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Truncating an exact matrix product state for the XY model: Transfer matrix and its renormalization
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We discuss how to analytically obtain an essentially infinite matrix product state (MPS) representation of
the ground state of the XY model. On one hand this allows us to illustrate how the Ornstein-Zernike form
of the correlation function emerges in the exact case using standard MPS language. On the other hand we study
the consequences of truncating the bond dimension of the exact MPS, which is also part of many tensor network
algorithms, and analyze how the truncated MPS transfer matrix is representing the dominant part of the exact
quantum transfer matrix. In the gapped phase we observe that the correlation length obtained from a truncated
MPS approaches the exact value following a power law in effective bond dimension. In the gapless phase we find
a good match between a state obtained numerically from standard MPS techniques with finite bond dimension
and a state obtained by effective finite imaginary time evolution in our framework. This provides a direct hint for
a geometric interpretation of finite entanglement scaling at the critical point in this case. Finally, by analyzing
the spectra of transfer matrices, we support the interpretation put forward by V. Zauner et al. [New J. Phys. 17,
053002 (2015)] that the MPS transfer matrix emerges from the quantum transfer matrix though the application
of Wilson’s numerical renormalization group along the imaginary-time direction.
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I. INTRODUCTION

Over recent decades, matrix product states (MPS) [1–3]
and related numerical techniques have become the standard
framework for simulating low energy states of local Hamil-
tonians in 1D. MPS with finite bond dimension provide an
exact representation of the ground state only for a certain
well-designed class of so-called parent Hamiltonians (such as
the celebrated AKLT model [4]). Nevertheless, for generic
local gapped Hamiltonians, MPS of finite bond dimension
approximate local quantities in the ground state essentially
to arbitrary precision [5]. For the long-range behavior of
the system, however, this is not necessarily the case as
correlations of MPS with finite bond dimension by con-
struction must decay purely exponentially at sufficiently long
distances [1].

The question of how well MPS are able to reproduce
correlations at long distances becomes particularly interesting
in view of recent observations linking the minima of dispersion
relations of elementary excitations of the local, translationally
invariant Hamiltonian with the rate of decay of momentum-
filtered correlations in its ground state [6,7]. Moreover, an
interpretation of the transfer matrix obtained in the MPS
algorithm was also proposed in Ref. [6], namely, that it
reproduces the quantum transfer matrix in the Euclidean
path-integral representation of the quantum state through a
renormalization group procedure equivalent to the seminal
Wilson’s numerical renormalization group [8]. In that picture
the physical spin is interpreted as an impurity, and the MPS
transfer matrix contains only the subset of degrees of freedom,
out of exponentially many for the quantum transfer matrix,
which are relevant for the description of its correlations.
This interpretation still requires corroboration by explicit
calculations, which we partially address in this paper—see
also Ref. [9] in that context.

A closely related topic is that of the finite entanglement
scaling at the critical point [10–12]; it is a numerically
established fact that in an MPS approximation of the ground
state of a critical system, there emerges a long-distance
correlation length as an artifact of the finite bond dimension of
the MPS. The state exhibits scaling behavior as a function of
growing bond dimension, and it is even possible to extract the
conformal information about the critical point by analyzing
it [12]. Nevertheless, it remains an interesting topic to get a
better understanding of how finite entanglement scaling arises.

In this paper we study a particular example where such
questions can be addressed analytically, albeit in the frame-
work of MPS. To that end, in Sec. II, we show how to construct
an exact MPS representation of the ground state of the XY
model—a prototypical spin model in one dimension—with,
in principle, exponentially diverging bond dimension. As a
corollary, we use this representation to illustrate how the
Ornstein-Zernike form of the correlation function naturally
emerges in this (exact) case using the standard language
for MPS.

Subsequently, in Sec. III, we show how to obtain an
MPS representation with finite bond dimension from the one
discussed above. We examine how this truncation—which is
also a part of many numerical algorithms—affects the state,
focusing mostly on the long distance correlations and on the
spectrum of the transfer matrix. In particular, in Sec. III A, we
analyze the error in reproducing the correlation length in the
gapped system. In Sec. III B we examine the relation between
our construction and the finite entanglement scaling at the
critical point and find close similarities, allowing a geometric
interpretation. Finally, in Secs. III C and III D, we take a
comprehensive view on the spectrum of the transfer matrix, as
well as the form factors for the correlation functions, providing
direct evidence in support of the impurity picture, as proposed
in Ref. [6].
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II. THE GROUND STATE OF THE XY MODEL AND
ITS EXACT MPS REPRESENTATION

The S = 1/2 XY model on a chain of N spins is defined
by the Hamiltonian

HXY = −
N∑

n=1

[
1 + γ

2
σx

n σ x
n+1 + 1 − γ

2
σy

n σ
y

n+1 + gσ z
n

]
, (1)

where σ
x,y,z
n are standard Pauli operators acting on site n,

and periodic boundary conditions are assumed. In order to
construct an MPS representation of the ground state |�XY〉, we
exploit the 1D-quantum to 2D-classical mapping (commonly
used, e.g., in the context of quantum Monte Carlo [13],
corner transfer matrix DMRG [14], or Bethe ansatz at finite
temperature [15], to name just a few) and above all the original
observation by Suzuki [16] that HXY commutes and—more
importantly—shares the ground state with an operator V given
by

V = V
1
2

1 V2V
1
2

1 ,

V1 = exp

[
K1

N∑
n=1

σ z
n

]
;

V2 = exp

[
K2

N∑
n=1

σx
n σ x

n+1

]
, (2)

which appears naturally as the transfer matrix in the solution
of the classical 2D Ising model [17]. We follow the notation of
Ref. [17] for convenience, but in our case the parameters K1

and K2, which we assume are non-negative, a priori do not
have any specific physical interpretation.

For the sake of clarity we briefly reiterate the main
steps of diagonalizing V . The subsequent use of a
Jordan-Wigner transformation σ z

n = 1 − 2c
†
ncn, σx

n + iσ
y
n =

2cn

∏
m<n (1 − 2c

†
mcm) (with fermionic annihilation operators

cn), a Fourier transform cn = e−iπ/4N− 1
2
∑

k cke
ikn, and a

Bogolyubov transformation ck = cos θkγk − sin θkγ
†
−k allows

us to rewrite V as Refs. [18,19]:

V = exp

[
−

∑
k

εkγ
†
k γk

]
= exp [−HV ], (3)

where the single particle energies εk � 0 are given by
cosh εk = cosh 2K1 cosh 2K2 − cos k sinh 2K1 sinh 2K2, and
the Bogolyubov angles θk are determined as

tan 2θk = sin k sinh 2K2

sinh 2K1 cosh 2K2 − cos k cosh 2K1 sinh 2K2
.

(4)

The Hamiltonian of the XY model (1) can be diagonalized
following exactly the same steps as those for V but with the
Bogolyubov angles given by

tan 2θk = γ sin k

g − cos k
. (5)

FIG. 1. (Color online) Phase diagram of the XY model in Eq. (1).
Blue hatching (without boundaries) shows the range of parameters
covered by the mapping in Eq. (6), where the boundaries are given by
γ = 1(0) and γ 2 + g2 = 1. Red dashed lines indicate critical lines.

Therefore, they can be simultaneously diagonalized if

g = tanh 2K1

tanh 2K2
, γ = 1

cosh 2K1
, (6)

in which case the Bogolyubov angles in Eqs. (4) and (5) match
and HXY and HV commute. Subsequently we check that the
ground state of one is also the ground state of the other. The
mapping above covers the part of the phase diagram of the XY
model where 0 < γ < 1 and γ 2 + g2 > 1 as shown in Fig. 1.

