SOI, thus providing an almost
isotropic SOI. We study the transition from such a 2D system to
a one-dimensional (1D) channel by lithographically defining
wire structures along the [11̄0] (x) and [110] (y) directions
with a lateral width w ranging from 700 nm to 79 μm.
Time-resolved Kerr rotation measurements with high spatial
resolution reveal the transition from a radially symmetric mode
in the 2D case to a helical mode where spin polarization is
rotated along the channel direction in the 1D case. The spin
lifetime of the observed modes are in excellent agreement with
theoretical predictions. We find that, in the diffusive 1D case,
the lifetime is limited by cubic Dresselhaus SOI to the same
value as in the 2D spin helix case.

II. EXPERIMENT

Figure 1(a) shows a sketch explaining the measurement
principle. Spins polarized along the out-of-plane direction, z,
are locally excited at time t = 0 by a focused, circularly polar-
ized pump laser pulse, which has a Gaussian intensity profile
with a sigma width of 1.1 μm. A second, linearly polarized
probe pulse measures the out-of-plane component, Sz, of the
local spin density using the magneto-optical Kerr effect. The
focused probe beam (time-averaged power 50 μW) is located
at a position (x, y) relative to the pump spot (time-averaged
power 100 μW) [Fig. 1(a)]. Two Ti:sapphire lasers are used
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FIG. 1. (Color online) Measurement principle and expected spin modes. (a) A focused pump laser pulse locally excites out-of-plane spin
polarization Sz with a Gaussian width of ≈1.1 μm. A probe laser pulse measures the local spin distribution after a time delay t via the
magneto-optical Kerr effect. Pump and probe spots are spatially scanned against each other. (b) In the 2D case, spin diffusion in the isotropic
SOI field, (e), evolves a local spin excitation along z into a Bessel-type spin mode, whose Sz component is shown (red color indicates positive,
blue color negative Sz). The spin trajectories in the 2D plane, (c), are partially correlated with the trajectories on the Bloch sphere, (d), such
that the local spin density decays more slowly than that of the whole ensemble. (f) In the 1D case, the emerging spin mode is long-lived and
described by a cosine oscillation of Sz, corresponding to a helical rotation of the spin polarization. (g) The lateral confinement restricts the
diffusive trajectories in real space, such that the spins on the Bloch sphere evolve on a ring, (h), whose width scales with the channel width, w.
The smaller w is, the more the spins precess about a single axis, leading to a drastic increase of the lifetime of the helical mode.

FIG. 2. (Color online) Direct mapping of spin precession and spin decay. (a),(b) Spatial maps along the channel direction y of the
out-of-plane spin density Sz for varying time delays t between the pump and probe laser pulses. The 19-μm-wide channel, (a), represents a 2D
situation, whereas the 700-nm-wide channel, (b), is close to the 1D limit and exhibits a long-lived mode with oscillating Sz(y) [sign encoded
as red (+) and blue (−)]. The mode from the preceding laser pulse (pulse period 12.6 ns) is still visible at negative delay. (c) Line cuts through
the data of (a) and (b) at t = 1.5 ns for comparison (symbols). Solid lines are fits to the data. (d) and (e) show the Fourier transform of Sz(y) for
the 19-μm and 700-nm channels, respectively. For w = 700 nm, the initially Gaussian spectrum quickly converges to a long-lived spin mode
at finite qy = q0

y (position indicated as blue and green horizontal lines). (f) Line cuts through the data of (d) and (e) at qy ≈ q0
y . At each qy , the

amplitude decays biexponentially, with the the longer-lived mode visible at longer t .
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to generate the pump and probe laser pulses at 785 nm and
802 nm, respectively. Pulse lengths are on the order of 1 ps and
the repetition rate is 79.1 MHz, which corresponds to 12.6 ns
between two pulses. The spatial evolution of the spin packet
is mapped out along the channel direction for various time
delays, t , between pump and probe pulses. All measurements
have been performed at a sample temperature of 20 K.

