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Quasiparticle collapsing is a central issue in the study of strongly correlated electron systems. In the one-
dimensional case, the quasiparticle collapsing in a form of spin-charge separation has been well established, but
the problem remains elusive in dimensions higher than one. By using the density matrix renormalization group
(DMRG) algorithm, we show that in an anisotropic two-leg t-J ladder, an injected single hole behaves like a
well-defined quasiparticle in the strong rung limit but undergoes a “phase transition” with the effective mass
diverging at a quantum critical point (QCP) towards the isotropic limit. After the transition, the quasiparticle
collapses into a loosely bound object of a charge (holon) and a spin-1/2 (spinon) accompanied by an unscreened
phase string as well as a substantially enhanced binding energy between two doped holes. A phase diagram
of multileg ladders is further obtained, which extrapolates the QCP towards the two-dimensional limit. The
underlying mechanism generic for any dimensions is also discussed.
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The Landau’s Fermi liquid theory is characterized by the
low-lying quasiparticle excitation that carries well-defined mo-
mentum, charge, spin, and a renormalized effective mass. The
collapse of such a quasiparticle excitation will be a hallmark
of a non-Fermi-liquid state. In particular, the breakdown of
the quasiparticle in a form of spin-charge separation has been
conjectured in the study of doped Mott insulators, notably
the high-Tc cuprates [1–8]. However, no consensus has been
reached yet on how a quasiparticle precisely falls into parts in
such strongly correlated electron systems.

A t-J square ladder as a quasi-one-dimensional (1D)
doped Mott insulator system has been intensively investigated
[9–21]. Such systems are beyond a purely 1D system due
to the presence of closed loops of various sizes and can be
accurately studied by the DMRG numerical method [22].
Experimentally, there are also several available materials with
the ladder structure [23]. Because of the peculiar quantum
destructive interference in the closed paths, a DMRG study
has recently revealed [20] a generic self-localization of a
single hole injected into the spin ladders in the isotropic
limit. It implies the failure of a conventional quasipar-
ticle picture in a way very distinct from a purely 1D
system [24].

In this paper, we focus on a two-leg t-J ladder system in
which the undoped spin background remains gapped. By using
DMRG, we find that for an injected hole, the quasiparticle
description is restored if the ladder is in an anisotropic (strong
rung) regime. Then, as the ladder anisotropic parameter is
continuously tuned from strong rung coupling towards the
isotropic limit, there exists a QCP, at which the quasiparticle
collapses with its effective mass diverges. Subsequently the
doped hole fractionalizes into a composite structure as a bound
state of an incoherent holon and a deconfined spinon. The
momentum distribution of the hole also exhibits a qualitative
change across the QCP. The underlying microscopic mecha-
nism responsible for the fractionalization of the hole will be
discussed. Interestingly the binding energy of two holes also
gets substantially enhanced after the quasiparticle collapsing.
Such a QCP is further shown to persist with the increase of
the leg number of the ladders, which may shed light to the

understanding of the quasiparticle collapsing and pairing in
the two-dimensional (2D) doped Mott insulator.

The t-J Hamiltonian H = Ht + HJ for an anisotropic two-
leg ladder system is composed of four terms: Ht⊥ + Ht‖ +
HJ⊥ + HJ‖ given by

Ht⊥ = −t⊥
∑

i,y=0,σ

(c†i,y,σ ci,y+1,σ + H.c.),

Ht‖ = −t‖
∑
i,y,σ

(c†i,y,σ ci+1,y,σ + H.c.),

HJ⊥ = J⊥
∑
i,y=0

(
Si,y · Si,y+1 − 1

4
ni,yni,y+1

)
,

HJ‖ = J‖
∑
i,y

(
Si,y · Si+1,y − 1

4
ni,yni+1,y

)
,

(1)

on a two-leg ladder with the total site number N = Nx × Ny

(Ny = 2) as sketched in Fig. 1. In Eq. (1), the summation over
i along the chain direction runs over all rungs, y (= 0,1) and
σ are leg and spin indices, respectively. c