It is worth pointing out that one could match the Bo-
golyubov angles also by considering complex K2 → K2 + iπ

4 ,
which, as follows from Eq. (6), would cover the incommensu-
rate region of γ 2 + g2 < 1. However, while the Hamiltonians
HXY and HV do commute, they only share the ground state
if an additional condition of γ 2 + g > 1 is satisfied. For
that reason, a more general approach is required to extend
the mapping to the incommensurate region with oscillating
correlation function and, in this paper, we limit ourselves only
to the commensurate case of γ 2 + g2 > 1 and real K1 and K2.

At the risk of stating the obvious, V appears naturally also
as a result of the second order Suzuki-Trotter expansion of
(the exponent of) the quantum Ising model Hamiltonian HI =
−∑

n [Jσx
n σ x

n+1 + �σz
n ], in which case K1 = dt� and K2 =

dtJ , where dt is a discrete Trotter step. Equation (6) precisely
quantifies the Trotter errors for this specific, but commonly
employed case, by showing that one approaches the ground
state of the XY model as a result of them.

A. MPS representation of the ground state

Exponentials of operators of the form in Eq. (2) can be
efficiently decomposed in terms of matrix product operators
(MPOs) with bond dimension 2 [20]:

V =
1∑

s1,... ,sN =0

Tr[Cs1 · · · CsN ]Xs1 ⊗ · · · ⊗ XsN , (7)

up to normalization [19], where

C0 =
√

2

(
cosh K2 0

0 sinh K2

)
, C1 =

√
sinh 2K2

(
0 1
1 0

)
,

X0 =
√

2

(
cosh K1 0

0 sinh K1

)
, X1 =

√
sinh 2K1

(
0 1
1 0

)
.
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We refer to Ref. [20] for details of the derivation. Following
Ref. [17], we employ the convenient notation where K =
− 1

2 ln(tanh K) and K = K .
By applying V to some initial state |�0〉 L times, the ground

state |�XY〉 of the XY model is obtained in the limit L →
∞ (pending normalization). This is equivalent to performing
imaginary time evolution with the Hamiltonian HV in Eq. (3),
where the effective imaginary time of evolution is proportional
to L. This procedure is depicted in the top half of Fig. 2(a),
where each row represents a single operator V in MPO form
with local tensors O = ∑1

s=0 Cs ⊗ Xs .
Alternatively, one can look at this picture in the vertical

direction, interpreting each column Ai as an exact MPS repre-
sentation of |�XY〉 with bond dimension 2L, that is, |�XY〉 =∑

i1,... ,iN
Tr [Ai1 · · · AiN ]|i1 . . . iN 〉 = |�(A)〉. Due to the sym-

metry between Cs and Xs , which is apparent from Eq. (7), we
can obtain Ai simply by inverting the steps leading to the MPO
decomposition of V . The only additional complication comes
from the boundaries of Ai , representing the physical (spin)
degrees of freedom and the initial state |�0〉, respectively.
After some algebra we obtain

Ai = U
1
2

1 RiU2U
1
2

1 ,

U1 = exp

[
K2

L∑
l=1

τ z
l

]
;

U2 = exp

[
K1

L−1∑
l=1

τ x
l τ x

l+1

]
. (8)

Here l = 1,2, . . . ,L labels the auxiliary degrees of freedom
along the vertical direction, and τ

x,y,z

l are Pauli operators
acting on these. Ri is a localized operator acting on auxiliary
site l = 1, with R0 = √

cosh K11 and R1 = √
sinh K1 τ x

1 .
For a graphical representation see Fig. 2(b). Notice that Ri

commutes with U2 but not with U1.

(a)

(b)

FIG. 2. (Color online) (a) Decomposition of the ground state
|�XY〉 into a two-dimensional tensor network. Rows represent
operator V in MPO form with local tensors O. Half columns
constitute the MPS decomposition of |�XY〉 with MPS matrices Ai ,
while a full (infinite) column represents the (quantum) transfer matrix
TF at zero temperature. (b) MPS matrix Ai as given by Eq. (8).

As an initial (top) state we use for convenience a product
state |�0〉 = |0102 . . . 0N 〉 with σ z

n |0n〉 = |0n〉 fully polarized
in the +Z direction. This state is an eigenstate of the parity
operator P = ∏N

n=1 σ z
n with eigenvalue +1. As P commutes

with V , the final state |�XY〉 has the same parity as |�0〉.
In particular, this means that in the ferromagnetic phase we
consider the symmetric superposition of the two symmetry
broken ground states. From now on, for the rest of this paper,
we will assume that the system is in the thermodynamic limit
N → ∞.

B. Correlation functions

We have cast the ground state of the XY model in an exact
MPS form, where each MPS matrix Ai has bond dimension 2L

and the limit L → ∞ is assumed. However, before we address
the question of finding an efficient MPS approximation with
low bond dimension, it is illuminating to discuss the asymp-
totic behavior of the correlation functions in the exact case.

Following standard notation [2,3] we define the MPS
transfer matrix [see Fig. 2(a)] as

TF =
1∑

i=0

Āi ⊗ Ai, (9)

which, up to the open boundary conditions and exchanging
K1 and K2, has exactly the same form as V in Eq. (2). We
discuss this in more detail in the Appendix. The subscript F
denotes that this is the full transfer matrix of the exact MPS
representation of the ground state, as opposed to the transfer
matrix of the truncated MPS, which will be introduced in the
next section.

We also define the (spin) operator transfer matrix T ô
F =∑1

i,j=0 ôi,j Ā
i ⊗ Aj , which obviously simplifies to the one

above for ô = 1. For ô = σ z, which will be of most interest
to us in this section, we find it convenient to express
it as T σ z

F = QzTF , where Qz = exp [−2K1τ−1τ1] and τl =
cosh K2τ

x
l + i sinh K2τ

y

l . This way the effect of σ z in the
spin transfer matrix is encoded in an operator which is
localized in the virtual direction at sites with l = ±1, see
Fig. 2(a). Note, however, that some care is needed here as
Qz is not Hermitian and does not commute with TF . The
static correlation function is then calculated as 〈ô0ôR〉 =
Tr (T ô

F · T R−1
F · T ô

F · T N−R−1
F )/ Tr (T N

F ).
For illustrative purposes, we further consider only the

connected correlation function

Czz(R) = 〈
σ z

0 σ z
R

〉 − 〈σ z〉2 =
∑
α �=∅

f zz
α e−EαR, (10)

where the second equality is valid in the thermodynamic
limit when T N−R−1

F projects onto the ground space of TF ,
which is Hermitian by construction. Here, we have defined
the form factors as f zz

α = (ϕ∅|Qz|ϕα)(ϕα|Qz|ϕ∅) using the
localized operator Qz for simplicity. |ϕα) are the eigenvectors
of the transfer matrix TF to eigenvalues e−Eα , and |ϕ∅)
is the dominant one. Below we will only consider the
case where |ϕ∅) is unique. Otherwise, e.g., in the ferromagnetic
phase, the definition of form factor has to be generalized
to include the properly normalized sum over all dominant
eigenvectors.
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TF can be diagonalized by mapping onto a free-fermionic
system as

TF = exp

[
−

∑
k

ε
TF

k a
†
kak

]
, (11)

where ak are fermionic annihilation operators. For simplicity,
in this section, we approximate TF by using periodic boundary
conditions, which does not affect the results. It is then diago-
nalized following the same steps as for V in Eqs. (2) and (3). In
the limit L → ∞ the spectrum of the transfer matrix consists
of continuous bands as the states |ϕα �=∅) are obtained from the
vacuum |ϕ∅) by exciting free-fermionic quasiparticles, and Eα

follows from summing up the corresponding single particle
energies ε

TF

k , where

cosh ε
TF

k = cosh 2K2 cosh 2K1 − cos k sinh 2K2 sinh 2K1.

