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Effectively engineering the lattice thermal conductivity of materials is a key interest of the current thermal
science community. Pressure or compressive strain is one of the most worthwhile processes to modify the thermal
transport property of materials, due to its robust tunability and flexibility of realization. While it is well documented
in the literature that the application of hydrostatic pressure normally increases the thermal conductivity of bulk
materials, little work has been performed on abnormal pressure-dependent thermal conductivity and the governing
mechanism has not been fully understood yet. In this paper, taking bulk telluride systems XTe (X = Hg, Cd, Zn)
as examples, we show, by combining first-principle calculation and the phonon Boltzmann transport equation,
that the thermal conductivity presents diverse pressure dependence although they belong to the same group.
The thermal conductivity of ZnTe is independent of pressure, while abnormal negative pressure dependence of
thermal conductivity is observed in HgTe. As for CdTe, the trend falls in between HgTe and ZnTe and relies
largely on the temperature. By comparing the key contributors of the lattice thermal conductivity, we find that
the diverse pressure dependence of the lattice thermal conductivity is governed by the competition between the
enhancement of group velocity of longitudinal acoustic and optic modes and the reduction of phonon relaxation
time of transverse acoustic modes, with both effects being fully quantified by our calculation. Comparison with
traditional bulk systems such as silicon further underpins the governing mechanism. The correlation between the
diverse thermal transport phenomena and the nature of the atomic bonding is also qualitatively established. These
findings are expected to deepen our understanding of manipulating phonon transport of bulk materials via simple
compressive strain and are also helpful for related applications, such as optimizing thermoelectric performance.
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I. INTRODUCTION

It is well known that lattice thermal conductivity is a
fundamental physical property of materials and also an impor-
tant parameter for design in a wide range of technology and
engineering applications [1–4]. How to effectively modulate
the thermal conductivity of materials plays a critical role in the
current thermal transport research community, in areas such as
thermoelectrics [1], heat dissipation [2], thermal insulators [3],
and thermal management [4]. So far, great efforts have been
adopted to manipulate the thermal transport via doping,
generating defects, varying the phonon band structure, or
coupling with a substrate [5–13]. These processes indeed have
made headway in this subject and promote the development of
relative thermal transport research.

In addition to these methods, pressure (more generally
speaking, mechanical strain) is also an effective way to
engineer the lattice thermal conductivity [14–24]. Owing to the
flexibility and easy realization in experiments, this approach
has attracted tremendous interest from both theoretical and
technological aspects. Ross et al. make a comprehensive
experimental review of the pressure effect on the thermal
conductivity and conclude that pressure will enhance the
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thermal conductivity of covalent and semiconducting mate-
rials [14]. Using the transient heating technique, Goncharov
et al. experimentally investigated the thermal transport in
compressed argon and found a power-law increase in thermal
conductivity with compression increasing [15]. Employing
density functional theory (DFT) calculations or the Green-
Kubo molecular dynamics (GKMD) method, a similar trend
has been presented theoretically in iron [16], argon [17,18],
diamond [19], silicon [20], cubic boron nitride [21], and also
for some nanostructures [22–24]. If one makes a statistical
analysis of the above results, a universal conclusion seems to
be drawn—that the pressure usually plays a positive effect on
the lattice thermal conductivity of bulk materials.

However, negative pressure effect on the thermal transport
property was also reported recently [25]. From the aspect of
first-principle calculation, Parrish et al. show that the room
temperature thermal conductivity of bulk silicon is almost a
constant under compression [17], which is quite different from
that found by the previous classical MD simulations [20].
Utilizing the time-domain thermoreflectance approach, Ho-
hensee et al. observe this unique thermal transport behavior
before the phase transition of silicon [25]. Lindsay et al.
calculate the binary compound materials and declare that the
thermal conductivity of the compounds generally decreases
with pressure when the compounds are composed of two
masses with large mass ratio [26]. These studies of the
thermal transport phenomena indicate that pressure, which
was originally thought to enhance the thermal conductivity,
is not a universal trend for all bulk materials. Therefore, it is
intuitive to speculate that there might exist some underlying
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physical mechanisms governing the positive or negative effect
of pressure on the lattice thermal conductivity.

In this paper, based on first-principle calculations we
present a systematic study of the pressure effect on the
lattice thermal conductivity of bulk telluride systems XTe
(X = Hg, Cd, Zn), all of which are promising thermoelectric
materials [27]. Our results show that, although the three
materials belong to the same group, their thermal conductivity
possesses fully different pressure dependence, which mainly
depends on the competition between the enhancement of group
velocity of longitudinal acoustic and optic modes and the
reduction of phonon relaxation time of transverse acoustic
modes. The remainder of the paper is organized as follows.
In Sec. II, a brief description about the Peierls-Boltzmann
transport equation (PBTE) method and our first-principle cal-
culation is given. In Sec. III, we present the pressure effect on
the thermal conductivity of HgTe, CdTe, and ZnTe in sequence.
To interpret the diverse pressure-dependent thermal transport
phenomena, the physical parameters at the phonon mode
level, e.g., phonon group velocity, phonon lifetime, Grüneisen
parameters, are analyzed. In addition, an understanding about
the pressure-dependent thermal conductivity is developed in
Sec. IV and the behavior is correlated with the nature of
the interatomic interaction in different structures. Finally, our
concluding remarks are summarized in Sec. IV.