†
i,y,σ is the electron

creation operator, and Si,y is the spin operator at site (i,y).
The Hilbert space is always constrained by the no-double-
occupancy condition, i.e., the number operator ni � 1. Here,
Ht⊥ (Ht‖ ) and HJ⊥ (HJ‖) describe the interchain (intrachain)
hole hopping and spin superexchange interaction, respectively.
For simplicity, in the following we shall fix t⊥/J⊥ = t‖/J‖ =
3, or equivalently, take t⊥ ≡ t , J⊥ ≡ J , t‖ ≡ αt , J‖ ≡ αJ with
t/J = 3. For the present simulation, we use U (1) invariant
code and set J as the unit of energy. We keep up to 4000 states
in each DMRG block with around 10 to 50 sweeps, and this
is proven to be enough to give excellent convergence when
the truncation error is of the order of or less than 10−8. Then
we continuously tune α from 0 to 1 between the strong rung
and isotropic limits as illustrated in Fig. 1. At half filling, the
system remains spin gapped without a phase transition, and in
particular, the ground state simply reduces to a direct product
of spin-singlet rungs in the strong rung limit of α → 0 [25].
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FIG. 1. (Color online) The parameters of the anisotropic t-J
model on a two-leg square ladder. Here, t⊥ = t (t‖ = αt) and
J⊥ = J (J‖ = αJ ) describe the interchain (intrachain) hopping and
superexchange couplings, respectively. At α = 1, it reduces to the
isotropic limit.

Now consider the one-hole-doped case. As shown in Fig. 2
and the inset, a QCP is clearly indicated at α = αc ∼ 0.7 by
the first- and second-order derivatives of the kinetic energy
〈Ht 〉 over α. (Note that the derivatives of the superexchange
energy 〈HJ 〉 remain smooth without a singularity, which is not
shown in the figure.) What we shall establish first below is
that at α < αc, the single doped hole behaves like a Bloch
quasiparticle, which possesses a well-defined momentum,
effective mass, charge, spin, and finite quasiparticle weight. In
fact, at strong rung limit α 	 1, the quasiparticle behavior can
be well described by a perturbation theory [26]. But beyond the
critical point αc, the quasiparticle picture of the single doped
hole will break down completely.

By contrast, when two holes are injected into the gapped
two-leg spin ladder, they always form a binding state in
the quasiparticle collapsing regime. The pairing even persists
into the quasiparticle regime with reducing binding strength,
which eventually vanishes around α ∼ 0.6 as shown by the
binding energy Eb in Fig. 2 (red circles). Here the binding
energy is defined by Eb ≡ E2-hole

G + E0
G − 2E1-hole

G , where
E2-hole

G , E1-hole
G , and E0

G denote the ground-state energies of
the two-hole, one-hole, and undoped states, respectively.

FIG. 2. (Color online) The first-order derivative of the kinetic
energy 〈Ht 〉 and the second-order derivative (the inset) indicate
the presence of a quantum critical point at α(≡t‖/t⊥) = αc ∼ 0.7
(with t⊥/J⊥ = t/J = 3). The two-hole pairing is also substantially
enhanced at α > αc as shown by the binding energy Eb.

For the single hole case, a finite effective mass at α < αc

is identified in the inset of Fig. 3(a). Here, to determine the
effective mass of the charge, the two-leg ladder is made of
a loop along the long chain direction with a magnetic flux
� threading through [cf. the inset of of Fig. 3(a)]. Then the
ground state energy difference between � = π and 0, i.e.,

�E1-hole
G ≡ E1-hole

G (� = π ) − E1-hole
G (� = 0), (2)

corresponds to the energy difference under the change of the
boundary condition from the periodic to antiperiodic one for
the charge (hole). If the doped hole behaves like a “Bloch
quasiparticle,” �E1-hole

G is expected to be proportional to 1/N2
x ,

with the inverse of the slope m∗
c proportional to the effective

mass.
As shown in Fig. 3(a), a finite m∗

c is indeed obtained at
0 < α < αc (which diverges at α = 0 because of the vanishing
inter-rung hopping). Then m∗

c diverges again approaching the
critical point αc [cf. the inset of Fig. 3(a)]. Beyond αc, �E1-hole

G

starts to oscillate and decay exponentially as a function of Nx

as illustrated in Fig. 3(b), with the disappearance of the term
proportional to 1/N2

x . It implies the self-localization of the
doped hole [20] with the effective mass m∗

c = ∞ at α � αc.
On the other hand, the effective mass can also be determined

alternatively. Figure 3(c) shows the one-hole ground state
energy E1-hole

G calculated under the fully open boundary
condition. Besides a constant term, E1-hole

G can also be well
fitted by m∗

s
−1/N2

x , with m∗
s essentially the same as m∗

c at
α < αc as shown in the inset of Fig. 3(c). One finds that m∗

s

also diverges at αc. However, in contrast to m∗
c , m∗

s becomes
finite again at α > αc. Namely, in opposition to the charge
part of the doped hole (holon) being localized at α > αc, a
charge-neutral gapless excitation (spinon) is still present in
this regime.