(12)

Now, in order to obtain the leading asymptotic of the
correlation function, it is sufficient to know the dispersion
around the minimum of the lowest relevant band, i.e., for
which the form factors f zz

α are nonzero, and the scaling of
those form factors. In the case of Czz(R) the only nonzero form
factor contributions come from α = {k1,k2}, that is, where two
quasiparticles with momenta k1 and k2 are excited. Notice that
form factors corresponding to the lowest single particle band
α = {k1} vanish, since both TF and Qz conserve parity. Below,
we consider two cases:

(i) Critical point for g = 1, in which case K1 = K2.
Expanding around the minimum of ε

TF

k at k = 0, we obtain

ε
TF

k 
 ac|k|; f zz
k1,k2


 bc

π2

L2
, for k1 · k2 < 0, (13)

with the coefficients ac = sinh 2K1 and bc = a2
c /π

2. Now, for
large R the correlation function behaves asymptotically as

Czz(R) ≈
∑

k1>0;k2<0

π2

L2
bce

−Rac(|k1|+|k2|). (14)

In the limit of L → ∞ we treat k1,2 as continuous variables
with dk1,2 = 2π

2L
, and we have

Czz(R) ≈
∫∫ ∞

0
dk1dk2bce

−Rac(k1+k2), (15)

where we can extend the limits of integration to +∞ for
large acR. Rescaling the variables in the integral leads to the
algebraic dependence on R,

Czz(R) ≈ bc

a2
c

1

R2
= 1

π2

1

R2
, (16)

where we recover the classic result by Barouch and McCoy
[21].

(ii) Paramagnetic phase for g > 1. The dispersion relation
exhibits qualitatively different behavior around its minimum
when compared to the critical case discussed above. Expanding
around k = 0, we obtain

ε
TF

k 
 � + apk2; f zz
k1,k2


 bp(k1 − k2)2 π2

L2
, (17)

with the gap � = 2|K2 − K1| and the coefficients ap =
sinh(2K2) sinh(2K1)/2 sinh(2|K2 − K1|) and bp = a2

p/π2.
Now, for large R and in the continuous limit of L → ∞,
the correlation function behaves asymptotically as

Czz(R) ≈ e−2�R

∫∫ ∞

−∞

1

2
dk1dk2bp(k1 − k2)2e−Rap(k2

1+k2
2 ),

(18)

where we can extend the limits of integration to ±∞ for large
apR. Naturally, we recognize the correlation length as ξ =
�−1, which is the slowest possible decay resulting from T F .
Performing integrals—or just rescaling variables to extract R

from the integrals—yields the leading algebraic dependence
on R,

Czz(R) ≈ bpπ

2a2
p

1

R2
e−2R/ξ = 1

2π

1

R2
e−2R/ξ , (19)

again in agreement with Ref. [21]. It is worth pointing out that
this expansion is valid for R � ξ , which can be seen from
the size of apR. For smaller R, when the exponential does not
suppress other terms, the correlation function would behave
similar to as at the critical point. While this remark is not so
important for ZZ correlation here, other correlation functions
might have other exponents of the algebraic part at the critical
point and away from it [21].

To summarize, notice that on one hand the gap of the
transfer matrix sets the correlation length, while on the
other hand the full (low energy part of the) continuous
band contributes equally (in the sense of form factors being
proportional to dk) to form the algebraic part as a consequence
of the nonflat dispersion relation. The value of the exponent in
this algebraic behavior is determined by a combination of the
dispersions of the leading eigenvalues of the transfer matrix,
and of the corresponding form factors, as well as symmetries.
For instance in the case of Czz discussed above, the conserved
parity symmetry modifies this exponent due to the double inte-
grals appearing in Eqs. (15) and (18). This is also accompanied
by halving the correlation length in Eq. (19) comparing to the
slowest possible decay suggested by the transfer matrix. We
also note that, at the critical point, this picture might be more
complicated as contributions from many bands are relevant in
some cases; we refer to the Appendix for additional details.

Such an asymptotic behavior of the correlation function
is often labeled in literature as the Ornstein-Zernike form
[22,23], especially in the context of systems significantly
away from the critical points. For 1D quantum systems, it is
typically expected that the exponent in the algebraic behavior
is equal to 1

2 , namely C(R) ∼ R−1/2e−r/ξ . Notice that this
form of asymptotic behavior would indeed emerge in our
treatment in the most simple case when single-particle form
factors are nonzero (they might be zero, for example, as
a result of some symmetries of local observables) and in
the leading order independent on k: fk 
 const · dk, and
the dispersion relation around the minimum is smooth and
quadratic ε

TF

k 
 � + a(k − kmin)2. This happens, e.g., for the
XX correlation function in the paramagnetic phase. We discuss
this further in the Appendix, where we numerically obtain the
behavior of the form factors for other correlation functions in
various phases.
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III. CHARACTERIZING THE EFFICIENT
MPS APPROXIMATION

The results above were obtained analytically in the limit of
exponentially diverging bond dimension D, where D = 2L

with L → ∞. However, above all, MPS serve as a class
of variational states that lie at the heart of many numerical
techniques, where only modest bond dimensions are feasible.
It is therefore important to understand what information
about the quasiexact state is retained after truncating to an
efficient MPS approximation with finite bond dimension D,
i.e., |�(A)〉 
 |�(Ã)〉, with Ãi matrices ∈ CD×D .

We follow the standard MPS truncation procedures for
infinite, translationally invariant systems [24]. It is based
on finding the Schmidt decomposition of the state along a
single cut and retaining only the dominant Schmidt values.
While such a procedure would be optimal for truncation at a
single bond, in the infinite system it is performed at all sites
simultaneously [25].

This is then equivalent to finding the reduced density
operator of the MPS |�(A)〉 on a half-infinite chain and
finding its diagonal basis in which we truncate by keeping
only the dominant eigenvalues. For this particular case, where
the transfer matrix TF is Hermitian and its left and right
dominant eigenvector are both given by |ϕ∅), the physical
density operator of the half infinite chain shares the spectrum
with the reduced density matrix ρ of |ϕ∅) with support on the
L site auxiliary system with l > 0 (see Fig. 2).

We briefly outline the main steps of the procedure below
and refer to the Appendix for details. We map the full transfer
matrix onto a system of free fermions and, following Ref. [26],
describe the transfer matrix using the transformation matrix,
which describes the transformation of fermionic operators
under the similarity transformation given by TF . Since part
of the operations has to be performed numerically, we
keep L large but finite. Bringing the transformation matrix
into the canonical form allows us to find the Bogolyubov
transformation which diagonalizes the transfer matrix, and
|ψ∅) is the vacuum state in that basis. We describe the
reduced density matrices in a standard way [27,28] by
using the two-point correlation matrix. Subsequently, it can
then be expressed as ρ = 1

Z
exp (−2

∑L
m=1 δmf

†
mfm), where

fm are fermionic annihilation operators and δm > 0 is the
entanglement spectrum arranged in ascending order. fm and δm

are obtained by finding the Bogolyubov transformation which
brings the correlation matrix into its canonical form. Efficiently
truncating to an MPS with bond dimension D = 2χ is now
obtained by keeping only the first χ (most relevant) fermionic
modes of ρ. This amounts to the projection

Ãi = (0χ+10χ+2 . . . |Ai |0χ+10χ+2 . . . ), (20)

where fm|0m) = 0.
We point out that this procedure is not fully equivalent to

just keeping the D largest singular values of ρ as it additionally
retains the free-fermionic structure of the problem, as the re-
duced density matrix of the truncated state—and consequently
its Schmidt values—have the form

ρ̃ = 1

Z
exp

(
−2

χ∑
m=1

δmf †
mfm

)
. (21)

This means that some care is needed when we compare the
bond dimensions (and states) obtained with our procedure
with those from conventional numerical MPS methods. For
instance, ρ̃ is going to contain some very small Schmidt
values together with the dominant one, especially for larger
χ . As a tradeoff, the structure we retain allows for a clean
description and interpretation of the spectra, which would be
nearly impossible using the standard numerical approach.

