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We study the impact of the fermionic self-energy on one-loop functional renormalization group flows of
the two-dimensional t-t ′ Hubbard model, with emphasis on electronic densities away from van Hove filling.
In the presence of antiferromagnetic hot spots, antiferromagnetic fluctuations lead to a flattening of the Fermi
surface, shift magnetic phase boundaries, and significantly enhance critical scales. We trace back this effect to
the presence of a magnetic first-order transition. For some parameters, the first-order character of the latter is
reduced by self-energy effects. For reliably determining phase diagrams, the fermionic self-energy should be
taken into account in functional renormalization group studies if scattering between hot spots is important.
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I. INTRODUCTION

The Hubbard model is a paradigmatic model system for
the description of correlated electrons in solids. Despite the
simplicity of the model, an exact solution is only available
in one spatial dimension. The two-dimensional model is
believed to contain the essential ingredients to describe
high-temperature superconductivity in cuprates. Similar to
these materials, the model shows antiferromagnetism in its
ground state at half-filling and becomes superconducting when
sufficiently doped away from half-filling [1]. The lightly doped
regime of cuprate materials and the Hubbard model are,
however, relatively poorly understood. Achieving an accurate
description of the properties of the Hubbard model in this
regime is therefore highly desirable.

Recent progress in the development of some numerical
methods allowed to achieve agreement between the results
in certain parameter regimes, but discrepancies remain for the
important intermediate coupling regime at small doping [2]. In
this regime, several different states have very similar energies
and an accurate determination of the ground state is difficult.
One source of difficulty is the limitation of many numerical
methods to relatively small systems. It therefore seems useful
to complement numerical studies of the model with more
analytical approaches that have access to low-energy Fermi
surface instabilities in the thermodynamic limit. One such
method is the functional renormalization group (fRG) [3–5].

This method treats all interaction channels on equal footing
and is thus well suited for the study of competing order. One
of its major successes was the unbiased detection of d-wave
superconductivity in the ground state of the two-dimensional
Hubbard model at weak coupling [5–7]. Results at weak
coupling cannot be directly transferred to the cuprates, but
allow to understand some qualitative features of their phase
diagram in a controlled way. Until recently, the applicability
of available truncation schemes of the fRG flow equations
was limited to weak coupling, but this restriction may be
removed by using nontrivial starting points for the fRG flow
[8–10].

Most fRG studies for itinerant fermionic systems used a
one-loop truncation, in which the fermionic self-energy and the
two-particle vertex are renormalized [5,11]. Motivated by the

fact that the information on most continuous phase transitions
is encoded in the momentum dependence of the vertex, which
diverges with the correlation length for certain combinations of
momenta, the self-energy was usually neglected. A few studies
investigated the influence of the self-energy on the flow and
focused on the parameter region around van Hove filling. A
general tendency towards a flattening of the Fermi surface was
found in an early study slightly above van Hove filling, which
however neglected the feedback of the self-energy on the flow
[12]. More recent studies included the self-energy feedback on
the flow, but were mostly restricted to a small region around
van Hove filling, where interesting effects like competing
instabilities or non-Fermi liquid behavior may already occur
at weak coupling [13–15]. In this parameter regime, it was
found that renormalizing the Fermi surface has only a very
small impact on the flow.

Despite the fact that deformations of the Fermi surface
are important perturbations in two-dimensional systems, their
impact on functional renormalization group flows away from
van Hove filling has not been fully addressed, yet. Knowing
the impact of the self-energy on fRG flows in a broader
parameter regime is certainly useful to judge the reliability
of flows with perturbative as well as nontrivial starting points.
Moreover, the one-loop fRG was also applied to model systems
for the description of unconventional superconductivity in
pnictide and ruthenate materials [16] and used to provide an
explanation for subtle features in the momentum dependence
of the superconducting gap. As these works neglected the
fermionic self-energy, it would be interesting to know how
robust their results are if the self-energy were taken into
account.