The sharp contrast between m∗
c and m∗

s suggests that the
quasiparticle collapses at α > αc by a specific form of the
electron fractionalization. One may directly measure the spin-
charge separation by calculating the spin-charge correlator
〈nh

i · Sz
i+r〉. As shown in Fig. 4(a) (α = 0.4 < αc), the spin and

charge are tightly bound together at a length scale of one lattice
constant. Such a stable hole object has a well-defined mass m∗
and behaves like a Bloch wave with a definite momentum.
The momentum distribution 1-n(k) of the hole is presented
in the inset of Fig. 4(a). Here n(k) ≡ ∑

σ 〈c†kσ ckσ 〉, which can
be obtained by a Fourier transformation of

∑
σ 〈c†iσ cjσ 〉. The

inset of Fig. 4(a) shows that the hole momentum distribution
as a universal curve after the rescaling kx − k0 → Nx · (kx −
k0) with k0 = π , indicating that the hole in the ground state
possesses a well-defined momentum (k0,ky = 0) with a finite
quasiparticle spectral weight Z0 in the thermodynamic limit.

The quasiparticle collapsing at α > αc is in a form of
fractionalization as shown in Fig. 4(b) (at α = 1), where
the spin-charge correlator oscillates and decays much slower.
Correspondingly, the quasiparticle weight Z0 = 0 at k0 = π

and the hole momentum distribution is qualitatively changed
as presented in the inset of Fig. 4(b) with two new peaks
emerging at kx = k0 ± κ and ky = 0 with κ depending on α

and t/J .
Figure 4(c) further illustrates how the quasiparticle fraction-

alizes. At α < αc, the amplitude for the spin-charge separation
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FIG. 3. (Color online) Effective mass of the quasiparticle is well
defined at α < αc but is divergent at the quantum critical point αc.
(a) �E1-hole

G [defined in Eq. (2)] exhibits a “free particle” behavior:
�E1-hole

G ∝ 1/N 2
x in a loop of the circumference Nx (cf. the inset).

The effective mass m∗ ∝ m∗
c with 1/m∗

c defined as the slope of 1/N2
x

[shown in the inset of (a), in which m∗
c diverges at αc]; (b) At

α > αc,�E1-hole
G oscillates and decays exponentially with m∗

c = ∞
[presented in (b) is the case at α = 13/15 with the charge localization
length [20] ξ ∼ 12.6]; (c) The one-hole ground state energy E1-hole

G

calculated under an open boundary of length Nx . Here the slope of
E1-hole

G (subtracted by a constant term) defines another effective mass
m∗

s shown in the inset of (c), which is essentially the same as m∗
c at

α < αc. But m∗
c and m∗

s differ completely at α > αc, suggesting the
charge-spin separation (see the text).

FIG. 4. (Color online) Spin-charge correlator 〈nh
i · Sz

i+r〉 with the
labeling r defined in (a). The tight binding of the holon-spinon
inside the quasiparticle is shown in (a) for α = 0.4 < αc with
N = 60 × 2. The inset of (a): the momentum distribution of the
hole satisfies a scaling law: kx → Nx(kx − k0), indicating a well-
defined momentum at k0 = π with a finite spectral weight Z0 [20];
(b) the fractionalization of the quasiparticle occurs at α > αc with
a composite structure of loosely bound charge and spin as shown
by the spin-charge correlator (N = 60 × 2). The inset of (b): The
momentum distribution is fundamentally changed with Z0 vanishing
at k0 (N = 100 × 2); (c) a sharp increase of the amplitude for the
hole-spin separation at r � 2 as α � αc.
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FIG. 5. (Color online) The quantum critical point αc disappears in the σ · t-J model (see the text) with the quasiparticle description valid
throughout the whole regime of α. (a) The second-order derivative of the single hole kinetic energy does not show any singularity at a finite α.
Correspondingly, the two-hole binding energy remains weak similar to the quasiparticle regime in Fig. 2; (b) the effective mass determined by
the slope of 1/N2

x behavior of �E1-hole
G remains smooth and finite at α > 0 (the inset); (c) and (d): The integrity of the quasiparticle is ensured

by the spin-charge binding at different α’s (N = 80 × 2). The insets of (c) and (d): The momentum distribution for the single hole is similar to
the one in the quasiparticle regime of the t-J model in Fig. 4(a). The scaling law ensures a well-defined momentum at kx = 0.

distance r � 2 is exponentially small, implying the tight
binding of the holon spinon within the quasiparticle at r < 2
in Fig. 4(a). But at α � αc a sharp rise of the amplitude at
r � 2 indicates the emergence of a composite structure for the
quasiparticle as the spin partner can now move away from the
holon over a larger distance as shown in Fig. 4(b).