Finally, as described in the Appendix, we obtain the trans-
formation matrix describing the transfer matrix generated by
|�(Ã)〉, i.e., T̃ = ∑1

i=0
¯̃Ai ⊗ Ãi . By finding the Bogolyubov

transformation, which brings it into the canonical form, we
diagonalize the truncated transfer matrix as

T̃ = exp

[
−

2χ∑
m=1

ε̃md†
mdm

]
, (22)

where the spectrum is determined by single particle energies
ε̃m > 0 arranged in ascending order. For the remainder of this
paper we will mostly focus on this spectrum.

A. Dominant modes in the gapped system

Firstly, we discuss the noncritical case focusing on the
dominant eigenvalues of the transfer matrix T̃ . To that end,
we simulate the XY model for a particular set of parameters
g = 1.01 and γ = 0.8 in the paramagnetic phase. We show
the resulting single particle energies ε̃m for several different
values of χ in Fig. 3(a).

Notably, we observe that the low energy part of the spectrum
collapses onto a single curve when the index m = 1,2 . . . ,2χ

is rescaled by χ . Moreover, the lowest part of the spectrum
shows quadratic behavior in m, which corroborates a similar
observation made in Ref. [6] for the case of conventional MPS
calculations and part of the transfer matrix spectrum most
relevant for the XX correlation function, see Fig. 9 therein.

In other words the results are consistent with the scaling
of the form ε̃m − � 
 a(m/χ )2, at least for the first few m’s.
This universal quadratic behavior implies that the gap of the
truncated transfer matrix ε̃1 should be shifted from the value
of the true gap � and approach it as a power law in χ with
the exponent equal to 2. That is indeed observed in Fig. 3(b)
where we show the relative error in the gap (i.e., the inverse of
the correlation length) for increasing χ . We fit

(ε̃1 − �)/� 
 p1χ
−p2 , (23)

with p2 
 2.0518 close to 2. Notice that for this particular set
of parameters, even for χ = 10 the correlation length obtained
from the free-fermionic MPS still underestimates the exact
value by 
5%, where the exact gap of the full transfer matrix is
given as � = ε

TF

k=0 = 0.0124035 . . .. Those observations also
hold for other values of the magnetic field, where p2 remains
close to 2, and p1 grows slowly when approaching the critical
point.

It is apparent that a finite value of χ results both in an
underestimation of the correlation length and the breakdown
of the asymptotic algebraic dependence of the correlation
function on R above some length scale dictated by χ .
Correspondingly, by increasing χ , the MPS is able to better
reconstruct the low energy part of the continuous band which
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FIG. 3. (Color online) XY model in the gapped phase with g =
1.01 and γ = 0.8. (a) Single particle energies ε̃m of Eq. (22) for
different χ . For rescaled index m/χ , the data points collapse onto a
single curve. The solid line is a quadratic fit to the first four points
with χ = 10. (b) Relative error of the correlation length (ε̃1 − �)/�
as a function of χ . It shows power-law behavior log [(ε̃1 − �)/�] =
−2.0518 log χ + 1.6944 (green line). (c) Comparison with iDMRG
calculations. The black line represents the exact gap �, and stars
represent the gap ε̃1 of the finite χ approximation of the transfer
matrix. The blue line shows (minus log of) the transfer matrix gap
obtained from an iDMRG ground state approximation, plotted as
a function of log2(D). Finally, circles represent data obtained from
truncating iDMRG with D′ = 120 down to a smaller bond dimension
while only selecting Schmidt states preserving the free-fermionic
structure in Eq. (21).

is responsible for the asymptotic algebraic part of the exact
correlation function.

The neat behavior of the gap observed above should
be contrasted with the results from the conventional MPS
calculations using iDMRG [29,30], which we plot in Fig. 3(c).
First of all, we obtain a very good match between free-
fermionic results and iDMRG, provided the correct 2χ Schmidt
states are selected from an MPS obtained from iDMRG with
an initially larger bond dimension (labeled as iDMRG* [31])
corroborating our procedure.

Without preserving the structure of Eq. (21), but rather
just keeping the largest Schmidt values during truncation,
standard iDMRG is able to approach the exact gap � faster
with increasing D but in a rather irregular, step-wise way.
Remarkably, we can use the observations made for free
fermions above to estimate this behavior.

We employ the fact that in the paramagnetic phase consid-
ered here the single particle Schmidt spectrum in Eq. (21) has

a simple form δm = (2m − 1)δ1 [28]. We define Dχ + 1 as the
index of the largest Schmidt value not reproduced by Eq. (21)
for given χ and use the form above to calculate the value of Dχ .
We can expect that the error of the gap obtained with iDMRG
with bond dimension Dχ should be lower bounded by the
error of ε̃1(χ ) from our fermionic procedure, as the second one
represents the state containing additional information coming
from some smaller Schmidt values as well (numerics confirms
this). Dχ grows quickly with χ , and locally, for χ ≈ 10 we
numerically see the scaling Dχ ∼ χ2.5, (Dχ=10 = 63). By
substituting this into Eq. (23) with p2 = 2 we expect that the
error of the gap obtained with iDMRG with bond dimension
D should be vanishing slower than D−0.80, at least for D of the
order of a hundred. The fit (not plotted) to the data in Fig. 3(c)
and 60 < D < 130 shows that the error is shrinking on average
as D−0.79, remarkably close to our prediction. Those results
illustrate that one has to take some care when extracting the
correlation length directly from the transfer matrix, as the error
can be vanishing slowly (and increasingly so) with growing
bond dimension.

B. Dominant modes in the critical system and finite
entanglement scaling

Secondly, we consider the gapless case, where we simulate
the XY model for a particular set of critical parameters g = 1
and γ = 0.5. Contrary to the gapped system, the energy gap
of V is vanishing here, and the actual ground state cannot be
reached for any finite value of L.

The dominant part of the spectrum of the full transfer
matrix TF behaves as ε

TF

k 
 ack, where the quasimomenta
take necessarily discrete values k = π

2L
(1,3,5,7, . . . ), which

are universal for systems with open boundary conditions.
This is shown in Fig. 4(a) for L = 8240, together with the
dominant ε̃m from Eq. (22) obtained from truncation for several
different χ . We observe that the ε̃m reproduce the discrete low
energy structure for finite L increasing well with growing χ .
In other words, even for relatively small χ the gap of the
transfer matrix is effectively determined by L, which in turn
is proportional to the imaginary time evolution of the initial
state with Hamiltonian HV , see Fig. 2.

On the other hand, conventional MPS calculations, where
we use iDMRG [29,30], try to approximate the critical
ground state by the best possible state with finite correlation
length [10–12,32]. A priori there is no reason to expect
a good match between these two approximations (iDMRG
and free-fermionic MPS with finite L), we however obtain
a surprisingly good agreement nonetheless. To that end we
analyze the state obtained with iDMRG and bond dimension
D′ = 70 and compare it with data for L = 8240. The value
of L is obtained here by matching the ratio of the first two
Schmidt values, corresponding to δ1 in Eq. (21), to the one
obtained from iDMRG.

