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With the improvement of the experimental techniques, many new phenomena in which the photon degrees of
freedom are involved have been discovered. Typical examples are the exciton-polariton quasiparticles, excitons
strongly coupled to photons. A correct description of these systems requires a full account of the photon’s
dynamics, including the vector gauge degrees of freedom. In order to include this contribution in ab initio
many-body perturbation theories, here we present a generalization of the Hedin equations, originally derived
for a many-electron system with Coulomb interaction. These equations are now derived to take into account the
strong-coupling physics of the electrons and the transverse photon’s degrees of freedom.
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I. INTRODUCTION

In the past decade, progress in designing semiconductor
microcavities has attracted much interest from different fields
of physics, ranging from condensed matter to quantum optics
and relativistic particle physics [1–3]. Typically, a microcavity
is a system where a two-dimensional (2D) quantum well
(QW) is embedded in Bragg mirror barriers. The confinement
of the photons enhances the external electromagnetic (EM)
interaction with the QW so that retardation effects due to the
EM vector potential cannot be considered negligible, even
though the system is in a nonrelativistic regime. When strongly
coupled to the photons, elementary boson excitations can
give rise to new quasiparticles: polaritons. Typical examples
are the exciton-polaritons, photons dressed by electron-hole
excitations bearing a very light effective mass (me ∼ 10−4).
Other polaritons stemming from the ultrastrong-coupling
regime [4] were recently the subject of intensive investigations
due to the possibility of tailoring their properties by tuning
the size of the QW and its potential use for laser polariton de-
vices [5,6]. The ultrastrong-coupling regime has been observed
in doped semiconductor QWs, where plasmons originating
in the interconduction subband result in stable and robust
intersubband (ISB) polaritons [4,7–10]. A similar effect takes
place in the presence of an applied magnetic field, where the
photon mode is coupled to 2D electron-gas magnetoplasmon
excitations [11]. Since polaritons are themselves bosons, Bose-
Einstein condensation (BEC) phenomena can be observed and
investigated [1].

From a theoretical point of view, microcavity quantum
electrodynamics (QED) systems are usually described by
analytical models [8,9,12–15], whereas first-principle ap-
proaches have been proposed only recently, extending the
time-dependent density-functional theory (TD-DFT) to the
relativistic regime [16]. Any concrete applications of TD-DFT
methods still require an appropriate approximation scheme
for the electron-photon exchange-correlation (xc) function-
als [17].

Recently, an xc potential for such systems has been pro-
posed within the time-dependent optimized effective potential
theory (TD-OEP) framework [18], enabling the possibility of
first-principles calculations. In contrast, ab initio many-body
perturbation theory (MBPT) approaches [19], which, together

with TD-DFT, have been very successful in describing the
excited states of condensed-matter systems, have not been
used so far to study the microcavity problem. Ab initio
MBPT calculations are based on the self-consistent solution
of the Hedin equations, originally developed for studying
electron interactions meditated by the instantaneous Coulomb
interaction. These equations were then generalized to take
into account spin-orbit and spin-spin interactions [20] or
to be implemented within the dynamical mean-field theory
framework (DMFT) [21].

In this paper, we present the generalization of the Hedin
equations to nonrelativistic systems of charged particles, where
the quantum degrees of freedom of the transverse EM gauge
field is taken into account. The new Hedin equations, which
are solved self-consistently, are the basis of possible ab initio
MBPT calculations, allowing us to obtain the electron and
photon quasiparticle self-energy.

In Sec. II, we introduce the interactions in the system
following the gauge principle [22–24], as done in QED. From
the gauged Lagrangian and in order to make a connection
with the condensed-matter literature, we then obtain an
effective Hamiltonian solely defined in terms of the fermionic
degrees of freedom. In the second part, we use the effective
fermionic description to formulate the problem in terms of the
Schwinger functional approach discussed in Ref. [25]. Finally,
in Sec. III, we apply our formalism to the historical case of the
exciton-polariton in microcavity QED. Conclusions are drawn
in Sec. IV. The formal derivation of the Hedin equation is
presented in the Appendix.