A GaAs quantum well is grown on a (001) GaAs sub-
strate by molecular beam epitaxy. The barrier material is
Al0.3Ga0.7As. Front and back Si δ-doping layers are positioned
such that the electric field perpendicular to the quantum-well
plane is small. A sheet density of ns = 3.5 × 1015 m−2 and a
transport mobility of 7.0 × 105 cm2(Vs)−1 were determined at
4 K after illumination by a van der Pauw measurement. Wires
of variable width were processed with photolithography and
wet-chemical etching. The effective widths, w, of the wires
were determined by scanning electron microscopy images,
measuring the width of the top surface.

A measurement of spatially resolved spin dynamics in a
channel in the 2D limit (w = 19 μm) is shown in Fig. 2(a).
Spins are excited at t = 0 and at x = y = 0 and traced as a
function of y and t . At y = 0, Sz simply decays in time. It
reverses its sign after t > 400 ps for electrons that diffused
along y by more than ≈4 μm, seen as a faint blue color in the
figure. The situation is different in the 700-nm-wide channel
[Fig. 2(b)]. Here, spin decay is strongly suppressed and Sz

reverses its sign multiple times along y. Note that the pattern
is overlaid with the spin texture that survived from the previous
pump pulse at t = −12.6 ns. Figure 2(c) shows measured data
of Sz(y) for the 19-μm and the 700-nm-wide channels taken
at t = 1.5 ns (symbols). The lines are fits to a zeroth order
Bessel function (700 nm) and to the product of a cosine and a
Gaussian function (19 μm). The comparison of the two curves
clearly shows an enhanced Sz and strong oscillations along
y in the narrow channel. This indicates a helical spin mode
in the 1D case. The helical nature is further supported by
measured maps where an external magnetic field is applied
along the x direction, rotating the helix as a function of time;
see Appendix A.

III. EVALUATION

For a deeper analysis, it is advantageous to Fourier
transform Sz(x,y,t) to obtain Fourier components Sz(qx,qy,t)
at wave numbers qx and qy that, according to theory, decay
biexponentially in time [6]. For channels narrower than 15 μm,
the spin modes exhibit a pronounced structure only along the
channel direction, and it is therefore sufficient to analyze the
1D Fourier transformation along this direction. For a channel
along the y direction, the Fourier transformation is given by

S1D
z (qy,t) =

∫ ∞

−∞
cos(qyy)Sz(y,t)dy. (1)

For wider channels, we obtain the 2D Fourier transforma-
tion from 1D scans of Sz by assuming a radially symmetric
spin mode. This is justified because we observe a similar
dependence of Sz along the x and y directions, as seen from
the values obtained for wavenumbers q0

x and q0
y later in the

text. The Fourier transform is then given by

S2D
z (qy,t) =

∫ ∞

−∞
π |y|J0(qyy)Sz(y,t)dy. (2)

Here, J0 is the zeroth-order Bessel function. Figures 2(d) and
2(e) show S2D

z (qy,t) for the 19-μm wire and S1D
z (qy,t) for the

700-nm wire, respectively. The rate with which the initially
Gaussian distribution of Sz(qy,t) decays in time varies with qy

and is minimal at a finite wave number q0
y . Figure 2(f) shows

traces at qy ≈ q0
y for both wires. For t > 500 ps, we fit each

trace with a single exponential decay to obtain the momentum-
dependent lifetime τ (qy) of the longer-lived spin mode [6,10].
The decay rates, 1/τ (qy) are shown in Fig. 3(a). In both the
1D and the 2D case, 1/τ vs qy can be well approximated close
to q0

y by the parabolic function [6,7]

1/τ = 1/τ 0 + Ds

(
qy − q0

y

)2
, (3)

where Ds = 50 cm2/s is the spin diffusion constant. Note that
the spin diffusion constant differs from the electron diffusion