In Fig. 4(b) we plot the Schmidt values from iDMRG
and the corresponding values for χ = 3 and χ = 4. Most
importantly, even for iDMRG at the critical point, we are
able to identify groups of Schmidt values corresponding to the
underlying free-fermionic structure given by Eq. (21). That
such a structure is visible for the noncritical system is to be
expected, however for the critical case there is a priori no
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FIG. 4. (Color online) XY model at a critical point with g = 1
and γ = 0.5. (a) Smallest single particle energies ε̃m for different
χ quickly approach the exact smallest values from L = 8240.
(b) Schmidt values obtained with iDMRG with D′ = 70 and
corresponding Schmidt values obtained from L = 8240 and trun-
cating to χ = 3,4. (c) Comparison of the transfer matrix spectrum
obtained for L = 8240 truncated to χ = 3 and the spectrum from
truncating iDMRG results with D′ = 70 down to D = 23 = 8 [31].
(d) Comparison of single particle energies in Eq. (22) obtained from
truncating from L = 8240 and iDMRG with D′ = 70, see text for
details.

reason for a numerical algorithm not to break it. Even more,
the spectra obtained with iDMRG and with finite L coincide
rather well [i.e., corresponding values of δm in Eq. (21) are
matching].

We further corroborate this by comparing the spectra of
the transfer matrix (D2 = 22χ eigenvalues) for several values
of χ and the corresponding iDMRG* [31]. As can be seen
in Fig. 4(c) for χ = 3, picking the correct Schmidt values
results in a clear structure of the transfer matrix spectrum
which is consistent with the one given by Eq. (22) for finite
L. The structure of the transfer matrix in Fig. 4(c) allows
us to compute single particle energies corresponding to the
ones in Eq. (22) directly from iDMRG* and compare them
with the ones obtained with free fermions for finite L. The
results are shown in Fig. 4(d) where the match for χ = 2,3,4
is remarkably good. It is worth stressing here one more time
that all the points labeled iDMRG* in Fig. 4 are acquired from
the same initial state obtained from iDMRG with D′ = 70,
which was subsequently truncated down by picking the correct
Schmidt values.

The obtained results allow us to conclude that the state
obtained with iDMRG contains the structure which is fully

consistent with a free-fermionic theory on a strip of finite width
with open boundary conditions; for a similar observation in the
finite system where the exact ground state can be reached due
to the finite size effects, see Ref. [33]. This provides a strong
hint that so-called finite entanglement scaling [10–12,32]—
scaling observed while simulating the (conformally invariant)
critical theory using MPS with finite D—can be interpreted in
a geometric way. This cannot be seen that easily when looking
directly at iDMRG and the ratios of the dominant eigenvalues
of the transfer matrix (cf. Ref. [12]), since the ratios are both
highly susceptible to further truncations and even then, for a
given state and χ = 3,4, they are still far from the expected
values of (1,3,5, . . .) on a strip, see Fig. 4(a).

However, while we were able to find a value of L in a
free-fermionic MPS which is a good match to a particular MPS
obtained from iDMRG with given bond dimension D′, the
above analysis does not provide any hint why, for given bond
dimension D′, iDMRG should yield an MPS approximation
corresponding to an effective imaginary time evolution of the
system up to some finite imaginary time proportional to L. Or
equivalently, how to choose D′ for an iDMRG calculation to
reproduce results from a finite L free-fermionic calculation.

In order to shred more light on this, we performed a similar
analysis for the TDVP algorithm [34,35] which is based on
the imaginary time evolution. Likewise, we find a reasonable
agreement between the state obtained with TDVP and our free-
fermionic construction for some finite value of L, provided that
TDVP was initialized with the spin polarized state with even
parity (all spins pointing in the +Z direction). Then, the TDVP
algorithm does not manifestly break the parity symmetry and
along the evolution 〈σx〉 = 〈σy〉 ≈ 0 (this is also the case for
the state obtained with iDMRG above). For TDVP initialized
with the random state no good match with our construction
could be found.

In Fig. 5(a) we show the dominant Schmidt values taken
from a single run of the TDVP algorithm with D′ = 100,
where we looked at the snapshots at different values of the
imaginary time t . We compare them with the corresponding
Schmidt values from our free fermionic procedure with finite
L, where the values of L were obtained by matching the ratios
of the two largest Schmidt values. For intermediate values
of time the match is very good. We also observe that it is
getting considerably worse for large enough values of t (around
t ∼ 104 in our case), where the energy of the TDVP state is
effectively saturating at 10−10 above the exact ground state
energy.

Not surprisingly, for a wide range of intermediate times, the
values of L are proportional to t , see Fig. 5(b). This suggests
that instead of the standard approach based on analyzing the
converged states for various values of D′, it would be more
natural to extract the conformal information about the ground
state just from the snapshots of a single run of the TDVP
algorithm for a fixed value of D′.

C. Truncation as effective description of impurity

Finally, while the previous two sections were focusing on
the dominant part of the transfer matrix, we take a more
comprehensive view on the spectrum here, valid both for the
critical and gapped case alike. To that end, we define discrete
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FIG. 5. (Color online) XY model at a critical point with g = 1
and γ = 0.5. (a) Dominant Schmidt values at snapshots of the
imaginary time (t) evolution with the TDVP algorithm with D′ = 100
and corresponding Schmidt values from our free fermionic procedure
with finite L. (b) For a large window of intermediate time the values
of L are proportional to t (plotted in a log-log scale for convenience).

momenta km corresponding to the spectrum of the truncated
transfer matrix ε̃m through the relation

ε̃m = εTF (km). (24)

Above, εTF is the dispersion relation of the full transfer matrix,
given by Eq. (12), where the momenta take continuous (in
the limit L → ∞) values k ∈ (0,π ). We show the resulting
km, both for the gapped and critical cases, in Fig. 6. Most
importantly, as can be seen in that plot, the value of momenta
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FIG. 6. (Color online) Momenta km corresponding to the single
particle energies ε̃m of the truncated transfer matrix for several χ .
Data for (a) the gapped system with g = 1.01 and γ = 0.8, (b) critical
system with g = 1, γ = 0.5, and L = 8240. In both cases we find a
clear linear dependence log km = m log λ + const, valid for all but a
few smallest m’s (i.e., smallest ε̃m).

FIG. 7. (Color online) Illustration of Wilson’s renormalization
group in the momentum space. Each momentum window, logarith-
mically shrinking toward k = 0, is represented by a single effective
mode. This is also visible in Fig. 6 and Eq. (25), where km are obtained
from the transfer matrix, as a result of standard MPS truncation.

which are effectively selected during the truncation procedure
satisfy the relation

km ∼ λm, (25)

for all but the first few m’s.
In Ref. [6], it was proposed that one can understand the

transfer matrix obtained in the MPS algorithm as resulting
from a renormalization group procedure applied to the (full)
quantum transfer matrix in the imaginary time direction. More
precisely, the physical spin at l = 0 in the virtual direction
in Fig. 2 plays a distinguished role in this tensor network as
physical operators are applied there during the calculation of
expectation values. It can then be interpreted as an impurity
in the two-dimensional tensor network, and the degrees of
freedom relevant for the description of impurity—and at the
same time the concise description of the state in the MPS
algorithm—emerge as a result of application of Wilson’s
numerical renormalization group (NRG) [8] to the quantum
transfer matrix along the virtual (imaginary time) direction.

Qualitatively, this procedure boils down to dividing the
continuous momenta k ∈ (0,π ) into windows which are
logarithmically shrinking toward k = 0 (minimum of εTF )
and representing each window by a single effective mode,
as pictorially presented in Fig. 7. The mode corresponding
to the largest momentum represents the action of a few sites
localized close to the impurity in the virtual direction (small
|l| in Fig. 2), while smaller momenta modes describe the
relevant degrees of freedom which cannot be sharply localized
around the impurity and are supported on sites extending to
larger values of |l|. For gapped systems, this procedure can
be terminated at the infrared cutoff related to the correlation
length, and a good approximation is obtained with a finite
number of modes, resulting in a finite bond dimension.