II. THEORETICAL DERIVATION

The Lagrangian density for a system of nonrelativistic
electrons is our starting point; by demanding invariance with
respect to U (1) gauge transformations this reads

L = ψ†
{
ı(∂t − ı e a0) + 1

2m
(∇i − ı e Ai)

2

}
ψ

− 1

2
a0

(
D−1

(0)

)
00a

0 − 1

2
Ai

(
D−1

(0)

)
ij
Aj . (1)

Here ψ(1) is a fermionic (Grassman) field, a0(x) is the internal
scalar potential (due to electron-electron interactions), and Ai
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FIG. 1. Diagrams contributing to the photon propagator: the first
terms in the diagrammatic expansion of the renormalized photon
propagator, Eq. (4).

is the external (laser) EM gauge field. We define the total EM
gauge field as Aμ(x) = (c a0(x),Ai(x)) and the bare gauge
field propagator as (D(0))μν = (ημν∂

2 − ∂μ∂ν) [22,26]. We
have also introduced the flat metric tensor ημν , and the index
1 ≡ (x1,t1,s) stands for space, time, and spin variables. In the
following we will use Einstein’s convention for summation
over dummy indices and μ = (0,i),i = x,y,z (the temporal
and spatial components, respectively) and units of � = 1. In
our reference frame, x and y are the transverse direction,
and z is the longitudinal direction. Nevertheless, as we focus
on nonrelativistic systems, the covariant and contravariant
indices are indistinguishable. Choosing the Coulomb gauge
∇ · A = 0, the propagator of the gauge fields is diagonal, and
in momentum space it reads [23]

(D(0))μν(ω,k) =
(

4π
|k|2 0

0 4π
ω2−c2|k|2

(
ηij − kikj

|k|2
)
)

, (2)

where one can recognize the Coulomb propagator in the top
left corner. Equation (1) can now be written in the equivalent
form,

L = ψ†
{
ı∂t + ∇2

2m

}
ψ + ρ a0 + j iAi

−
(

e

2m

)
ρ AiAi − 1

2
Aμ

(
D−1

(0)

)
μν

Aν, (3)

where ρ(x) ≡ j0(x)/c = e ψ†(x)ψ(x) is the charge density
and ji(x) = 1/(2mı){ψ†(x)[∇iψ(x)] − [∇iψ

†(x)]ψ(x)} is the
(paramagnetic) charge current. Note that, contrary to the
relativistic theory, a term proportional to A2 (diamagnetic
term) now appears. The effect of this term is to renormalize
the spatial component of the gauge field propagator. It is then
convenient to define the renormalized gauge field propagator
as (

D−1
(0)

)
μν

= (
D−1

(0)

)
μν

+ e

m
ρ ημ,i ην,j , (4)

where the propagator should be understood in terms of its
diagrammatic expansion (see Fig. 1). Integrating out the gauge
fields, we arrive at the effective Hamiltonian density containing
only the fermionic degrees of freedom,

HMB(1) = H0(1) + ĵ μ(1) ζμ(1)

− 1

2

∫
d2 ĵ μ(1) (D(0))μν(1,2) ĵ ν(2), (5)

where H0 is the noninteracting Hamiltonian density

H0(1) = ψ̂†(1)

{
− ∇2

2m
+ V (r1)

}
ψ̂(1)

≡ ψ̂†(1) h(1) ψ̂(1). (6)

In Eq. (5) and (6) (trough Eq. (5)) we have introduced the
crystalline nuclear potential V and the source field ζμ needed
to generate current expectation values. Finally, note that we
have moved to the operator formalism, and we will designate
operator-valued quantities with a hat. In the effective descrip-
tion, the absence of the gauge field is traded for the nonlocal
current-current interaction term. If the spatial components
of the current are neglected, the well-known result for the
instantaneous Coulomb interaction in terms of a nonlocal
density-density interaction term is recovered [22,24,26].