II. COMPUTATIONAL DETAILS

At ambient conditions, XTe (X = Hg, Cd, Zn) crystal
has a zinc-blende structure (space group F43̄m) with two
basis atoms per primitive cell. Previous experiments have
demonstrated that the pressure induced phase transitions for
HgTe, CdTe, and ZnTe are about 1.5, 3.5, and 9.0 GPa,
respectively [28–31]. In this work we mainly focus on the
pressure effect (�1.5 GPa, lower than the phase transition
pressure) on the thermal transport properties of XTe with
the zinc-blende phase; therefore the detailed process of phase
transition and the corresponding phonon mode softening is not
taken into consideration. For the isotropically cubic systems
examined in this work, the thermal conductivity is a scalar and
can be expressed as

κ = κxx = 1

V

∑
λ

Cλv
2
xτλx, (1)

where V is the crystal volume, Cλ the mode specific heat,
and νx the group velocity along x. Here we use the shorthand
λ = (j, �q), where j and �q are phonon branch and wave
vector, respectively. τλx is the phonon lifetime obtained
from the nonequilibrium phonon distribution [32,33]. In this
calculation, we use a full Brillouin zone and iterative solution
of the Peierls-Boltzmann transport equation as implemented
in the SHENGBTE package [34]. The only inputs are harmonic
and anharmonic interatomic force constants (IFCs), which are
obtained from first principles.

Our first-principle calculations are carried out with the
Vienna Ab Initio Simulation Package (VASP) [35]. The
Ceperley-Alder local-density approximation (LDA) is adopted
for exchange and correlation function [36]. Projector aug-
mented wave (PAW) pseudopotentials are used for the inter-
action among atoms [37] and the kinetic energy cutoff for the

plane-wave basis is set to 500 eV. The Brillouin zone of the
primitive cell is sampled with 15 × 15 × 15 Monkhorst-Pack k

mesh. During the structure optimizations, both the atom posi-
tions and lattice constants are fully relaxed until the maximum
force acting on each atom is less than 10−5 eV/Å. The relaxed
lattice parameter is 6.447, 6.421, and 6.003 Å for HgTe, CdTe,
and ZnTe, which agrees very well with the experimental data of
6.453, 6.482, and 6.101 Å [38]. To obtain the IFCs, a 5 × 5 × 5
supercell is constructed, where the numbers of k mesh used are
accordingly scaled down compared with the case of unit cell
calculation. The size of the supercell (250 atoms) is far larger
than the cutoff interaction of the third-order force constant and
similar treatment has also been extensively used in previous
papers [17,19,26,34,39]. When dealing with the third-order
anharmonic IFCs, the translational invariance constraint is en-
forced via using the Lagrangian multiplier method [40]. As for
the interaction cutoff of the third-order force constant, we have
done the convergence test (the results are not shown here for
brevity) and found that the thermal conductivity changes ob-
viously in the small cutoff region (<third-nearest neighbors),
while it stays almost unchanged when the cutoff is larger than
third-nearest neighbors. Therefore, taking into consideration
the computational accuracy and the time-consuming calcula-
tions, the fourth-nearest neighbors are chosen as the interaction
cutoff for the third-order force constant in this work. The con-
vergence of thermal conductivity with respect to the phonon
q-grid size is also tested in our calculation. The results show
that the thermal conductivity (at room temperature 300 K) of
HgTe gradually reaches a stable value, when the phonon q grid
increases from 23 × 23 × 23 to 25 × 25 × 25, and the differ-
ence between the two-phonon q grids is less than 5%, which
indicates the convergence of the BTE calculation. For keeping
the computations consistent, we use the 25 × 25 × 25 phonon
q grid for all of our calculations. Conservation of energy in
the three-phonon processes is enforced by the Dirac delta
distributions with locally adaptive Gaussian approximation
(scale parameter for broadening is chosen as 1.0) [41].

III. RESULTS AND DISCUSSION

A. HgTe

Through solving the eigenvalues of the dynamical matrix
constructed via the harmonic IFCs, we first obtain the phonon
dispersion curves of HgTe as shown in Fig. 1(a). It can be
found that the calculated phonon branches of HgTe under

FIG. 1. (Color online) (a) The phonon spectra of HgTe under
different pressures and (b) corresponding phonon density of state
(DOS).
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FIG. 2. (Color online) The lattice thermal conductivity of HgTe
as a function of pressure at three typical temperatures.

zero pressure are in good agreement with previous theoretical
and experimental studies [42,43]. For example, the frequency
of the transverse optic phonon mode (TO) at the � point is
about 3.47 THz and the experimental measured value is about
3.54 THz. This accurate phonon band structure validates the
reliability of the IFCs obtained in this work. Meanwhile, we
should note here that the real space supercell approach [44]
cannot directly provide the splitting between the longitudinal
and transverse optic phonon modes. Therefore, the Born
effective charges and dielectric constants are taken into account
in our calculation [45,46]. Under the pressure, one can see
that the two low-frequency transverse acoustic (TA) phonon
branches become softer around the X and K points. As for
the longitudinal acoustic (LA) and optic phonon branches,
they gradually shift to high frequencies, analogous to that
observed in most bulk materials such as diamond and solid
argon [17–19]. From the phonon density of state shown in
Fig. 1(b) we can also see this change more clearly.