Therefore, Fig. 6 and Eq. (25) provide direct evidence that
such an interpretation of the origin of the transfer matrix
obtained in the MPS algorithm is indeed correct. This picture
is further validated in Ref. [9], where a general tensor-network
ansatz based on this idea is constructed.

The values of λ in Eq. (25) depend both on the bond
dimension χ and the correlation length in the system, i.e.,
ξ ≈ �−1 in the gapped system and ξ ≈ L in the critical one.
Qualitatively, one could expect that k1 ≈ π

ξ
and k2χ ≈ π . We

get rid of the proportionality constant appearing in Eq. (25)
by considering the ratio k2χ/k1 = λ2χ−1 ≈ ξ and thus expect
that

log λ ≈ log ξ

2χ
. (26)
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Quantitatively, we check this by extracting log λ (the slope of
the linear dependence in Fig. 6) for various values of ξ and
χ . While we see that Eq. (26) requires some corrections, it is
capturing the leading tendency quite well. One of the reasons
behind the correction could be, for example, that the smallest
values of k1,... are visibly (in Fig. 6) affected by the infrared
cutoff, and Eq. (25) does not describe them well.

D. Form factors resulting from the truncation

We obtain further evidence in support of the interpretation
presented in the previous section by looking at the form
factors calculated for the truncated state. We focus on the
ZZ correlation function and define the form factors

g̃zz
m1,m2

= (ϕ̃∅|T̃ σ z |ϕ̃m1,m2 )(ϕ̃m1,m2 |T̃ σ z |ϕ̃∅), (27)

where T̃ σ z = ¯̃A1 ⊗ Ã1 − ¯̃A2 ⊗ Ã2 is the operator transfer
matrix for σ z, |ϕ̃∅) is the dominant eigenstate of the truncated
transfer matrix T̃ , and |ϕ̃m1,m2 ) = d

†
m1d

†
m2 |ϕ̃∅) are eigenstates

corresponding to two excited quasiparticles. The form factors
corresponding to single particle excitations are zero due to
fermionic parity symmetry. We plot the unique, nonzero form
factors g̃zz

m1,m2
for a specific point with g = 1.01 and γ = 0.8

in the paramagnetic phase and bond dimension χ = 10 in
Fig. 8. We point out that the form factors most relevant for the
long range correlations (i.e., corresponding to smallest single
particle energies) have the smallest values in that plot.

Additionally, we observe that the form factors are zero
when the indices m1,m2 = 1,2 . . . 2χ are simultaneously odd
or even, which can be attributed to the symmetry when
reflecting bra and ket parts of the transfer matrix, and we do
not show them in the plot. Both the details of the calculations
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FIG. 8. (Color online) Blue asterisks show the form factors
g̃zz

m1,m2
for the ZZ correlation function for the system with g = 1.01,

γ = 0.8 in the truncated state with χ = 10. Only unique, nonzero
form factors are plotted. For comparison, red circles show the results
of a simple renormalization procedure, where g̃zz,ren

m1,m2
[see Eq. (28)]

is obtained by integration of the form factors before truncation over
the momenta window surrounding km1 and km2 , depicted pictorially
in Fig. 7.

and the above symmetry—in the exact case where it is also
present—are discussed in the Appendix.

We argue that the values of the form factors can
be understood as emerging through the renormalization
group procedure described in Sec. III C. According to
this each mode is effectively representing the window
of momenta of the original—not truncated—transfer ma-
trix T F , as depicted in Fig. 7. At the same time, the
dominant, two-particle contribution to the correlation func-

tion is truncated as 1
2

∫∫ π

0 f zz
k1,k2

e
−(ε

TF
k1

+ε
TF
k2

)R → 1
2

∑2χ

m1,m2=1

g̃zz
m1,m2

e−(ε̃m1 +ε̃m2 )(R−1). Consequently, we could expect that
the form factor g̃zz

m1,m2
is obtained as a sum of all the form

factors f zz
k1,k2

e
−ε

TF
k1

−ε
TF
k2 in that window (notice that f zz

k1,k2
was

defined using only Qz in the expression for the operator
transfer matrix T σ z

F = QzTF , resulting in the additional factor

e
−ε

TF
k1

−ε
TF
k2 appearing above, and also that f zz

k1,k2
∼ dk1dk2). In

order to test this hypothesis, we introduce

g̃zz,ren
m1,m2

=
∫

k1∈�m1

∫
k2∈�m2

f zz
k1,k2

e
−ε

TF
k1

−ε
TF
k2 , (28)

where �m represents the window around the momentum km

in Fig. 7. As the most crude approximation, this means that
the form factor would be proportional to the (logarithmically
shrinking toward k = 0) size of the corresponding momentum
window.

The results of the above procedure are shown in Fig. 8
reproducing the actual form factors with the relative error
of maximally a couple of percent, which could be probably
brought down even more by picking the exact size of the
windows �m in a more sophisticated way—here we used
�m = (km−1,km+1) taking into account that roughly half of the
form factors are zero. Still, even for such a simple procedure
the agreement is exceptionally good as the form factors in
Fig. 8 span almost four orders of magnitude.

IV. CONCLUSIONS

In this paper, we constructed an exact MPS representation
for the ground state of the XY model and showed how
the Ornstein-Zernike form of the correlation function is
naturally emerging in this picture. Subsequently we truncated
this state (which has an exponentially-diverging MPS bond
dimension), obtaining its approximation with relatively small
bond dimension, a procedure which is commonly employed in
the representation of quantum states using tensor networks.

By analyzing this truncation, we can conclude that an MPS
with finite bond dimension can be understood as a particular
renormalization group procedure applied to the exact transfer
matrix, whose dominant part is increasingly well reproduced
with increasing bond dimension. The free-fermionic nature of
the problems allows for a concise description of the state, and,
for instance, its transfer matrix. The obtained spectrum of the
MPS transfer matrix behaves as would be expected from the
RG scheme based on a description in terms of an effective
impurity—proposed in Ref. [6]. While the current discussion
was limited to the exactly solvable system, it motivates further
studies of the intrinsic structure of the MPS matrices. Such
an analysis is indeed done in Ref. [9], where a general tensor
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network algorithm based on the impurity picture, discussed in
Sec. III C, is designed.

Likewise, the mapping employed in this paper in Eq. (6) is
limited to the commensurate phase of the XY model, where
the transfer matrix is Hermitian, and most of our procedures
were based on that fact. It would be interesting to extend the
mapping into the incommensurate phase and non-Hermitian
transfer matrices, especially in the context of testing Ref. [6]
which connects such oscillations with the position of minima
of the dispersion relation of the Hamiltonian.
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APPENDIX A: FORM FACTORS AND THE
CORRELATION FUNCTIONS

In this section we extend the discussion from Sec. II B by
considering other correlation functions. We numerically obtain
the form factors, extract their relevant scaling, and show how
the asymptotic scaling of the correlation functions is emerging
as a result. We compare these observations with the analytical
results obtained in Ref. [21] by direct calculation of the
correlation functions in the XY model—an approach which is
computationally significantly less complicated. Consequently,
our analysis is intended just as an illustration of the underlaying
mechanism.