In this work we study the impact of the self-energy on
one-loop fRG flows away from van Hove filling and at zero
temperature. As in former studies, flows at van Hove filling are
not changed qualitatively when the Fermi surface is renormal-
ized. A similar conclusion holds for electron fillings below van
Hove filling. In the presence of antiferromagnetic hot spots,
i.e., intersection points of the Fermi surface and the boundary
of the magnetic Brillouin zone, the renormalization of the
Fermi surface via the self-energy has a sizable quantitative
impact on critical scales and shifts the boundaries between
regimes with different leading instabilities. This is caused by
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a flattening of the Fermi surface, which leads to improved
nesting and enhances antiferromagnetic fluctuations, thereby
enlarging the parameter regime with antiferromagnetism as
leading instability. Combining fRG flows with a mean-field
(MF) analysis [17,18] for the magnetic phase diagram, we
trace back the large impact of the self-energy on the flow to
the presence of a magnetic first-order phase transition.

This paper is organized as follows. Section II briefly intro-
duces the Hubbard model and the fRG. Section III describes
results mostly from one-loop flows in static approximation,
i.e., where the frequency dependence of the vertex and the
self-energy are neglected, as well as results from a combination
of fRG and mean-field theory. A few results from a dynamic
approximation are also discussed. Section IV contains a
summary and conclusions.

II. MODEL AND METHOD

A. Model

The Hubbard model describes spin- 1
2 fermions with a local

repulsive interaction on a lattice. Its Hamiltonian in second-
quantization notation is given by

H =
∑
i,j,σ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓, (1)

where c
(†)
iσ are annihilation (creation) operators for fermions

with spin orientation σ = ↑,↓ on lattice site i. We study
this model on a two-dimensional square lattice and restrict
the hopping of fermions tij to nearest and next-nearest
neighbor sites with amplitudes −t and −t ′, respectively.
Fourier transformation of the hopping matrix yields the
dispersion

ε(k) = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky. (2)

Fermions occupying the same lattice site interact via the local
Coulomb interaction with strength U .

In the following, we set t ≡ 1 and use it as the unit of
energy.

B. Functional renormalization group

The functional renormalization group allows to resum
perturbation theory in a scale-separated way and treats all
interaction channels on an equal footing. Comprehensive
introductions to the method can be found in Refs. [5,16,19,20].

The starting point of the method is a functional flow equa-
tion for the effective action [3,4], the generating functional of
one-particle irreducible (1PI) vertex functions. The functional
flow equation is equivalent to an infinite hierarchy of flow
equations for vertex functions. Truncating this hierarchy and
formulating an ansatz for the effective action allows to derive
a closed set of renormalization group equations for the latter.

In this work we employ a truncation at the two-particle
level, in which self-energy feedback from the three-particle
level is taken into account [11]. Assuming translational and

spin rotation invariance, we formulate the ansatz

��[ψ̄,ψ]

= �(0) � +
∑
k,σ

�(2) �(k)ψ̄kσψkσ

+ 1

4

∑
ki ,σi

�(4) �
σ1σ2σ3σ4

(k1,k2,k3,k4)ψ̄k1σ1ψ̄k2σ2ψk3σ3ψk4σ4 (3)

for the effective action, where k = (k0,k) combines Matsubara
frequencies and momenta. Due to symmetries, the two-particle
vertex �(4) � is nonzero only for k1 + k2 = k3 + k4 and σ1 =
σ4, σ2 = σ3 or σ1 = σ3, σ2 = σ4.

The regularized fermionic propagator G�(k) =
−(�(2) �)−1(k) is related to the regularized bare propagator
G�

0 (k) and the self-energy ��(k) via a Dyson equation,

(G�)−1(k) = (
G�

0

)−1
(k) − ��(k). (4)

The regularized bare propagator is given by(
G�

0

)−1
(k) = ik0 − ε(k) + μ + R�(k), (5)

where μ is the chemical potential and R� is the regulator. We
use an additive frequency regulator

R�(k) = i sgn(k0)
√

k2
0 + �2 − ik0 (6)

that replaces small frequencies k0 by sgn(k0)� in (G�
0 )−1. This

regulator has been used in several works before [7,21–23] and
it was found that critical scales for pairing instabilities provide
a very good estimate for the maximum amplitude of the ground
state pairing gap.