The lattice thermal conductivity of HgTe as a function of
pressure at three typical temperatures is plotted in Fig. 2.
Owing to the enhancement of intrinsic phonon scattering, it
can be seen that the thermal conductivity decreases as the
temperature increases from 50 to 300 K. At room temperature
(300 K) the calculated thermal conductivity (0.0 GPa) is
about 10.46 W/mK, which is higher than the experimen-
tal measurement (standard atmospheric pressure) of about
2.14 W/mK [47]. That is to say, our calculations overestimate
the thermal conductivity of HgTe. However, this overestima-
tion is understandable considering that, in the temperature
range we are interested in, the defect (e.g., impurity, grain
boundary, and dislocation) induced phonon scattering in the
experimental samples [47] plays significant roles as compared
with the intrinsic phonon-phonon scattering. On the other
hand, it should be noted here that although our result overesti-
mates the thermal conductivity, in this work we mainly focus
on the qualitative response of the thermal transport property to
the external pressure, rather than the accurate absolute value
of the lattice thermal conductivity. Upon compression, we
can notice that the thermal conductivity of HgTe decreases
remarkably at the three typical temperatures considered here.
At 1.5 GPa, the thermal conductivity at room temperature is

reduced by 67%. Such dramatic decrease in lattice thermal con-
ductivity with pressure is quite anomalous, since as mentioned
earlier generally the thermal conductivity of bulk materials,
e.g., diamond, boron nitride, solid argon, would increase under
pressure. Moreover, it is worth pointing out that, considering
the positive effect of pressure on the electronic property for
most thermoelectric materials [48–50], this negative pressure
effect on the lattice thermal conductivity could offer an
alternative route to decouple the electrical and phononic
transport in thermoelectrics in terms of improving their energy
conversion performance [51]. Currently, we are continuing the
study of other similar thermoelectric systems in this line.

In order to elucidate the reasons for this anomalous
pressure-dependent thermal conductivity of HgTe, we examine
the phonon mode properties based on the solution of PBTE
(Fig. 3). Here different phonon modes are sorted by their fre-
quencies, which is a commonly used method to distinguish dif-
ferent phonon modes in the entire Brillouin zone. Figure 3(a)
shows the pressure-dependent specific heat of HgTe at three
typical temperatures. At room temperature the specific heat
of HgTe at 0 GPa is 1.213 × 106 J/m3 K (∼48.93 J/mol K),
which agrees very well with previous theoretical and exper-
imental data [42,52]. Under the pressure, the specific heat
has very little increase with pressure especially for the low
temperature (only ∼2.7% increase at room temperature). In
Fig. 3(b) the average values of group velocity for each phonon
branch are plotted. Here, the average value of group velocity
is the arithmetic mean, i.e., the sum of all the group velocity
divided by the total number of q points in the Brillouin zone.
Similar to the variation of specific heat, a slight increase in
group velocity is observed in the acoustic phonon modes
(LA and TA2) of HgTe under compression, while the group
velocities for the optic phonon modes seem unaltered over
the entire pressure region. These behaviors are consistent
with the observation from the phonon dispersion curves as
shown in Fig. 1. Another key factor of the lattice thermal
conductivity, phonon lifetime τ , is plotted in Fig. 3(c). It can
be clearly seen that the pressure leads to an evident reduction of
acoustic phonon lifetime, in particular for TA branches, while
the pressure effect on the lifetime of optic phonon modes is
minor. These results indicate that the enhancement of acoustic
phonon scattering (corresponding to shorter phonon lifetime)
is the main reason for the reduced lattice thermal conductivity
under pressure, rather than the specific heat and group velocity
change [both have slight positive effects on the lattice thermal
conductivity, according to Eq. (1)].

The mode specific Grüneisen parameter (γλ) [19,34,53] is
another way to qualitatively characterize the magnitude of
individual three-phonon scattering in a solid material and it
can be calculated from the anharmonic IFCs as [19]

γλ = − 1

6ω2
λ

∑
k

∑
l′k′

∑
l′′k′′

∑
αβγ

×
[
�αβγ (0k,l′k′,l′′k′′)

eλ∗
αke

λ′
βk′√

MkMk′
× eiqRl′ rl′′k′′γ

]
, (2)

where Rl′ is the lattice vector locating in the lth unit cell; k

denotes an atom in this unit cell and the corresponding mass is
Mk; α, β, and γ are Cartesian components; �αβγ (0k,l′k′,l′′k′′)
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FIG. 3. (Color online) The phonon mode properties, i.e., (a)
specific heat, (b) group velocity, and (c) phonon lifetime of HgTe
versus pressure.

is the third-order (anharmonic) IFCs; eλ
αk is the αth component

of the phonon eigenvector for atom k in mode λ; rlkγ is the
γ th component of the vector locating in the kth lattice atom
at the lth unit cell. The Grüneisen parameters can be also
calculated by the PHONOPY [44] using the original definition,
γ = −dlnω/dlnV , where ω and V are phonon frequency and
crystal volume [53]. Our calculation shows that the Grüneisen
parameters obtained by these two methods are in good agree-
ment with each other (the data are not shown here), indicating

FIG. 4. (Color online) (a) Frequency-dependent mode specific
Grüneisen parameter of HgTe at typical pressures. (b) Frequency-
dependent three-phonon scattering phase space of HgTe at typical
pressure. (a) Inset: The pressure-dependent mode weighted accumu-
lative Grüneisen parameter (MWGP).