To understand the underlying physics of the quasiparticle
collapsing, we slightly modify the hopping terms Ht⊥ and Ht‖
in Eq. (1) by introducing a sign prefactor σ = ± such that
c
†
iσ cjσ → σc

†
iσ cjσ . This is a generalization of the so-called

σ · t-J model in the isotropic limit, where the hopping term
Ht is replaced by [20]: Hσ ·t = −t

∑
〈ij 〉σ σ (c†iσ cjσ + H.c.).

Then we can carry out the same DMRG calculation, and as
clearly indicated in Fig. 5(a), the QCP αc simply disappears.
Namely, there is no more quasiparticle collapsing, and there
exists only one phase continuously interpolating between the
isotropic and strong rung limits. Figure 5 illustrates that the
single hole moving in the gapped spin background always
keeps its quasiparticle identity with a well-defined momentum
at kx = 0 (note that it is different from k0 in the t-J ladder case)

with a finite spectral weight, a finite effective mass m∗
c , and the

spin-charge confinement. As one can see from Fig. 5(c), even
in the isotropic limit of α = 1, the hole still keeps the integrity
of a Bloch quasiparticle with charge and spin tightly bound.
As a matter of fact, we have checked that the same phase
still persists at α 
 1. Furthermore, the binding energy is also
substantially weakened in the whole regime [cf. Fig. 5(a)],
similar to the quasiparticle regime in the t-J ladder case.

Previously it has been demonstrated [20] that the sole
distinction between the isotropic t-J and σ · t-J models lies
in the so-called phase string [27,28] associated with each
path of the hole motion, which is present in the former but
is precisely removed in the latter. The same proof remains
true in the present anisotropic ladder case. Such a phase string
represents a singular phase shift produced by the scattering
between the spin background and doped charge [7,27–29]
for general dimensions of bipartite lattice. Its destructive
quantum interference has been previously found to lead to
the localization of the doped hole in the isotropic limit α = 1
of the t-J ladder with the leg-number Ny > 1 [20]. The phase
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FIG. 6. (Color online) The QCP (red dot) separating the quasi-
particle (orange-colored) and quasiparticle collapsing (blue-colored)
regimes is shown as a function of the anisotropy parameter α for the
t-J ladders of the leg number Ny from 1 to 7 (with t/J = 3).

string is also responsible for the strong binding found in the
quasiparticle collapsing regime of the t-J model (cf. Fig. 2), as
has been carefully examined in the isotropic case [21] before.

Finally, the QCP αc is systematically calculated for the
multileg t-J ladders as shown in Fig. 6. Here αc is determined
by the singularity in the ground state energy similar to that
for the two-leg ladder shown in the inset of Fig. 2. Similar to
the two-leg case, in the multileg ladders the horizontal chains
are glued by a fixed hopping integral t and a superexchange
coupling J perpendicular to the chain direction. Physically,
αc separates the nondegenerate quasiparticle state from a
quasiparticle collapsing state. For an odd-leg spin ladder, the
spin background always remains gapless at half filling, and
generally αc = 0+ is found in the single-hole state where a
true spin-charge separation persists. By contrast, as our above

study of the two-leg ladder has clearly shown, in the presence
of a spin gap in an even-leg ladder, the singular phase string
effect may get “screened” via a tight binding of the charge
and spin partners to form a coherent Bloch-type quasiparticle,
at least in the strong rung limit of α 	 1. With the reducing
spin gap by increasing α or leg-number Ny , the tight binding
between the holon and its backflow spinon gets weakened,
eventually resulting in quasiparticle collapsing at some αc,
where the holon and spinon form a loosely bound state (instead
of a simple spin-charge separation in the odd-leg cases) with
an unscreened and irreparable phase string reemerging to
accompany the motion of the hole. In fact, a finite αc does
persist in all the even-leg ladders shown in Fig. 6, which
monotonically decreases with the increase of the leg numbers
up to Ny = 6. A microscopic wave function approach to this
problem will be presented elsewhere.

Note added. After the submission of the present paper, we
became aware of a DMRG study of the same two-leg t-J ladder
doped by one hole [30], in which the authors have confirmed
the existence of αc ∼ 0.7, the divergence of the effective mass
m∗

s at αc, and the incommensurate momentum split together
with the enlarged spin-charge separation at α > αc found in
this paper. However, we notice that the physical interpretation
of the nature at α > αc in that paper is different from the
current picture of Bloch quasiparticle collapsing. We point
out that our interpretation is further supported based on some
additional DMRG probes including the charge response to the
inserting flux and the σ · t-J model without the phase string
effect, etc., which are absent in that paper.
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T. L. Ho, D. N. Sheng, X. G. Wen, J. Zaanen, and especially
H.-C. Jiang are acknowledged. This work was supported by
Natural Science Foundation of China (Grant No. 11534007)
and National Program for Basic Research of MOST of China
(Grant No. 2015CB921000).
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