Within the truncation scheme proposed by Katanin [11],
we obtain flow equations for the self-energy,

d

d�
��(k) =

∑
σ

∫
d3p

(2π )3
�

(4) �
↑σσ↑(k,p,p,k)S�(p), (7)

where S�(k) = d
d�

G�(k)|��=const. is the fermionic single-
scale propagator, and the two-particle vertex

d

d�
�(4) �

σ1σ2σ3σ4
(k1,k2,k3,k4)

= 	PH,d
σ1σ2σ3σ4

(k1,k2,k3,k4) − 	PH,cr
σ1σ2σ3σ4

(k1,k2,k3,k4)

− 1

2
	PP

σ1σ2σ3σ4
(k1,k2,k3,k4), (8)

where the contributions on the right-hand side are the direct
particle-hole, crossed particle-hole, and particle-particle dia-
gram, respectively. They are given by

	PH,d
σ1σ2σ3σ4

(k1,k2,k3,k4)

=
∑

p,σ ′
1,σ

′
2

d

d�

[
G�

(
p − q

2

)
G�

(
p + q

2

)]

×�
(4) �

σ1σ
′
1σ

′
2σ4

(
k1,p − q

2
,p + q

2
,k4

)

×�
(4) �

σ ′
2σ2σ3σ

′
1

(
p + q

2
,k2,k3,p − q

2

)∣∣∣∣
q=k3−k2

= 	PH,cr
σ2σ1σ3σ4

(k2,k1,k3,k4), (9)
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	PP
σ1σ2σ3σ4

(k1,k2,k3,k4)

=
∑

p,σ ′
1,σ

′
2

d

d�

[
G�

(
q

2
− p

)
G�

(
q

2
+ p

)]

×�
(4) �

σ1σ2σ
′
2σ

′
1

(
k1,k2,

q

2
− p,

q

2
+ p

)

×�
(4) �

σ ′
1σ

′
2σ3σ4

(
q

2
+ p,

q

2
− p,k3,k4

)∣∣∣∣
q=k1+k2

. (10)

Within this truncation, on the right-hand side of the flow
equation, the scale derivative of the full propagator

d

d�
G�(k) = S�(k) + G�(k)�̇�(k)G�(k) (11)

appears instead of the single-scale propagator. This leads to a
better treatment of self-energy corrections [11].

In order to make the flow equations amenable for a
numerical solution, we decompose the vertex into interactions
channels and derive flow equations for the effective interaction
in each channel as described in Refs. [24,25]. Our ansatz and
notation are very similar to those of Ref. [7]. We write

�(4) �
σ1σ2σ3σ4

(k1,k2,k3,k4)

= uσ1σ2σ3σ4 (k1,k2,k3,k4)

+V PH,�
σ1σ2σ3σ4

(
k1 + k4

2
,
k2 + k3

2
; k3 − k2

)

−V PH,�
σ2σ1σ3σ4

(
k2 + k4

2
,
k1 + k3

2
; k3 − k1

)

+V PP,�
σ1σ2σ3σ4

(
k1 − k2

2
,
k4 − k3

2
; k1 + k2

)
(12)

for the vertex, where u is the antisymmetrized bare interaction,
and V PH,� and V PP,� describe fluctuation corrections in the
particle-hole and particle-particle channels, respectively. The
first two momentum arguments of the latter two functions
are fermionic relative momenta while the third is a bosonic
momentum transfer or total momentum. For the Hubbard
model, u reads

uσ1σ2σ3σ4 (k1,k2,k3,k4) =Uδk1+k2,k3+k4

(
δσ1σ4δσ2σ3 − δσ1σ3δσ2σ4

)
.

(13)

For the fluctuation corrections in the particle-hole channel, we
make the ansatz

V PH,�
σ1σ2σ3σ4

(k,k′; q) = (
2δσ1σ3δσ2σ4 − δσ1σ4δσ2σ3

)
M�

kk′(q)

+ δσ1σ4δσ2σ3C
�
kk′(q), (14)

where C� and M� are a density-density interaction ∼ nn and
a spin-spin interaction ∼ s · s, respectively. The ansatz for the
fluctuation corrections in the particle-particle channel reads

V PP,�
σ1σ2σ3σ4

(k,k′; q) = δσ1σ4δσ2σ3P
�
kk′(q) − δσ1σ3δσ2σ4P

�
k,−k′ (q).