The one- and two-point electron Green’s functions are
defined in the same way as the time-ordered expectation value,

G1(1,2) = 〈N |T [ψ̂(1)ψ̂†(2)]|N〉,
G2(1,2; 1′,2′) = 〈N |T [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)]|N〉, (7)

where |N〉 is the many-body ground state. Given the above
definitions, the charge and current densities can be expressed
as

ρ(1) = −ı e G1(1,1+),
(8)

ji(1) = −
( ∇̂i − ∇̂′

i

2m

)
1′→1+

G1(1,1′) = ξ̂i(1,1′)G1(1,1′),

where 1+ stands for t1 + ε (ε → 0+). In order to be consistent
with this notation ξ̂0(1,1′) ≡ c δ(1,1′). From the Hamiltonian
density of Eq. (5), the equation of motion (EOM) for the
electron Green’s functions is obtained in analogy to those in
Ref. [25]:(

i
∂

∂t1
− h(1)

)
G1(1,2) −

∫
d3

(
G1(1,3)ζ0(3)δ(3,2)

+ ∇ i
1

2m
G1(1,3)ζi(3)δ(3,2)

)

+ i

∫
d3

(
(D(0))00(1,3)G2(1,3+; 2,3++)

+ (D(0))ij (1,3)
∇ i

1

2m
ξ̂j (3+,3+)G2(1,3+; 2,3++)

)
= δ(1,2).

(9)

This EOM is comprised of the zero-component part
describing the usual longitudinal scalar part (D(0))00 (the
Coulomb potential) and the new transverse components due to
the EM gauge field. The formal derivation of Hedin equations
is shown in the Appendix. Here we report the final results: The
Dyson equation for the one-particle electron Green’s function
has the usual form:

G1(1,2) = G
(0)
1 (1,2) +

∫
d(34) G

(0)
1 (1,3) (3,4) G1(4,2),

(10)
where (1,2) is the self-energy operator and G

(0)
1 is the

Green’s function for the noninteracting Hamiltonian. The
Dyson equation for the self-energy  is

(1,2) ≡ −ı

∫
d(3456) �(0)μ(6,5; 1)

×Dμν(6,3)G1(5,4) �ν(4,2; 3). (11)

Note that in these equations, we have introduced the dressed
Photon propagator Dμν (as before D00 is the “screened”
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TABLE I. The Hedin equation in the presence of the external
transverse EM field.

Summary table of the Hedin equations

G1 = G
(0)
1 + G

(0)
1  G1

Dμν = (D(0))μν + (D(0))μη�ηθDθν

 = −�(0)μDμνG1�
ν

�μ = �(0)μ + δ

δG1
G1G1�

μ

�μν = �(0)μ G1G1�
ν

potential usually written as W ) and �ν is the irreducible vertex
operator. Therefore, the “GW” self-energy is now retrieved by
replacing the vertex �ν with the bare one, defined as

�(0)μ(1,2; 3) ≡ ξ̂μ(3,3′)δ(1,3′)δ(2,3). (12)

The Dyson equation for the irreducible vertex operator is

�μ(1,2; 3) = �(0)μ(1,2; 3) +
∫

d(4567)
δ(1,2)

δG1(4,5)

×G1(4,6)G1(7,5)�μ(6,7; 3). (13)

The Dyson equation of the screened photon Green’s function
is

Dμν(1,2) = (D(0))μν(1,2) +
∫

d(34) (D(0))μη(1,3)

×�ηθ (3,4) Dθν(4,2), (14)

whereas the Dyson equation for the polarization function is

�μν(1,2) =
∫

d(4567) �(0)μ(7,6; 1)

×G1(6,4) G1(5,7) �ν(4,5; 2). (15)

The set of Eqs. (10)–(15) (summarized in Table 1) constitutes
the nonrelativistic Hedin’s equations in which the full photonic
degrees of freedom are taken into account. Some further
remarks are needed here:

(1) In this framework, the Bethe-Salpeter equations (13)
and (15) coincide with Eqs. (C11) and (C29) already derived
in Ref. [25].

(2) The formal structure of these nonrelativistic QED
Hedin’s equations is analogous to two cases already studied
in the literature: The first is the relativistic case [27], derived
by replacing the vector current jμ with the relativistic charge
current jμ ≡ �̄(x) γ μ �(x) [where now �(x) are spinors and
γ μ are the Dirac γ matrices]. As we have already explained,
in this case there is no diamagnetic contribution, however.
Finally, in the spin-dependent case [20], one needs to replace
the paramagnetic current with the magnetization operator
mi ≡ �̂†(x) σ i �̂(x) (with σ i being the Pauli matrices).