As discussed is Sec. II B, in our framework, the connected
correlation function is calculated as

Côô(R) = 〈ô0ôR〉 − 〈ô0〉〈ôR〉 =
∑
α �=∅

f oo
α e−EαR, (A1)

where we consider local operators ô = σx,σ y,σ z, and the
index α enumerates all the eigenstates of the Hermitian transfer
matrix TF . The form factors are defined as

f oo
α = 1

N

N∑
i=1

(ϕi
∅|Qo|ϕα)(ϕα|Qo|ϕi

∅), (A2)

where N is the number of degenerated and orthogonal
dominant eigenvectors of TF , which we label as |ϕi

∅). The
relevant, localized part of the operator transfer matrix, which
we decompose as T ô

F = QoTF , is

Qz = exp[−2K1τ−1τ1],

Qx =
√

1 − e−4K1 (τ−1 + τ1)/2, (A3)

Qy = i
√

e4K1 − 1(τ−1 − τ1)/2,

where τl = cosh K2τ
x
l + i sinh K2τ

y

l and following the con-
vention in the main text where the position in the virtual
direction l is consistent with Fig. 2.

The operators Qx and Qy , when mapped onto a fermionic
system as in Appendix B, contain a string operator which
extends over half of the chain. Therefore, we limit ourselves

here to numerical calculations of the expectation values for
some large but finite value of L. The transfer matrix TF

is diagonalized as discussed in the next section, where its
diagonal form is given by Eq. (11) with the single particle
energies given by Eq. (12), (almost) uniformly distributed
momenta k ∈ (0,π ) (for nonzero ε

TF

k ), and the effective dk =
π/2L.

The transfer matrix is invariant with respect to the transfor-
mation l → −l. Likewise, Qx and Qz are even with respect
to that transformation, and Qy is odd. This suggests that the
form factors related to the excited states with nonmatching
symmetry would be zero, which we indeed observe. For that
reason one also expects that the mixed form factor f xy = 0.
Similarly, f xz = f yz = 0 asQz is conserving fermionic parity
and Qx and Qy are changing it. This is consistent with the fact
that in the ground state of the XY model Cxy(R) = Cyz(R) =
Czx(R) = 0. Below, we summarize our observations for the
remaining correlation functions in different phases, neglecting
the fraction of the form factors which are equal to zero.

1. Paramagnetic phase

We simulate the system for (g,γ ) = (1.1,0.5). From the
numerics, we observe that the nonzero form factors, which
correspond to single-particle band, behave as f xx

k 
 const · dk

and f
yy

k ∼ k2dk around k = 0, and the dispersion relation
ε
TF

k 
 � + apk2. We show the form factors in Fig. 9. The
asymptotic form of the correlation functions is then determined
by the single-particle band, as

Cxx(R) ∼
∫ ∞

0
dk e−(�+apk2)R ∼ 1

R1/2
e−R�,

Cyy(R) ∼
∫ ∞

0
dk k2e−(�+apk2)R ∼ 1

R3/2
e−R�,

in agreement with Ref. [21].

2. Ferromagnetic phase

We simulate the system for (g,γ ) = (0.8,0.8). There is a
single mode with ε

TF

∅ = 0, and the dominant eigenstate of

0 π/4 π/2 3π/4 π0
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ε
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k

fxx
k · L

−fyy
k

· L

FIG. 9. (Color online) Form factors for single-particle states, f xx
k

and f
yy

k , and the single particle energies ε
TF

k , for g = 1.1, γ = 0.5 in
the paramagnetic phase.
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the transfer matrix is degenerated with N = 2. The rest of
the spectrum is still given by Eq. (12) with ε

TF

k 
 � + af k2

around the minimum at k = 0. We observe that the form
factors corresponding to the single-particle band are zero,
f xx

k = f
yy

k = 0, and likewise f zz
k,∅ = 0.

For XX and YY correlations, the first nonzero form
factors come from three-quasiparticle excitations including
ε
TF

∅ = 0, i.e., α = {k1,k2,∅}. From the specific example, the
data are consistent with the quadratic scaling of f xx

k1,k2
∼ (k2

1 +
k2

2)dk1dk2 and quartic scaling of f
yy

k1,k2
∼ (k1 − k2)4dk1dk2.

Likewise for ZZ correlation, we see quadratic scaling f zz
k1,k2

∼
(k2

1 + k2
2)dk1dk2. By performing double integrals like in the

main text, this would lead to Cxx(R) ∼ 1
R2 e

−R2�, Cyy(R) ∼
1

R3 e
−R2� and Czz(R) ∼ 1

R2 e
−R2� in agreement with Ref. [21].

Notice that none of the correlation functions are falling
off exponentially with the correlation length suggested by
the transfer matrix ξ = 1/�, but actually twice as fast.
Interestingly, it is possible to recover the actual correlation
length by adding the string operator between the two endpoints
of the XX or YY correlation function, namely by considering
〈σx(y)

0

∏R−1
n=1 σ z

nσ
x(y)
R 〉.

3. Critical point for g = 1

We simulate the system for (g,γ ) = (1,0.5). The ZZ
correlation function, discussed in the main text, follows the
scheme presented above, as the specific form of the Qz makes
all form factors, expect for the ones corresponding to the
two-quasiparticle excitations, equal zero. For the XX and YY
correlations this is no longer the case, as the gap is equal to zero
(εTF

k 
 ack) and the contributions from many-quasiparticles-
bands might be relevant for the algebraic scaling. We see that
this is indeed the case. The data for growing L suggest the
scaling f xx

k ∼ 1
kL0.25 dk, and f

yy

k ∼ − k
L0.25 dk. Due to additional

factors of L−0.25 the contribution from the single-particle band
is vanishing in the limit of L → ∞. In order to recover the
actual asymptotic behavior Cxx(R) ∼ 1

R1/4 and Cyy(R) ∼ 1
R9/4

[21], the contribution coming from all multiparticle bands
would have to be taken into account, and the simple single-
particle picture presented in this section no longer applies.

APPENDIX B: FREE-FERMIONIC DESCRIPTION
OF TRANSFER MATRICES

1. Transfer matrix

We define the transfer matrix as TF = ∑1
i=0 Āi ⊗ Ai ,

where, for the XY model, matrices Ai are given by Eq. (8),
resulting in

TF = W
1
2

1 W2W
1
2

1 ,

W1 = exp

[
K2

2L∑
l=1

τ z
l

]
;

W2 = exp

[
K1

2L−1∑
l=1

τ x
l τ x

l+1

]
. (B1)

We have reindexed the auxiliary spins along the vertical
direction for convenience, so that sites with l = 1,2, . . . L

correspond to Ai and sites with l = L + 1, . . . ,2L to Āi .
Operators of this form were diagonalized by Abraham [26]
using the formalism of transformation matrices. Here we
reiterate the main steps of the derivation.

Firstly, TF is mapped onto a free-fermionic model by
means of a Jordan-Wigner transformation τ z

n = 1 − 2c
†
ncn,

τ x
n + iτ

y
n = 2cn

∏
m<n (1 − 2c

†
mcm), where cn are fermionic

annihilation operators. It is convenient to introduce Ma-
jorana fermions cM

2n−1 = cn + c
†
n and cM

2n = i(cn − c
†
n), with

{cM
m ,cM

n } = 2δm,n, where we will use superscript M to indicate
Majorana fermions. Now,

W1 = exp

[
K2

2L∑
l=1

icM
2l−1c

M
2l

]
,

W2 = exp

[
K1

2L−1∑
l=1

icM
2l c

M
2l+1

]
.

We define a (row) vector �cM = (cM
1 ,cM

2 ,cM
3 , . . . ,cM

4L) and
for an operator T , which is an exponential of a free-fermionic
Hamiltonian, we consider the similarity transformation

T �cMT −1 = �cMR[T ], (B2)

which defines a 4L × 4L transformation matrix R[T ].
Above, it is understood that T �cMT −1 = (T cM

1 T −1,

T cM
2 T −1, . . . ,T cM

4LT −1).
It is convenient to introduce a 2 × 2 matrix

u(x) =
(

cosh x i sinh x

−i sinh x cosh x

)
.