(15)

Inserting these ansatzes into the flow equation for the vertex
and assigning diagrams to interaction channels according to
the transfer momenta in the fermionic loop integrals, we obtain

the flow equations

d

d�
P �

kk′(q) = −1

2
	

PP,�
↑↓↓↑

(
k + q

2
,
q

2
− k,

q

2
− k′,k′ + q

2

)
,

(16)

d

d�
M�

kk′(q) = 1

2
	

PH,d
↑↓↑↓

(
k + q

2
,k′ − q

2
,k′ + q

2
,k − q

2

)
,

(17)

d

d�
C�

kk′(q) = 	
PH,d
↑↓↓↑

(
k + q

2
,k′ − q

2
,k′ + q

2
,k − q

2

)

+ d

d�
M�

kk′(q). (18)

More detailed expressions for the flow equations can be found
in Appendix A.

C. Approximation scheme for vertex and self-energy

In the following we describe the approximations and
parametrizations for the vertex and the self-energy that are
applied within the channel-decomposition scheme. The frame-
work of approximations is very similar to that in Refs. [7,21].
Differently from these works, we do not introduce order
parameters and analyze the leading instabilities of the flow.

The fluctuation corrections in the particle-hole and particle-
particle channels are described as boson-mediated interactions.
Former fRG studies identified the s- and dx2−y2 -wave channels
as those yielding the largest contributions to the flow in the
parameter regime that is relevant in this work [12,15,25–27].
For the pairing, magnetic, and charge fluctuations, we make
the ansatzes

P �
kk′(q) = P �

s (q) + P �
d (q)fd (k)fd (k′), (19)

M�
kk′(q) = M�

s (q) + M�
d (q)fd (k)fd (k′), (20)

C�
kk′(q) = C�

s (q) + C�
d (q)fd (k)fd (k′), (21)

where fd (k) = cos kx − cos ky is a lattice form factor with
d-wave symmetry. The exchange propagators P �

i , M�
i , and

C�
i describe mediated interactions in the s- and d-wave

channels. The second contribution in the charge channel
captures density-wave fluctuations with a d-wave form factor
[27–30].

In this work we discuss two approximation schemes:
a dynamic and a static approximation. In the dynamic
approximation, we keep the dependence of the exchange
propagators on the bosonic frequency q0 and also the frequency
dependence of the self-energy. In the static approximation, we
neglect all frequency dependencies and evaluate the exchange
propagators at q0 = 0. More details on the description of the
momentum and frequency dependence of exchange propaga-
tors and the numerical solution of the flow equations can be
found in Appendix B.

The central theme of this paper is to study the impact
of the fermionic self-energy on fRG flows away from van
Hove filling. We thus like to keep track of interaction-
induced deformations of the Fermi surface, but also of the
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renormalization of the fermionic quasiparticles. At low scales
we expect the momentum dependence of the self-energy
parallel to the Fermi surface to be more important than the
dependence perpendicular to it, and thus neglect the latter.
We subdivide the Brillouin zone into patches (as in the
N -patch approximation for the vertex [26]) and evaluate the
self-energy ��(k) in each patch for the Fermi momentum
in the middle of the patch. The frequency dependence is
discretized on a nonequidistant grid with higher density of grid
points at low frequencies, as for the exchange propagators.
This reduces the self-energy in the dynamic approximation
to a two-dimensional function of frequency and angle along
the Fermi surface. At intermediate points, the self-energy is
determined by linear interpolation. In the static approximation,
the one-loop flow does not generate a frequency dependence
of the self-energy and we evaluate it at k0 = 0. The same
approximations as for ��(k) are used for d

d�
��(k) appearing

in the scale-differentiated propagator on the right-hand side
of the flow equations. In Sec. III we compare results from
fRG flows using these approximations for the self-energy with
results from fRG flows using different approximations like ne-
glecting the self-energy completely. The latter approximation
is widely used in the literature.

III. RESULTS

In this section we present results from a numerical solution
of the flow equations for the ground state. We discuss
the dependence of critical scales �c on the next-nearest
neighbor hopping t ′, the fermionic density n, and various
approximations for the self-energy �. We present results for a
moderate interaction strength U = 3. The critical scale �c

is defined as the scale � where the largest component of
exchange propagators exceeds 50t . When extrapolating the
flow, it would diverge at slightly lower scales. All flows were
evaluated in the presence of a fixed chemical potential μ and
the fermionic density was determined from the full fermionic
propagator at the critical scale.