FIG. 3. (Color online) Fit results. (a) Decay rates for the 19-μm-wide (diamonds) and 700-nm-wide (dots) channels along the y direction
as a function of the wave number, qy . Data is obtained from fitting to Sz(qy,t) an exponential decay for t > 500 ps, thus corresponding to the
long-lived mode. Solid lines are parabolic fits of the decay rate versus q, from which the position, q0

y , and the lifetime, τ 0, of the evolving spin
mode are obtained. (b) Values for the spin-mode wave numbers q0

x and q0
y , shown for measurements at various channel widths, w, along the

x and y direction. (c) Lifetime of spin modes, τ 0, as a function of w and for both channel directions. Solid black lines are the theoretically
expected lifetimes. The yellow solid line is their interpolation. In all three plots, circles (diamonds) stand for fit values obtained from 1D (2D)
Fourier transformations.
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constant determined from transport measurements because it
is sensitive to electron-electron scattering [20,21]. Figures 3(b)
and 3(c) plot the values obtained for q0 and τ 0, respectively,
for channels along the y and x directions and of various widths.
Values of τ 0 obtained with 2D and 1D Fourier transformations
for all w are shown in Appendix B.

Comparing q0
x and q0

y in Fig. 3(b), we observe a slight
anisotropy characterized by q0

x > q0
y . This means that the SOI

is stronger for electrons that move along x and indicates a
remaining Rashba field due to a slight asymmetry in the
quantum well. The SOI coefficients, α and β, are obtained from
q0

y and q0
x measured in the 1D limit [solid lines in Fig. 3(b)]

by using the expressions

q0
y =

∣∣∣∣2m∗

�2
(α + β)

∣∣∣∣ ≈ 0.7 μm−1, (4)

and

q0
x =

∣∣∣∣2m∗

�2
(α − β)

∣∣∣∣ ≈ 0.8 μm−1. (5)

Here, m∗ is the effective electron mass, � is the reduced
Planck’s constant, α is the SOI parameter of the Rashba
field, and β = β1 − β3 is that of the Dresselhaus field.
β1 and β3 characterize the linear and cubic Dresselhaus
fields, respectively. We find α = −0.3 × 10−13 eVm and β1 =
4.9 × 10−13 eVm. Here, we assumed β3 = −γπns/2 = 0.6 ×
10−13 eVm, given the Dresselhaus parameter γ = −11 ×
10−30 eVm3 [22].

The dependence of q0
x on w is rather flat, whereas q0

y

decreases for increasing w. This is in agreement with the
prediction that q0

y of the 2D spin mode is smaller for slightly
anisotropic SOI than expected from Eq. (5) [6,23]. Close to
the persistent spin helix situation, the same effect leads to a
suppression of precession along y.

The lifetime, τ 0, however, behaves almost identically for
both wire directions and increases by about one order of
magnitude from w = 19 μm to 700 nm. Theory provides
expressions for the lifetime in the 2D limit, τ2D, (Dresselhaus
SOI only) [5,6] and in the intermediate regime [13,14], τIM:

τ−1
2D = 8

Dsm
∗2

�4

[
7

32
β2 + 11

16
β2

3

]
, (6)

τIM = 48τDP
(
q0w

)−2
. (7)

Here, τDP is the Dyakonov-Perel spin dephasing time, which
is given by

τ−1
DP = 8

Dsm
∗2

�4

(
α2 + β2 + β2

3

)
. (8)

For very narrow channels, the lifetime τ1D is limited by
cubic Dresselhaus SOI only, and as we will show later, is the
same as in the completely balanced spin-helix case [24]:

τ−1
1D = 6

Dsm
∗2

�4
β2

3 . (9)

The theoretically expected values are plotted in Fig. 3(c)
as black lines. The interpolation between τ2D, τIM, and τ1D

[yellow line in Fig. 3(c)] is in very good quantitative agreement
with the experimental data. Although τ 0 towards smaller w is
not yet saturated, it is possible to project that cubic SOI will
limit the lifetime.