The transformation matrices for W
1
2

1 and W2 are block diagonal

R
[
W

1
2

1

] =
⊕2L

n=1
u(K2),

R[W2] = 1 ⊕ ( ⊕2L−1

n=1
u(2K1)

) ⊕ 1.

The transformation matrix for TF is found simply by multi-

plying transformation matrices for W
1
2

1 and W2

R[TF ] = R
[
W

1
2

1

]
R[W2]R

[
W

1
2

1

]
. (B3)

Subsequently, the transfer matrix is diagonalized by finding
UT ∈ SO(4L), which brings R[TF ] into canonical form

R[TF ] = UT RM
a UT

T ,

Ra =
⊕2L

n=1
u
(
εTF

n

)
.

This gives single particle energies εTF
n > 0, and UT defines a

fermionic basis �aM = �cMUT , for which (up to normalization)

TF = exp

[
i

2L∑
n=1

1

2
εTF

n aM
2n−1a

M
2n

]
= exp

[
−

2L∑
n=1

εTF

n a†
nan

]
.

The dominant eigenvector of TF is annihilated by all annihila-
tion operators an|ψ∅) = (aM

2n−1 − iaM
2n)|ψ∅) = 0.

2. Reduced density matrix

The reduced density matrix ρ of |ψ∅) with support on sites
l = 1,2, . . . ,L is diagonalized following standard techniques
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[28] by considering a 2L × 2L covariance matrix for a half
chain

C[1,2,... ,L] = [
(ψ∅|cM

m cM
n |ψ∅)

]
m,n=1,2,... ,2L

= 1 + iBM,

where BM is skew symmetric. The reduced density matrix is
diagonalized by bringing BM into canonical form:

BM = UBBM
f UT

B ,

BM
f = ⊕L

n=1

(
0 − tanh δn

tanh δn 0

)
,

where δm defines the entanglement spectrum. UB ∈ SO(2L)
defines a set of Majorana fermions (f M

1 , . . . ,f M
2L) =

(cM
1 , . . . ,cM

2L)UB, for which

ρ = 1

Z′ exp

[
i

L∑
n=1

δnf
M
2n−1f

M
2n

]
= 1

Z
exp

[
−2

L∑
n=1

δnf
†
n fn

]
,

where Z and Z′ are the normalization factors. Similarly,
we obtain (f M

2L+1,f
M
2L+2, . . . ,f M

4L) by considering the reduced
density matrix supported on sites L + 1, . . . ,2L.

3. Truncation

Finally, we describe how to obtain the truncated transfer
matrix T̃ = ∑2

i=1
¯̃Ai ⊗ Ãi , where Ãi are given by Eq. (20),

and we keep the χ most relevant fermionic modes, i.e., we
discard f modes for � = {χ + 1,χ + 2, . . . ,L} ∪ {L + χ +
1,L + χ + 2, . . . ,2L}. We work directly with the transfer
matrix and find

T̃ = (⊗j∈�(0j |)T F (⊗j∈�|0j )),

where states |0j ), for which fj |0j ) = 0, are obtained from
the diagonalization of the reduced density matrix. We use the
formalism of the transformation matrix, extending it to the
case of noninvertible projections, cf. Eq. (B2).

First, we obtain the transformation matrix for TF in the
f -fermionic base (it is convenient to work with Dirac fermions
here) as

T F �f T F = �f R[T F ]f ,

where for convenience we reorder �f = { �fa, �fb, �fc} with �fa

describing the relevant modes �fa = {fj ,f
†
j : j /∈ �}, �fb =

{fj : j ∈ �} are annihilation operators corresponding to the
truncated modes, and finally �fc = {f †

j : j ∈ �} denote the
corresponding creation operators. R[T F ]f can be directly
obtained from R[T F ] in Eq. (B3) by a suitable basis rotation
from �aM to �f .

Here, the relevant submatrices of R[T F ]f are

Raa = [R[T F ]f ]m,n=1,... 4χ

Rab = [R[T F ]f ]m=1,... 4χ,n=4χ+1,... ,2L+2χ

Rba = [R[T F ]f ]m=4χ+1,... 2L+2χ,m=1,... 4χ

Rbb = [R[T F ]f ]m,n=4χ+1,... 2L+2χ .

Namely, Raa describes transformation of �fa into �fa under the
similarity transformation given by T F , Rab corresponds to the
transformation of �fa into �fb, etc.

The transformation matrix corresponding to T̃ ,

T̃ �fa T̃ −1 = �faR[T̃ ], (B4)

is found as

R[T̃ ] = Raa − RabR
−1
bb Rba. (B5)

Now, bringing R[T̃ ] into canonical form—similar to R[T F ]—
yields the spectrum ε̃m, where

T̃ = exp

[
2χ∑

m=1

ε̃md†
mdm

]
.

In order to derive equation Eq. (B5), we consider

P̂T F �f P̂ = P̂ �f T F P̂R[T F ]f , (B6)

where the projection P� = ∏
j∈� |0j )(0j | = ∏

j∈� cj c
†
j . No-

tice that �fbP̂ = 0 and P̂ �fc = 0. Rewriting Eq. (B6), we obtain

P̂T F P̂ �fa = �faP̂T F P̂Raa + P̂ �fbT F P̂Rba,

0 = �faP̂T F P̂Rab + P̂ �fbT F P̂Rbb.

Eliminating P̂ �fbT F P̂ from the above equation leads to

P̂T F P̂ �fa = �faP̂T F P̂
(
Raa − RabR

−1
bb Rba

)
.

Now it is enough to notice that P̂T F P̂ ∼ P̂ T̃ P̂ , and since P̂

works nontrivially only on modes fj with j ∈ � and T̃ on
modes with j /∈ �, we obtain Eq. (B4) with R[T̃ ] given by
Eq. (B5).

4. Form factors in the truncated state

We focus on the form factors for the ZZ correlation function.
The (full) operator transfer matrix is

T σ z

F = W
1
2

1 exp
[−2K1τ

x
Lτ x

L+1

]
W2W

1
2

1 , (B7)

and after mapping onto the free-fermionic system, we describe
it using the transformation matrix R[T σ z

F ] in an analogous
way to the transfer matrix TF . We work directly with this
transfer matrix and calculate its form after truncation by using
Eqs. (B4) and (B5), finding R[T̃ σ z

] in the process. Now, in
order to find the form factors in Eq. (27), we rewrite

(ϕ̃∅|T̃ σ z |ϕ̃m1,m2 ) = Tr[T̃ σ z

d†
m1

d†
m2

d1d
†
1 . . . dLd

†
L], (B8)

where d1d
†
1 . . . dLd

†
L is the projector onto the dominant

eigenstate of T̃ . We can think about T̃ σ z

/ Tr(T̃ σ z

) as a
reduced density operator and using Wick’s theorem calculate
the above expression (up to normalization) as a Pfaffian of
the two-point correlation matrix Tr (T̃ σ z

b1b2), where b1,b2 =
d1,d

†
1 . . . dL,d

†
L are all pairs of d operators appearing in

Eq. (B8). They, in turn, can be easily calculated by finding
the canonical form of R[T̃ σ z

], calculating the two point
correlations in that base and subsequently rotating them into
d fermions.
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Using this approach, we have to reintroduce the normal-
ization Tr(T̃ σ z

) by hand. Here, we do it by calculating the
magnetization Mz = (ϕ̃∅|T̃ σ z |ϕ̃∅), as discussed above, and
comparing it with the exact value.
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