In the following we first discuss results for critical scales
from static one-loop flows. In order to reduce the impact of the
choice of the regulator on our conclusions, we compare the
established trends with mean-field calculations that take
the fRG results as input. At the end of this section we briefly
discuss results from a dynamic one-loop approximation where
the vertex and the self-energy also depend on frequency.

A. Static one-loop flows

In the following we present results from static one-
loop flows. In Fig. 1 we compare critical scales �c as
obtained from flows with momentum-dependent [��(k)] or
momentum-independent [��(k) = �� computed as Fermi
surface average] self-energy for U = 3 and different values
of t ′. As discussed below (see Fig. 6), the latter results are
very close to those obtained from flows where the self-energy
is neglected completely. The filling where the saddle points
of the fermionic dispersion are part of the Fermi surface (van
Hove filling) plays an important role in deciding how large
the impact of a momentum-dependent renormalization of the
self-energy is. We define van Hove filling as the filling where

n
,

t
=
−

0
.2

5

n
,

t
=
−

0
.2

n
,

t
=
−

0
.1

5

0.8 0.9 1 1.1
n

0

0.1

0.2

Λ
c

dSC

cAF

iAF

t = −0.15, Σ(k)
t = −0.15, Σ
t = −0.2, Σ(k)

t = −0.2, Σ

t = −0.25, Σ(k)

t = −0.25, Σ

FIG. 1. (Color online) Critical scales �c of one-loop fRG flows
in static approximation for U = 3 and different values of t ′. For each
value of t ′, critical scales from flows with momentum-dependent
self-energy ��(k) [labeled “�(k),” full lines] and with momentum-
independent self-energy ��(k) = �� [labeled “�,” dashed lines]
are compared. Symbols represent the leading instability [crosses
for d-wave superconductivity (dSC), circles for commensurate
antiferromagnetism (cAF), and squares for incommensurate antifer-
romagnetism (iAF)]. The vertical dashed lines mark van Hove filling
for the different values of t ′.

the saddle points are part of the renormalized Fermi surface at
the critical scale, as in Ref. [15]. This is the case for nvH = 0.87
for t ′ = −0.15, nvH = 0.83 for t ′ = −0.2, and nvH = 0.79 for
t ′ = −0.25. For electron densities near van Hove filling, the
renormalization of the self-energy practically does not influ-
ence the critical scale, in agreement with the literature [15].
This is different closer to half-filling, where antiferromagnetic
hot spots exist. When taking the momentum dependence of
the self-energy into account, the parameter region with a
leading instability towards antiferromagnetism is enlarged and
the critical scale significantly enhanced for the smaller values
of −t ′. For t ′ = −0.25, no magnetic instability is found in
both approximations, but antiferromagnetic fluctuations and
the critical scale for d-wave pairing are also enhanced.

On the electron-doped side, the leading instability can
change from d-wave superconductivity to antiferromagnetism
when renormalizing the Fermi surface. An exemplary flow
of some couplings for such a case is shown in Fig. 2.
Using the momentum-independent approximation for the
self-energy, the effective interaction in the magnetic channel
saturates towards low scales and the d-wave pairing interac-
tion eventually grows very strongly. Taking the momentum
dependence of �� into account leads to a strong enhancement
of antiferromagnetic fluctuations and eventually to a magnetic
instability. At the critical scale of the latter flow, the d-wave
pairing interaction is also enhanced by roughly 20%. For
these parameters, the Fermi surface at the hot spots is not
perfectly nested and the particle-hole bubble with transfer
momentum q = π thus finite, so that driving an antiferromag-
netic instability requires a minimal coupling strength. In the
flow with momentum-independent self-energy, the bare U is
effectively reduced by fluctuations below this threshold. In the
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0 0.1 0.2

Λ

−60

−40

−20

0
M

Λ s
(π

),
P

Λ d
(0

)

PΛ
d (0), Σ MΛ

s (π), Σ PΛ
d (0), Σ(k) MΛ

s (π), Σ(k)

0.04 0.08

Λ

−2

−1

P
Λ d
(0

)

FIG. 2. (Color online) Flow of exchange propagators in the
magnetic channel M�

s (q = π ) and in the d-wave pairing channel
P �

d (q = 0) for U = 3, t ′ = −0.15, and n = 1.1 as computed with
renormalization of the momentum dependence of the self-energy
��(k) [labeled �(k)] and by approximating the self-energy as
momentum independent [labeled �]. The pairing interaction close to
the critical scale of the flow with momentum-dependent self-energy
is shown in the inset.

momentum-dependent case, the renormalization of the Fermi
surface leads to improved nesting around the hot spots, which
in turn enhances antiferromagnetic fluctuations and gives rise
to a magnetic instability.