(3) The “diamagnetic” term in the photon Green’s function
D0 contributes new diagrams (see Fig. 1), similar to the
quantum back reaction in scalar QED [28].

III. THE EXCITON-POLARITON

In a QW embedded by two Bragg mirrors (microcavity),
the wave vector in the z direction perpendicular to the cavity
plane is quantized, whereas the in-plane motion is free (see

FIG. 2. (Color online) Semiconductor microcavity scheme. The
QW is embedded in two Bragg mirrors. The wave vector along the z

direction is quantized, whereas k‖ is free.

Fig. 2). This brings us to an important physical phenomenon:
the coupling between a planar cavity photon mode and a boson
such as an exciton, which leads to a quasiparticle called a
polariton. This makes an ideal case for which the generalized
Hedin equation can be applied. In order to describe the exciton-
polariton, we first start from the free transverse photon Green’s
function for the photons generated by the external source and
trapped in the microcavity. In reciprocal space, Eq. (2) reads

(D(0))ij (k,ω) = 4π [δij − (kikj /k2)]

ω2 − c2k2 + iη
, (16)

where η → 0 is a regularization parameter. From the Hedin
equation (14) and by using the expression for D(0) in Eq. (16),
the dressed transverse photon Green’s function is [29]

Dij (k,ω) = 4π [δij − (kikj /k2)]

ω2εT (k,ω) − c2k2 + iη
, (17)

where we have introduced the macroscopic, transverse dielec-
tric function εT

ij [25]:

εT
ij (k,ω) = δij

(
1 − ω2

p

ω2

)
− 4πe2

ω2
�ij (k,ω). (18)

Here the plasma frequency ωp =
√

4πe2ρ/m is obtained from
the diamagnetic correction in the bare photon Green’s function
by keeping only the first-order term (see Fig. 1). The transverse
polarization � can be interpreted as the self-energy of the
photon in analogy to the standard case. The dispersion relation
of the exciton-polaritons are obtained from the poles of D in
Eq. (17) [30]:

det |ω2εT (k,ω) − c2k2| = 0. (19)

Considering the z direction as the axis perpendicular to the
QW, the photon motion along this direction is quantized as
kz = πM/lz, with M being a positive integer and lz being
the thickness of the cavity [2]. Therefore, in Eq. (19) k2 =
(πM/lz)2 + k2

‖ . Ab initio calculations of dispersion relations
for excitons have recently been performed by solving the
Bethe-Salpeter equation, showing that nowadays they are
computationally feasible [31,32].
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IV. CONCLUSIONS

In conclusion, we have generalized the Hedin equations
in order to take into account the dynamics of the EM
transverse field for systems in the nonrelativistic regime. In
order to do it, we have obtained an effective Hamiltonian
in which the degrees of freedom of the internal EM gauge
field are integrated out. This leads to a new term coming
from the diamagnetic current in the photon Green’s function.
By using the Schwinger approach, the generalized Hedin
equations are derived. The extension proposed here is general
in nature. As a possible application, we have focused our
attention on the self-consistent solution of these equations
in the context of resonant cavities, where the photon-matter
coupling is enhanced by photon confinement. In this regard,
we have considered one of the most important phenomena
taking place in QED microcavities: the exciton-polariton,
for which a many-body Green function has been obtained.
Nevertheless, because our formalism is completely general, it
can also be used for ab initio studies of polariton-polariton [33]
and photon-photon effects [2]. The ab initio study of the
ultrastrong-coupling regime of ISB polaritons will be the focus
of future investigations.
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APPENDIX: DERIVATION OF THE HEDIN EQUATIONS
IN MICROCAVITIES

In Eq. (9) the interacting terms (both temporal and spatial
terms) are a direct sum in the space-time space. Therefore, they
can be addressed separately. Since the temporal component
leads to the known Hedin equations, in this Appendix we focus
only on the new terms stemming from the external vector field
Ai . Recalling that the vector source field is ζi , we have

ξ̂i(3,3)G2(1,3; 2,3+)=G1(1,2)ξ̂i(3,3)G1(3,3+)− δG1(1,2)

δζi(3)
.