IV. MONTE CARLO SIMULATIONS

Spin dynamics in a laterally confined 2D electron gas are
calculated numerically using a Monte Carlo method where
the positions and spin orientations of 3 × 105 electrons are
updated in time steps of 0.1 ps. Electrons are distributed
on a Fermi circle and scatter isotropically, with the mean
scattering time given by τ = 2Ds/v

2
F , where vF = �kF /m

is the Fermi velocity. Each electron moves with the Fermi
velocity and sees an individual spin-orbit field as defined
in the supplementary information of Ref. [12] that depends
on its velocity direction. The real-space coordinates and the
corresponding spin dynamics are calculated semiclassically.
We initialize the electrons at t = 0, all with their spins oriented
along the z direction, and distribute their coordinates in a
Gaussian probability distribution with a center at x = y = 0
and a sigma width of 500 nm. Histograms of the electron
density and the spin orientations are recorded every 5 ps, and
the simulation is run until t = 5 ns is reached. We obtain the
spin polarization at x = y = 0 versus t from the spin-density
maps using a convolution with an assumed Gaussian probe spot
size of 500 nm. We determine the spin lifetimes τ 0 by fitting the
transients with a function proportional to 1/t × exp −t/τ 0 or
1/

√
t × exp −t/τ 0 in a window 800 ps < t < 4000 ps, where

additional spin decay is negligible because of the small spot
sizes [24]. For the data shown in Fig. 4, we have used the
following parameters: Ds = 40 cm2/s, ns = 3.4 × 1015 cm−2,
β1 = 4.9 × 10−13 eVm, and β3 = 0.6 × 10−13 eVm. Lateral
confinement was implemented by assuming specular scatter-
ing at the channel edges. For the 1D case, w = 400 nm was
used.

FIG. 4. (Color online) Lifetime enhancement for various α/β.
Spin lifetimes for the 1D and 2D situation as determined from Monte
Carlo simulations for various ratios of −1.1 < α/β < 1.1. Data is
obtained by fitting Sz(y,t) with a model that includes a diffusive
dilution proportional to either 1/t or 1/

√
t . The former is used in

the 2D case for |α| ≈ |β| (diamonds), the latter for isotropic SOI in
the 2D case (rectangles) and for the 1D case (crosses). The red, blue,
orange, and black lines are theoretical curves for τ1D, τPSH, τ2D, and
τDP, respectively. The lifetime enhancement under lateral confinement
is largest for α = 0 (arrow). For both the 2D case at |α| = |β| and the
1D case, the lifetime is limited by the same value given by the cubic
SOI only.
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The lifetime enhancement achievable by channel confine-
ment depends strongly on the ratio α/β. Figure 4 shows
lifetimes determined by Monte Carlo simulations for −1.1 <

α/β < 1.1. Without Fourier transformation one has to account
for a diffusion factor that reduces the amplitude, in addition to
an exponential decay term. The diffusive dilution of electrons
in 2D scales with 1/t and in 1D with 1/

√
t . Interestingly,

the spins in a 2D system, however, also decay with 1/
√

t for
the isotropic SOI case [6,25]. The lines are the theoretically
expected values of τ 0 for 2D and 1D spin modes (τ1D, τ2D), as
well as for the DP case (τDP). For a situation close to α ≈ β,
the spin lifetime, τPSH, can be given analytically [24]:

τ−1
PSH = 2Ds

m∗2

�4

[
(α − β)2 + 3β2

3

]
. (10)

It is plotted as a solid blue line in Fig. 4. This formula provides
a good approximation of the spin lifetime also further away
from α ≈ β. We find that in a narrow channel (red crosses
in Fig. 4), τ 0 does not depend on α or β1 and is limited by
cubic SOI (β3) only. The same limit is reached in the 2D
situation (green symbols in Fig. 4) at |α| = |β|, i.e., when the
system is tuned to the persistent spin helix symmetry. The
maximal lifetime enhancement under lateral confinement in
the diffusive limit occurs for the isotropic case (α = 0). Close
to |α| = |β|, the lifetime enhancement is small, but a reduction
of diffusive dilution was observed [26].