The improvement of nesting is mainly caused by antifer-
romagnetic fluctuations and can be seen in Fig. 3. In this
figure we compare the bare and renormalized Fermi surfaces
for U = 3, t ′ = −0.2, and different fermionic densities. The
deformation of the Fermi surface for the parameters used
in Fig. 2 is qualitatively very similar to that for n = 1 in
Fig. 3. At half-filling and van Hove filling (n = nvH), the

2 3

kx

0

0.5

1

1.5

k
y

n = 1, Σ(k)
n = 1, Σ = 0
n = nvH, Σ(k)
n = nvH, Σ = 0
n < nvH, Σ(k)
n < nvH, Σ = 0

FIG. 3. (Color online) Renormalized and bare Fermi surfaces
from static one-loop fRG flows at the critical scale �c for U = 3
and t ′ = −0.2 for different electron fillings below van Hove filling
(n = 0.76, �c = 0.02), at van Hove filling (n = nvH = 0.83, �c =
0.079), and at half-filling (n = 1, �c = 0.103). Renormalized (bare)
Fermi surfaces are shown with full (dashed) lines and are labeled
�(k) (� = 0).

0 0.25 0.5

φ/π

−0.05

0

0.05

Σ
Λ
(k

F
( φ

))
−

<
Σ

Λ
(k

F
(φ

))
>

φ

n = 1
n = nvH
n < nvH

FIG. 4. (Color online) Momentum dependence of the self-energy
��(k) along the Fermi surface in the first quadrant of the Brillouin
zone at the end of the flow for U = 3, t ′ = −0.2, and different
fillings. The latter and the corresponding critical scales are the same
as in Fig. 3. In order to emphasize the momentum dependence, we
subtracted the average of ��(k) over all patches. φ = 0 and φ = π

2
correspond to the antinodal direction.

Fermi surface is flattened around the hot spots or the saddle
points. A flattening of the Fermi surface around hot spots due to
strong antiferromagnetic fluctuations was also observed before
in the Hubbard model [12,31] and close to a spin-density wave
quantum critical point with ordering wave vector (π,π ) in the
spin-fermion model [32,33].

The deformation of the Fermi surface as shown in Fig. 3
is caused by the self-energies shown in Fig. 4. This figure
shows ��(k) along the Fermi surface after subtracting the
average over all patches in order to highlight the momentum
dependence. As expected from the small change of critical
scales and Fermi surfaces (see Figs. 1 and 3), at the lower
fillings the magnitude of ��(k) along the Fermi surface is very
small. At half-filling, the self-energy is significantly larger and
has a more pronounced momentum dependence.

Parametrizing this self-energy in terms of renormalized
hopping amplitudes to neighboring lattice sites as in Ref. [15]
should yield a very good approximation for all fillings.
However, in the one-loop fRG truncation with self-energy
feedback [11], the scale derivative of the self-energy also
contributes on the right-hand side of the flow equation. As
can be seen in Fig. 5, d

d�
��(k) for the half-filled system

develops a strong dependence on momentum at low scales. A
parametrization with a small number of renormalized hopping
amplitudes may lead to an underestimation of d

d�
��(k) and

thus of the impact of fluctuations on the flow in this regime, in
particular if the renormalization contributions to the hoppings
are determined using Brillouin zone averages. Note that at
lower fermionic densities (close to van Hove filling or below),
d

d�
��(k) remains small and is less important at low scales.
The relevance of the momentum dependence of ��(k) and

d
d�

��(k) is illustrated in Fig. 6, which shows the critical
scales of static one-loop flows using different approximations
for the self-energy and its scale derivative. We show results
for t ′ = −0.2 in this figure in order to highlight the effect
of different approximations, which is somewhat amplified
because U is close to the critical value below which no
instability to antiferromagnetism appears in the phase diagram
when neglecting the momentum dependence of ��. However,
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FIG. 5. (Color online) Momentum dependence of the scale
derivative of the self-energy d

d�
��(k) along the Fermi surface in the

first quadrant of the Brillouin zone at the end of the flow for U = 3,
t ′ = −0.2, and different fillings. The latter and the corresponding
critical scales are the same as in Fig. 3.