that the Grüneisen parameters obtained in our calculation are
correct. In Fig. 4(a) the mode specific Grüneisen parameters
of HgTe are plotted. From this figure, one can observe notable
negative Grüneisen parameters for phonon frequency below
1.2 THz, which corresponds to the TA modes in the phonon
spectrum. Under pressure, the negative values of Grüneisen
parameters in the low-frequency region continuously move
downward (in the negative direction), indicating the magnitude
of the absolute value is ascending. From the mode weighted
accumulative Grüneisen parameter γ = ∑

λ Cλγλ/
∑

λ Cλ, we
can see this behavior more clearly [see the inset of Fig. 4(a)].
The calculated cumulative Grüneisen parameter of XTe is also
compared with the experimental value in Table I. In Fig. 4(b),
three-phonon scattering phase space of HgTe, which could
decide the number (space) of phonon scattering processes [55],
is also depicted. It can be seen that the pressure effect imposes
a weak influence on the phonon scattering space. Based on
the qualitative relationship between the phonon lifetime and
Grüneisen parameters [53,56], one can conclude that the
anharmonic phonon scattering in HgTe is augmented when
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TABLE I. Comparison of calculated cumulative Grüneisen pa-
rameters (300 K) of XTe and experimental data ([Refs. [53,54]).

Material γ exp γ cal

HgTe 0.46 0.37
CdTe 0.52 0.54
ZnTe 0.97 0.81

applying pressure and thus leads to the significant reduction
of lattice thermal conductivity.

B. CdTe

Since Cd and Hg belong to the same group in the periodic
table, it is intuitive to compare the results between HgTe
and CdTe. Analogous to HgTe, we first calculate the phonon
dispersion curve and density of state of CdTe as shown in
Fig. 5. Our calculated phonon frequencies agree very well with
the experimental measurements, which proves the accuracy of
our harmonic IFCs. For instance, the calculated frequencies
of TO and LO phonon modes at the � point are about 4.48
and 5.02 THz, while the experimental data are about 4.20 and
5.08 THz [57]. On the other hand, in contrast to the evident
band gap between the acoustic and optic phonon branches
in HgTe, there is no band gap between these two types of
phonon branches in the spectrum of CdTe. This disappearance
of phonon band gap is mainly attributed to the smaller mass
ratio between Cd and Te atoms. Similar phenomena have also
been reported in the literature [26,58]. With applied pressure,
it can be seen that pressure barely alters transverse acoustic
phonons (again except for slightly softening around the X and
K points), but shifts the longitudinal acoustic phonons and the
optic phonons to higher frequencies. This behavior of phonon
branches is similar to that observed in HgTe.

Figure 6 shows the pressure-dependent thermal conductiv-
ity for the case of CdTe at three typical temperatures. The
calculated thermal conductivity of CdTe at room temperature
is about 13.22 W/mK, in contrast to the experimental value
of about 7.50 W/mK [59]. A striking result in Fig. 6 is
the different response of thermal conductivity to pressure at
different temperatures. At low temperature (50 K), the pressure
has a negative effect on the thermal conductivity of CdTe,
similar to that in HgTe; i.e., the thermal conductivity decreases
with increase of pressure. However, at high temperatures (100

FIG. 5. (Color online) (a) The phonon spectra of CdTe under
different pressures and (b) corresponding phonon density of state
(DOS).

FIG. 6. (Color online) The lattice thermal conductivity of CdTe
as a function of pressure at three typical temperatures.

and 300 K), the thermal conductivity remains as a constant
over the pressure range from 0 to 1.5 GPa.

In Fig. 7, the phonon mode properties of CdTe are
presented to understand the different response of thermal
conductivity to pressure. The room temperature specific heat
of CdTe at 0 GPa is 1.005 × 106 J/m3K (∼48.57 J/mol K),
which agrees very well with the previous experimental value
of 50.05 J/mol K [60]. When pressure is applied, we can
see from Fig. 7(a) that the specific heat of CdTe has a slight
increase with pressure. As shown in Fig. 7(b), similar variation
can also be observed for the average phonon group velocity of
CdTe, especially for the LA phonon modes. Meanwhile, the
average group velocity of CdTe is larger than that of HgTe
shown in Fig. 3(b), which originates from the larger slope of
phonon branches versus the phonon wave vector and higher
cutoff frequency in the phonon spectrum, a nature of stronger
interatomic interaction between Cd and Te atoms. Figure 7(c)
gives the pressure-dependent mean phonon lifetime of CdTe
for each phonon branch. Unlike the significant reduction in the
lifetime of dominated phonons (acoustic phonons) in HgTe,
there only exists a slight decrease in the phonon lifetime of
TA modes in CdTe with pressure at low temperature (50 K).
As temperature increases, this decrease of phonon lifetime
gradually disappears. Combining the variation of specific heat,
group velocity, and phonon lifetime with pressure, we know
that at low temperature the considerable drop in the phonon
lifetime overwhelms the incremental change in the specific
heat and group velocity, while at higher temperatures the drop
in the phonon lifetime compensates the slight augmentation in
the specific heat and group velocity. Therefore, according to
Eq. (1), the lattice thermal conductivity of CdTe has little
dropdown with pressure at low temperature and is almost
pressure independent at high temperatures (Fig. 6).