V. CONCLUSION AND OUTLOOK

In conclusion, we measured the evolution of a local
spin excitation in a GaAs/AlGaAs quantum well dominated
by linear Dresselhaus SOI. The lateral confinement leads
to an increased correlation between electron position and
spin precession angle. Using a real-space mapping of the
time-resolved spin distribution, we observe a transition to
a helical spin mode accompanied by an enhanced lifetime
for decreasing channel width. The transition occurs for a
channel width close to the spin-orbit length. The analysis in
Fourier space shows that the long-lived components decay
exponentially with a minimum rate at a finite q0. Both the
precession length and the lifetime are in quantitative agreement
with theory for the 2D limit, the 1D limit, and also for
the intermediate regime. The narrowest channel in our study
still is 10 times wider than the mean free path (including
electron-electron scattering) and 100 times wider than the
Fermi wavelength of the electrons. At those smaller length
scales, also a reduction of the cubic SOI contribution to spin
decay is expected [27].

These findings illuminate an interesting path for studying
spin-related phenomena. Lateral confinement in the nm range
provides a straightforward method for achieving spin lifetimes
that are otherwise only possible by careful tuning of SOI to
the persistent spin helix symmetry. This facilitates the use of
spins in group-IV semiconductors, like Si and Ge, but also
in materials with stronger SOI, such as InAs or GaSb where
the spin-orbit length is expected to be on the order of a few
nm. Extending the presented method to 1D systems in the
quantized limit will be relevant for the quest for Majorana
fermions [28–31]. Furthermore, the results are important for

FIG. 5. (Color online) Spin maps at an external magnetic field.
(a) Sz(y,t) in a 1.7-μm-wide wire along the y direction at an external
magnetic field of Bext = 1 T along the −x direction. The sample
temperature is 30 K. (b) Sz(x,t) in a 1.7-μm-wide wire along the
x direction at an external magnetic field of Bext = 1 T along the +y

direction. The sample temperature is 10 K. The magnetic field induces
additional spin precession in time. The tilted lines of constant phase
show the helical nature of the spin mode. From the similar strength
but opposite signs of the tilts in the (x,t) and the (y,t) planes, it is
concluded that |β| > |α|. Moreover, the tilt in (b) is slightly stronger
than in (a), which means that α is negative.

transport studies and spintronics applications [8,32,33] using
SOI in 1D or quasi-1D systems.
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APPENDIX A: EXTERNAL MAGNETIC FIELD

An applied external magnetic field superposes with the
spin-orbit field. If the field is applied along the direction of the
spin-orbit field that generates a helical spin mode, the helix is
rotated as a function of time, which can be seen as tilted lines of
constant spin precession phase in measured spatial spin maps.
Figure 5 shows such maps measured on wires along the x and y

directions with an external magnetic field of 1 T applied along
the y and −x directions, respectively. The opposite tilt of the
lines of constant phase indicates the dominance of Dresselhaus
SOI over Rashba SOI. Because α < 0, we observe a slightly

steeper slope dy/dt for the wire along x [Fig. 5(a)] compared
to −dx/dt for the wire along y [Fig. 5(b)].

APPENDIX B: FOURIER TRANSFORMATION

We have Fourier transformed the data sets for different w

with both, 1D and 2D Fourier transformations according to
Eqs. (1) and (2). Figure 6 shows τ 0 along the y direction
determined from both transformations. In Fig. 3, we plot the
2D transformation for w � 15 μm and the 1D transformation
for narrower channels.
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Governale, J. Knobbe, and H. Hardtdegen, Phys. Rev. B 74,
081301(R) (2006).

[17] Y. Kunihashi, M. Kohda, and J. Nitta, Phys. Rev. Lett. 102,
226601 (2009).

[18] J. Wunderlich, B.-G. Park, A. C. Irvine, L. P. Zarbo, E. Rozkotov,
P. Nemec, V. Novk, J. Sinova, and T. Jungwirth, Science 330,
1801 (2010).

[19] A. W. Holleitner, V. Sih, R. C. Myers, A. C. Gossard, and D. D.
Awschalom, Phys. Rev. Lett. 97, 036805 (2006).

[20] C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens,
and D. D. Awschalom, Nature (London) 437, 1330 (2005).

[21] L. Yang, J. D. Koralek, J. Orenstein, D. R. Tibbetts, J. L. Reno,
and M. P. Lilly, Nat. Phys. 8, 153 (2012).