(A1)

Here the mass operator M is defined as follows:

M(1,3)G1(3,2)

≡
∫

d3(D(0))ij (3,1)
∇ i

1

2m
ξ̂j (3+,3+)G2(1,3++; 2,3+)

=
∫

d3(D(0))ij (3,1)
∇ i

1

2m

[
G1(1,2)jj (3) − δG1(1,2)

δζj (3)

]

≡ V H
i (1)

∇ i
1

2m
G1(1,2) −

∫
d3(1,3)G1(3,2),

where we have introduced the self-energy  and V H
μ is the

Hartree term:

V H
i (1) ≡

∫
d2(D(0))ij (1,2)jj (2). (A2)

With the total field �i ≡ ζi + V H
i , the inverse dielectric tensor

is

ε−1
ij (1,2) ≡ δ�i(1)

δζj (2)
= δij δ(1,2) + δV H

i (1)

δζj (2)

= δij δ(1,2) +
∫

d34
δV H

i (1)

δjk(3)

δjk(3)

δ�l(4)

δ�l(4)

ζj (2)

= δij δ(1,2) +
∫

d34(D(0))ik(1,3)�kl(3,4)ε−1
lj (4,2),

(A3)

where we have also defined the polarization �kl(1,2) ≡
δjk(1)/δ�l(2). The Hedin photon Green’s function, Eq. (14),
is obtained by using Eq. (A3) and considering that

Dij (1,2) =
∫

d3ε−1
ik (1,3)(D(0))kj (3,2), (A4)

Dij (1,2) = (D(0))ij (1,2) +
∫

d345(D(0))ik(1,5)�kl(5,4)

×ε−1
lm (4,3)(D(0))mj (3,2). (A5)

The irreducible vertex is defined as

�i(1,2; 3) ≡ δG−1
1 (1,2)

δ�i(3)
, (A6)

and with the chain functional derivative, we have

δG−1
1 (1,2)

δaj (3)
=

∫
d4�i(1,2; 4)ε−1

ij (4,3). (A7)

The electronic self-energy  Dyson equation (11) is obtained
from Eq. (A2) [considering that the dressed photon Green’s
function is defined in Eq. (A4)]:

(1,2) ≡ −ı

∫
d35(D(0))ij (3,1)

∇ i
1

2m

δG1(1,5)

δζj (3)
G−1

1 (5,2);

(A8)

then by using the identity (δG1/δζ ) = −G1(δG−1
1 /δζ )G1, we

find

(1,2) ≡ −ı

∫
d3456(D(0))ij (3,1)

∇ i
1

2m
G1(1,4)

δG−1
1 (4,6)

δζj (3)

×G1(6,5)G−1
1 (5,2), (A9)

and we finally arrive at

(1,2) ≡ −ı

∫
d34(D(0))ij (3,1)

∇ i
1

2m
G1(1,4)

δG−1
1 (4,2)

δζj (3)
.

(A10)

The Hedin equation (11) is recovered from Eq. (A10) by using
the bare vertex definition equation (12), Eq. (A7), and the
definition in Eq. (A6). In this framework, the Hedin vertex
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equation is the same as that shown in Ref. [25]:

�i(1,2; 3) = ξ̂i(3,3′)δ(1,3′)δ(2,3)

+
∫

d4567
δ(1,2)

δG1(4,5)
G1(4,6)G1(7,5)�i(6,7; 3)

= �(0)i(1,2; 3) +
∫

d4567
δ(1,2)

δG1(4,5)

×G1(4,6)G1(7,5)�i(6,7; 3). (A11)

Similarly, the Dyson equation for the polarization �ij (1,2) is
derived, considering the definition �ij (1,2) ≡ δji(1)/δ�j (2):

�ij (1,2) = ξ̂i(1,1′)
δG1(1,1′)
δ�j (2)

=
∫

d34ξ̂i(1,1′)G1(1,3)
δG−1

1 (3,4)

δ�j (2)
G1(4,1′).

(A12)
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