In order to further understand the phonon anharmonicity
in CdTe, in Figs. 8(a) and 8(b) we plot the mode specific
Grüneisen parameter γλ and three-phonon phase space with
different pressures. The Grüneisen parameters of CdTe at
some high symmetric points are also compared with previous
theoretical data [61]. It can be seen that there also exist notable
negative Grüneisen parameters in the low-frequency region,
which originate from the TA phonon modes. However, the
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FIG. 7. (Color online) The phonon mode properties, i.e., (a)
specific heat, (b) group velocity, and (c) phonon lifetime of CdTe
versus pressure.

magnitude of these negative Grüneisen parameters in CdTe
is far smaller than that in HgTe shown in Fig. 4(a). Under
compression, the change in the Grüneisen parameters and
three-phonon phase space of CdTe is also indistinctive. There
only exists a slight decrease in the negative part as shown in
the inset of Fig. 8(a). At low temperature (50 K), only low-
frequency phonon modes contribute to the thermal transport.
Therefore, the slight downward move of the low-frequency
phonon modes with negative Grüneisen parameters, i.e., the

FIG. 8. (Color online) (a) Frequency-dependent mode specific
Grüneisen parameter of CdTe at typical pressures. Comparison of
the Grüneisen parameters at some high symmetric points between
our calculation and previous theoretical data ([Ref. [61]) is also
provided. (b) Frequency-dependent three-phonon scattering phase
space of CdTe at typical pressure. (a) Inset: The pressure-dependent
mode weighted accumulative Grüneisen parameter (MWGP).

increase in the absolute value, will enhance the intrinsic
phonon-phonon scattering at low temperature and gives rise
to the slight decrease of the lattice thermal conductivity, as
shown in Fig. 6. As the temperature increases (100 and 300 K),
however, the high-frequency phonon modes start to contribute
to thermal conductivity as well, and the weak enhancement of
the Grüneisen parameters in the low-frequency region could be
attenuated; i.e., the positive value of the Grüneisen parameters
is decreased (see the inset of Fig. 8). Consequently, the thermal
conductivity of CdTe is independent of pressure at 100 and
300 K.

C. ZnTe

As a comparison with HgTe and CdTe, we finally calculate
the pressure effect on the thermal transport in ZnTe. The
phonon spectra of ZnTe with different pressures are plotted in
Fig. 9. The calculated phonon frequencies also match very well
with the experiments. For example, the calculated frequencies
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FIG. 9. (Color online) (a) The phonon spectra of ZnTe under
different pressures and (b) corresponding phonon density of state
(DOS).

of TO and LO phonon modes at the � point are about 5.66 and
6.29 THz, respectively, as compared with the experimental
value of about 5.30 and 6.20 THz [62]. Similar to HgTe,
there also exits an obvious band gap between the acoustic and
optic phonon branches owing to the large mass ratio between
the Zn and Te atoms. Due to the stronger bonding energy
in ZnTe, the cutoff frequency of ZnTe is higher than that in
HgTe and CdTe, which foreshows the larger group velocity in
ZnTe (see below in Fig. 11). Upon compression, the analogous
phenomena found in HgTe and CdTe can be observed in ZnTe
as well.

As for the pressure effect on the thermal conductivity
of ZnTe, we can see from Fig. 10 that, at all temperatures
considered in this work, the thermal conductivity of ZnTe is
independent of pressure. This trend is consistent with that
for bulk silicon [17], while in contrast to that for HgTe and
CdTe at low temperature, where the thermal conductivity
largely decreases under compression. In order to interpret
the pressure-independent thermal transport property of ZnTe
at the phonon mode level, in Figs. 11(a)–11(c) we plot the
average specific heat, group velocity, and phonon lifetime as
a function of pressure. From these figures, it can be seen
that not only the harmonic effect (specific heat and group
velocity) but also the anharmonic effect (phonon lifetime) in
ZnTe hardly changes under compression, which obviously
explains the pressure dependence of thermal conductivity.

FIG. 10. (Color online) The lattice thermal conductivity of ZnTe
as a function of pressure at three typical temperatures.

FIG. 11. (Color online) The phonon mode properties, i.e., (a)
specific heat, (b) group velocity, and (c) phonon lifetime of ZnTe
versus pressure.

Figures 12(a) and 12(b) give the mode specific Grüneisen
parameters and three-phonon phase space of ZnTe. The
Grüneisen parameters of ZnTe at some high symmetric points
are also compared with experimental data [63]. The magnitude
of the negative Grüneisen parameters γλ that originated from
the low-frequency TA phonon modes is obviously lower than
that in HgTe and CdTe. Meanwhile, there also exist a certain
amount of positive Grüneisen parameters (originated from
the LA phonon modes) in the low-frequency region, which
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FIG. 12. (Color online) (a) Frequency-dependent mode specific
Grüneisen parameter of ZnTe at typical pressures. Comparison of the
Grüneisen parameters at some high symmetric points between our
calculation and experimental data ([Ref. [63]) is also provided. (b)
Frequency-dependent three-phonon scattering phase space of HgTe
at typical pressure. (a) Inset: The pressure-dependent mode weighted
accumulative Grüneisen parameter (MWGP).

weakens the negative part of the Grüneisen parameters. When
pressure is applied, the variation of the Grüneisen parameters
(see the inset of Fig. 12) and three-phonon phase space is quite
small, indicating that the pressure has a weak influence on the
phonon anharmonicity in ZnTe. Therefore, the lattice thermal
conductivity of ZnTe remains as a constant with increase of
pressure.