[22] M. P. Walser, U. Siegenthaler, V. Lechner, D. Schuh, S. D.
Ganichev, W. Wegscheider, and G. Salis, Phys. Rev. B 86,
195309 (2012).

[23] A. V. Poshakinskiy and S. A. Tarasenko, Phys. Rev. B 92, 045308
(2015).

[24] G. Salis, M. P. Walser, P. Altmann, C. Reichl, and W.
Wegscheider, Phys. Rev. B 89, 045304 (2014).

[25] M. M. Glazov and E. Y. Sherman, Phys. Rev. Lett. 107, 156602
(2011).

[26] P. Altmann, M. P. Walser, C. Reichl, W. Wegscheider, and
G. Salis, Phys. Rev. B 90, 201306 (2014).

[27] P. Wenk and S. Kettemann, Phys. Rev. B 83, 115301 (2011).
[28] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[29] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[30] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[31] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard,

E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336,
1003 (2012).

[32] Y. Kunihashi, M. Kohda, H. Sanada, H. Gotoh, T. Sogawa, and
J. Nitta, Appl. Phys. Lett. 100, 113502 (2012).

[33] P. Chuang, S.-C. Ho, L. W. Smith, F. Sfigakis, M. Pepper, C.-H.
Chen, J.-C. Fan, J. P. Griffiths, I. Farrer, H. E. Beere, G. A. C.
Jones, D. A. Ritchie, and T.-M. Chen, Nat. Nanotechnol. 10, 35
(2014).

235304-6

http://dx.doi.org/10.1038/nature02202
http://dx.doi.org/10.1038/nature02202
http://dx.doi.org/10.1038/nature02202
http://dx.doi.org/10.1038/nature02202
http://dx.doi.org/10.1126/science.1148092
http://dx.doi.org/10.1126/science.1148092
http://dx.doi.org/10.1126/science.1148092
http://dx.doi.org/10.1126/science.1148092
http://dx.doi.org/10.1038/nphys675
http://dx.doi.org/10.1038/nphys675
http://dx.doi.org/10.1038/nphys675
http://dx.doi.org/10.1038/nphys675
http://dx.doi.org/10.1103/PhysRevB.64.045311
http://dx.doi.org/10.1103/PhysRevB.64.045311
http://dx.doi.org/10.1103/PhysRevB.64.045311
http://dx.doi.org/10.1103/PhysRevB.64.045311
http://dx.doi.org/10.1103/PhysRevB.75.125307
http://dx.doi.org/10.1103/PhysRevB.75.125307
http://dx.doi.org/10.1103/PhysRevB.75.125307
http://dx.doi.org/10.1103/PhysRevB.75.125307
http://dx.doi.org/10.1103/PhysRevB.86.174301
http://dx.doi.org/10.1103/PhysRevB.86.174301
http://dx.doi.org/10.1103/PhysRevB.86.174301
http://dx.doi.org/10.1103/PhysRevB.86.174301
http://dx.doi.org/10.1103/PhysRevLett.90.146801
http://dx.doi.org/10.1103/PhysRevLett.90.146801
http://dx.doi.org/10.1103/PhysRevLett.90.146801
http://dx.doi.org/10.1103/PhysRevLett.90.146801
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1103/PhysRevB.86.081306
http://dx.doi.org/10.1103/PhysRevB.86.081306
http://dx.doi.org/10.1103/PhysRevB.86.081306
http://dx.doi.org/10.1103/PhysRevB.86.081306
http://dx.doi.org/10.1038/nphys2383
http://dx.doi.org/10.1038/nphys2383
http://dx.doi.org/10.1038/nphys2383
http://dx.doi.org/10.1038/nphys2383
http://dx.doi.org/10.1103/PhysRevB.61.R2413
http://dx.doi.org/10.1103/PhysRevB.61.R2413
http://dx.doi.org/10.1103/PhysRevB.61.R2413
http://dx.doi.org/10.1103/PhysRevB.61.R2413
http://dx.doi.org/10.1103/PhysRevB.61.13115
http://dx.doi.org/10.1103/PhysRevB.61.13115
http://dx.doi.org/10.1103/PhysRevB.61.13115
http://dx.doi.org/10.1103/PhysRevB.61.13115
http://dx.doi.org/10.1103/PhysRevLett.98.176808
http://dx.doi.org/10.1103/PhysRevLett.98.176808
http://dx.doi.org/10.1103/PhysRevLett.98.176808
http://dx.doi.org/10.1103/PhysRevLett.98.176808
http://dx.doi.org/10.1103/PhysRevB.74.081301
http://dx.doi.org/10.1103/PhysRevB.74.081301
http://dx.doi.org/10.1103/PhysRevB.74.081301
http://dx.doi.org/10.1103/PhysRevB.74.081301
http://dx.doi.org/10.1103/PhysRevLett.102.226601
http://dx.doi.org/10.1103/PhysRevLett.102.226601
http://dx.doi.org/10.1103/PhysRevLett.102.226601
http://dx.doi.org/10.1103/PhysRevLett.102.226601
http://dx.doi.org/10.1126/science.1195816
http://dx.doi.org/10.1126/science.1195816
http://dx.doi.org/10.1126/science.1195816
http://dx.doi.org/10.1126/science.1195816
http://dx.doi.org/10.1103/PhysRevLett.97.036805
http://dx.doi.org/10.1103/PhysRevLett.97.036805
http://dx.doi.org/10.1103/PhysRevLett.97.036805
http://dx.doi.org/10.1103/PhysRevLett.97.036805
http://dx.doi.org/10.1038/nature04206
http://dx.doi.org/10.1038/nature04206
http://dx.doi.org/10.1038/nature04206
http://dx.doi.org/10.1038/nature04206
http://dx.doi.org/10.1038/nphys2157
http://dx.doi.org/10.1038/nphys2157
http://dx.doi.org/10.1038/nphys2157
http://dx.doi.org/10.1038/nphys2157
http://dx.doi.org/10.1103/PhysRevB.86.195309
http://dx.doi.org/10.1103/PhysRevB.86.195309
http://dx.doi.org/10.1103/PhysRevB.86.195309
http://dx.doi.org/10.1103/PhysRevB.86.195309
http://dx.doi.org/10.1103/PhysRevB.92.045308
http://dx.doi.org/10.1103/PhysRevB.92.045308
http://dx.doi.org/10.1103/PhysRevB.92.045308
http://dx.doi.org/10.1103/PhysRevB.92.045308
http://dx.doi.org/10.1103/PhysRevB.89.045304
http://dx.doi.org/10.1103/PhysRevB.89.045304
http://dx.doi.org/10.1103/PhysRevB.89.045304
http://dx.doi.org/10.1103/PhysRevB.89.045304
http://dx.doi.org/10.1103/PhysRevLett.107.156602
http://dx.doi.org/10.1103/PhysRevLett.107.156602
http://dx.doi.org/10.1103/PhysRevLett.107.156602
http://dx.doi.org/10.1103/PhysRevLett.107.156602
http://dx.doi.org/10.1103/PhysRevB.90.201306
http://dx.doi.org/10.1103/PhysRevB.90.201306
http://dx.doi.org/10.1103/PhysRevB.90.201306
http://dx.doi.org/10.1103/PhysRevB.90.201306
http://dx.doi.org/10.1103/PhysRevB.83.115301
http://dx.doi.org/10.1103/PhysRevB.83.115301
http://dx.doi.org/10.1103/PhysRevB.83.115301
http://dx.doi.org/10.1103/PhysRevB.83.115301
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1063/1.3689753
http://dx.doi.org/10.1063/1.3689753
http://dx.doi.org/10.1063/1.3689753
http://dx.doi.org/10.1063/1.3689753
http://dx.doi.org/10.1038/nnano.2014.296
http://dx.doi.org/10.1038/nnano.2014.296
http://dx.doi.org/10.1038/nnano.2014.296
http://dx.doi.org/10.1038/nnano.2014.296