IV. FURTHER ANALYSIS OF UNDERLYING MECHANISM
OF STRAINED PHONONS

From the results presented above, a qualitative conclusion
can be drawn that the pressure mainly possesses two competing
effects on the lattice thermal conductivity of XTe [Eq. (1)].
On the one hand, the pressure will improve the specific heat
and the group velocity (especially the LA and optic phonon
modes), which is the “positive” effect on the phonon transport.
On the other hand, the pressure will enhance the phonon

FIG. 13. (Color online) The normalized C44/C11 of HgTe, CdTe,
and ZnTe as a function of pressure.

anharmonicity of TA phonon modes as well, which represents
the “negative” effect on the thermal conductivity. Generally
speaking, the positive effect of pressure is a universal behavior
for a rather large amount of bulk materials. Therefore, the
variation of thermal conductivity with pressure is mainly
determined by the magnitude of the negative effect; i.e., when
the phonon anharmonicity of TA modes overwhelms the “pos-
itive” effect, the lattice thermal conductivity should decrease
with pressure. In the following, we present three different
physical parameters to characterize the phonon anharmonicity,
which might be helpful in revealing and understanding the
underlying mechanism more clearly.

A. The relationship between elastic constants and
phonon anharmonicity

It is well known that the physical properties of phonon
modes also correlate with the elastic constants of a mate-
rial [64]. In order to analyze the relationship between the
elastic constants and the pressure dependence of lattice thermal
conductivity, in Fig. 13 we plot the normalized C44/C11 as a
function of pressure, where C11 and C44 are the first and the
fourth elements on the diagonal of the elastic constant tensor.
The C44/C11 is normalized by the value at zero pressure. It can
be seen that the normalized C44/C11 of XTe decreases evidently
as the pressure increases. Moreover, the decreasing slope
of the normalized C44/C11 with respect to pressure is quite
different and the sequence is asfollows: HgTe>CdTe>ZnTe,
which is consistent with the magnitude of the negative slope
of the lattice thermal conductivity with respect to pressure.
Since C44 can qualitatively determine the phonon frequency
of TA modes [65], the decrease of the normalized C44/C11

shown in Fig. 13 suggests that the frequency of TA phonon
modes will decrease under pressure. According to the direct
definition of the Grüneisen parameter, γ = −dlnω/dlnV , if
the frequency of TA phonon modes decreases with pressure,
then the negative Grüneisen parameters could be induced
in the TA phonon modes and the magnitude is determined
by the decreasing slope of the normalized C44/C11. That is to
say, among the three materials studied, the HgTe possesses the
strongest phonon anharmonicity, while ZnTe holds the weakest

235204-8



COMPETING MECHANISM DRIVING DIVERSE PRESSURE . . . PHYSICAL REVIEW B 92, 235204 (2015)

phonon anharmonicity with pressure. Owing to the large
decreasing slope of normalized C44/C11 (i.e., enhancement of
phonon anharmonicity) in HgTe, the improvement of specific
heat and group velocity cannot compete with the negative
aspect induced by the phonon anharmonicity. Therefore, the
thermal conductivity of HgTe decreases monotonically with
pressure. As for ZnTe, the pressure effect on the phonon
anharmonicity is weak and the positive effect of pressure could
neutralize this negative part, which gives rise to the pressure
independence of thermal conductivity. For CdTe, the negative
effects dominate the thermal transport only at low temperatures
(the TA phonon modes play a critical role in the thermal
conductivity). Therefore, the thermal conductivity of CdTe
only slightly decreases at low temperature while it remains
as a constant at high temperature. Based on this analysis, the
slope of the normalized C44/C11 can be used to quantify the
magnitude of the negative effect (phonon anharmonicity) of
pressure, e.g., XTe in our calculation, bulk Si, and diamond.
However, it should be note here that whether this qualitative
conclusion can be extended to other new materials needs
further investigations in the future.

B. The relationship between the coefficient of thermal
expansion and thermal conductivity

From the theory of thermodynamics, the Grüneisen param-
eters can also be used to quantify the volumetric coefficient of
thermal expansion (CTE) αV [66] by

αV = 1

B

∑
λ

Cλγλ, (3)

where B is the bulk modulus. In this work, we treat the
bulk modulus as a temperature-independent parameter for
simplification. From this aspect of analysis one can speculate
that there should exist a relationship between the thermal
conductivity and coefficient of thermal expansion. In order
to demonstrate our conjecture, in Fig. 14 we present the
volumetric coefficient of thermal expansion of HgTe, CdTe,
and ZnTe at different pressures. From Fig. 14(a) one can
notice that over a wide temperature range (0–75 K) there
are obvious negative coefficients of thermal expansion in
HgTe, due to the large intrinsic negative Grüneisen param-
eters in the low-frequency region (Fig. 4). Under compres-
sion, the magnitude of the negative thermal expansion of
HgTe becomes larger and the corresponding temperature
range is extended to the entire temperature considered here.
Similar results have also been reported in a previous experi-
mental study [67], where negative thermal expansion of HgTe
under pressure of 1.2 GPa can be found at a temperature
as high as 300 K. As for CdTe shown in Fig. 14(b), the
volumetric coefficient of thermal expansion also possesses a
small negative range (<60 K) and it moves downward with
pressure increasing as well. However, the coefficient of thermal
expansion of CdTe at high temperature (>60 K) increases to
positive at 0 GPa and the temperature corresponding to the
negative-positive transition of CTE moves rightward (up to
100 K) under high pressure. For ZnTe [Fig. 14(c)], it can be
seen that the variation of coefficient of thermal expansion with
pressure is not appreciable as compared to that in HgTe and
CdTe. The magnitude of the negative thermal expansion of

FIG. 14. (Color online) The volumetric coefficient of thermal
expansion of (a) HgTe, (b) CdTe, and (c) ZnTe as a function of
temperature at typical pressure.

ZnTe is much smaller than that of HgTe and CdTe and the
negative temperature range becomes much narrower (<60 K)
for all pressures considered. The CTE always holds positive
in a wide range of temperature (>60 K). Based on the results
presented above, one can obtain qualitative conclusions about
the relationship between the coefficient of thermal expansion
and the lattice thermal conductivity: (1) the negative pressure
effect on the thermal conductivity is always accompanied with
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FIG. 15. (Color online) The volumetric coefficient of thermal
expansion of bulk silicon. Inset: The lattice thermal conductivity
of bulk silicon as a function of pressure at 50 and 300 K.

large negative coefficient of thermal expansion; (2) the notable
variation of the coefficient of thermal expansion to negative
is more likely to result in considerable reduction of lattice
thermal conductivity upon applying pressure.

In order to further demonstrate our speculation on the
relationship between negative CTE and negative pressure-
dependent thermal conductivity, in Fig. 15 we calculate the
corresponding thermal transport properties of bulk silicon
with similar atomic structure to XTe. It can be clearly seen
that there exists a negative coefficient of thermal expansion
region (<125 K) in the bulk silicon, which agrees very
well with previous theoretical and experimental measured
results [68,69]. Accordingly, based on our speculation, the neg-
ative coefficient of thermal expansion of bulk silicon foreshows
the negative pressure dependence of thermal conductivity in
this temperature region. From the inset of Fig. 15, we can find
that the calculated thermal conductivity of silicon matches
our speculation very well. The lattice thermal conductivity
of silicon decreases largely with pressure at 50 K (in the
negative coefficient of the thermal expansion region), while
it remains almost as a constant at room temperature. The
latter is consistent with previous theoretical and experimental
studies [17,25]. The diamond, whose thermal expansion is
always positive in the entire temperature region, is also tested.
We find that the thermal conductivity of diamond continuously
increases with pressure for all temperatures considered (50–
300 K; the results are not shown for brevity). These extended
cases further prove the reliability of our speculation on the
relationship between CTE and thermal conductivity.

C. Correlation between the nature of interatomic interaction
and pressure dependence of lattice thermal conductivity

Finally, in order to correlate the diverse pressure-dependent
thermal transport phenomena with interatomic interaction, in
Fig. 16 we calculate the deformation charge density (DCD)
distribution of the ground state HgTe, CdTe, and ZnTe. From

FIG. 16. (Color online) Deformation charge density in units of

e/Å
3

projected onto the (11̄0) plane of (a) HgTe, (b) CdTe, and (c)
ZnTe at ground state. Each black dot represents an atom and is labeled
in blue.

the distribution of DCD, it can be clearly seen that for HgTe
the electrons are mainly transferred to the Te atoms as shown
in Fig. 16(a), indicating an ionic bonding. In contrast, for
CdTe and ZnTe [see Figs. 16(b) and 16(c), respectively], the
corresponding distribution of DCD is totally different, where
the electrons are gradually transferred to the region between
the Cd (Zn) and Te atoms. This different feature of DCD
distribution suggests that the interatomic bonding becomes
more covalent in CdTe and ZnTe as compared to that in HgTe.
That is to say, the interatomic bonds in HgTe are partially ionic,
while the bonds in CdTe and ZnTe are partially covalent. On
the one hand, we know that the covalent bond possesses strong
directivity and thus the atom slide hardly occurs, which leads
to the indistinctive negative Grüneisen parameters, as found
in other materials (e.g., Si and diamond [70–72]), and the
positive volumetric coefficient of thermal expansion. On the
other hand, the atoms with ionic bonding can slide with each
other easily, owing to the nondirectivity in the ionic bonds.
In this case, remarkable negative Grüneisen parameters in
the low-frequency acoustic phonon modes and the negative
volumetric coefficient of thermal expansion could be observed.
Similar phenomena have also been found in other systems,
e.g., CuCl [73] and AgI [74]. Consequently, the materials
(HgTe) with partially ionic bonding always have a large
magnitude of negative Grüneisen parameters (inducing strong
phonon anharmonicity, Fig. 4) and low thermal conductivity as
compared to those (ZnTe) with partially covalent bonding [75].
Upon compression, the slide motion of atoms in HgTe is
enhanced and induces stronger anharmonic scattering, which
gives rise to the negative coefficient of thermal expansion and
decreased thermal conductivity. For ZnTe, the intrinsic slide
motion of atoms (negative Grüneisen parameters, Fig. 12) is
relatively weak and insensitive to pressure, thus leading to
the pressure-independent coefficient of thermal expansion and
thermal conductivity. As for the middle case of CdTe, the
intension of atom slide motion falls somewhere in between
HgTe and ZnTe. Accordingly, the thermal conductivity de-
creases with pressure at low temperature, where the negative
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Grüneisen parameters are evident, and remains as a constant
at high temperature owing to the neutralization of the negative
Grüneisen parameters of TA modes by the positive Grüneisen
parameters of LA and optic modes (Fig. 8).

V. SUMMARY AND CONCLUSION

To summarize, we have presented a systematic study and
comparison of the pressure effect on the lattice thermal con-
ductivity of bulk telluride systems XTe (X = Hg, Cd, Zn) at
different temperatures by solving the Peierls-Boltzmann trans-
port equation with interatomic force constants calculated from
first principles. Our results show that the thermal conductivity
of XTe presents totally different pressure dependence. The
thermal conductivity of HgTe decreases largely with pressure
at all temperatures and the degree of decreasing ascends when
the temperature gets lower. For CdTe, the thermal conductivity
only slightly decreases with pressure at low temperature
(50 K), while it remains constant at high temperatures (100
and 300 K). As for ZnTe, however, the thermal conductivity
is independent of pressure for all temperatures considered. By
comparing the key factors of the lattice thermal conductivity
at the phonon mode level, we find that the different response
of the lattice thermal conductivity to the external pressure
mainly depends on the competition between the enhancement
of group velocity of LA and optic modes (positive effect on
thermal conductivity) and the reduction of phonon relaxation
time of TA modes induced by the phonon anharmonicity
(negative effect). Further analysis reveals that the magnitude
and variation of the intrinsic negative Grüneisen parameters
of the transverse acoustic modes are the key and governing
parameters for determining the negative pressure-dependent
thermal conductivity, when they overwhelm the positive effect
of the enhancement of group velocity. Finally, the analysis of
the electronic density distribution establishes the correlation
between the diverse thermal transport phenomena and the
nature of the interatomic interactions. The material with ionic
bonding is more likely to possess large negative Grüneisen
parameters and negative coefficient of thermal expansion in
a very wide temperature range (sometimes can even persist
above room temperature). As a result, the negative pressure
effect on the lattice thermal conductivity generally appears
in this type of material. In contrast, when the material has
covalent bonding, the negative Grüneisen parameters and neg-
ative coefficient of thermal expansion can only occur at very
low temperatures. As temperature increases, both the average
Grüneisen parameter and the coefficient of thermal expansion
transits from negative to positive, and thus the effect of
pressure on the lattice thermal conductivity is positive as well.
Simulations of bulk silicon further underpin our conclusion.

It should be noted here that our speculation about the
thermal expansion and thermal conductivity has been demon-
strated not only for XTe in our calculation, but also for bulk Si.
Thus in our opinion this speculation can also be extended to
other materials with dominant negative Grüneisen parameters
or a global negative thermal expansion coefficient. For exam-
ple, the negative pressure dependence of thermal conductivity
can also be found in Si clathrate frameworks. For Si-VII
(Im-3m) structure the thermal conductivity drops by 43%
when the volume is compressed by 3%, as revealed by our re-

FIG. 17. (Color online) Comparison of the phonon dispersion
curves of (a) HgTe, (b) CdTe, and (c) XTe between our calculation and
experimental data in different symmetry directions of the Brillouin
zone. Open circles are the neutron-scattering data taken from HgTe,
Ref. [42]; CdTe, Ref. [57]; ZnTe, Ref. [62].

cent ab initio calculations (results not shown here for brevity).
We also found the same negative pressure-dependent lattice
thermal conductivity for other binary thermoelectric materials
and even ternary materials recently. As for the theoretical
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explanation of mass ratios for negative pressure dependence of
thermal conductivity [26], it indeed makes a good prediction
on some special binary compound materials. However, this
explanation cannot be directly applied to the present systems,
in particular for the bulk Si and pure Si clathrates, since they
are composed of a single element, not compounds.

As for the fundamental significance of this paper to the
microscale/nanoscale heat transfer and also the broad materials
science community, we would like to point out that the motiva-
tion of this work originates from enhancing the energy conver-
sion performance of thermoelectric materials, where electronic
and phononic transport property is inherently and strongly
coupled, which significantly hinders the large improvements
of the ZT coefficient ZT = S2σT/κ , where κ (κ = κe + κp)
is the thermal conductivity composed of the contributions from
electrons (κe) and phonons (κp). Our paper reveals that, by
using negative thermal expansion materials under pressure, the
lattice thermal conductivity can be largely reduced, and at the
same time the electronic transport could be maintained or even
enhanced under pressure. In the present work we do not calcu-
late the electronic transport properties with pressure. However,
previous studies have shown the positive effect of pressure on
the electronic properties (electrical conductivity, Seebeck co-
efficient, or thermopower) of several materials, such as PbTe,
Bi-Cu-Se-O, and other thermoelectric materials [48–50].
Therefore, we expect that a similar effect could also be
found in other systems and it is worth investigating the cor-
responding pressure effect on the lattice thermal conductivity.

Simultaneously searching thermoelectric materials with posi-
tive pressure effect on the thermopower is underway currently.
Our findings provide physical insights into the effect of
pressure on the phonon transport of bulk materials at different
temperatures and offer an alternative route to effectively de-
couple the electrical and phononic transport in thermoelectrics
in terms of improving their energy conversion performance.
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APPENDIX

In Fig. 17 we compare the phonon dispersion of XTe
between our ab initio calculation and experimental mea-
surements. The results show that our calculation is in good
agreement with experiments.
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[37] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994); G. Kresse and

D. Joubert, ibid. 59, 1758 (1999).
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