the conclusions for other values of t ′ are qualitatively similar.
In the figure we show results for the approximations mentioned
above and in addition for one-loop flows where (i) ��(k) is
considered but the feedback of d

d�
��(k) to the right-hand

side of the flow equation neglected [labeled �(k), w/o �̇ feed-
back], (ii) a momentum-independent self-energy is used and
evaluated for the Fermi momentum in the antinodal direction
closest to the saddle points [labeled �(k) = �(kAN )], and
(iii) the same as (ii) but evaluated for a Fermi momentum
in the nodal direction [labeled �(k) = �(kN )]. Evaluation of
the momentum-independent self-energy in the nodal direction
yields critical scales that are almost equal to those that result
when the self-energy is neglected completely or evaluated as
a Fermi surface average. The reason is that in this case the
self-energy flows only weakly at low scales because the nodal
points are closer together than (π,π ) and antiferromagnetic
fluctuations thus ineffective. Evaluation of the self-energy in
the antinodal direction has a somewhat larger effect on critical
scales close to van Hove filling. In this case the influence of
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n

0

0.05

0.1

0.15

Λ
c

dSC
cAF
Σ(k)

Σ(k), w/o Σ̇ feedback

Σ(k) = Σ(kAN )

Σ(k) = Σ(kN )
Σ = 0

FIG. 6. (Color online) Impact of different approximations for the
self-energy ��(k) on the critical scale �c of fRG flows in static
approximation for U = 3 and t ′ = −0.2. Symbols represent the
leading instability as in Fig. 1. The different approximations are
explained in the text.

antiferromagnetic fluctuations is larger and changes in ��

strongly influence the density of states at the Fermi level.
Sufficiently away from van Hove filling, antiferromagnetic
fluctuations cease to be effective in renormalizing �� in
this approximation and the self-energy becomes unimportant.
Taking the momentum dependence of �� into account but
neglecting the feedback of �̇�, the critical scale is significantly
enhanced in a certain density range above van Hove filling, but
smaller than with full self-energy feedback. It is interesting to
note that not only the deformation of the Fermi surface matters,
but that the feedback of �̇� also has a sizable impact on critical
scales.

B. Static one-loop flows and fRG+MF

Former fRG studies, which mainly focused on the pa-
rameter regime around van Hove filling, found that the
renormalization of the Fermi surface has a small impact on
the flow. In the last section we found that taking the fermionic
self-energy into account can strongly enhance critical scales
close to half-filling. This could be due to an underlying
physical mechanism or due to using a different regulator. It is
known that critical scales of fRG flows depend to some extent
on the employed regularization scheme. An extreme example
are forward scattering driven instabilities with q = 0, which
cannot be detected as instabilities of one-loop fRG flows at
zero temperature when using a momentum cutoff [34], but
which show up when using frequency [25] or temperature [35]
cutoff schemes. It would be interesting to better understand
the origin of the larger impact of the self-energy found in the
last section.

For this purpose we use a combination of fRG and mean-
field theory (MF) to compute order parameters based on input
from fRG flows [17,18], as order parameters should have a
weaker dependence on regularization schemes than critical
scales. This approach was already applied to study the com-
petition of superconductivity with commensurate [17,18] and
incommensurate [36] antiferromagnetism in the ground state
of the two-dimensional Hubbard model. For superconducting
ground states, the method yielded superconducting gaps in
good agreement with results from one-loop fRG flows into the
symmetry broken phase [7].

The increase of critical scales discussed in the last section
is a consequence of the interplay between Fermi surface
deformation and antiferromagnetic fluctuations. We therefore
restrict ourselves to the computation of the magnetic phase
diagram and consider only gaps due to commensurate antifer-
romagnetism in the mean-field calculation. Near half-filling
and on the electron-doped side this is justified because the
antiferromagnetic gap is only weakly affected by coexisting
superconducting order [36]. For simplicity we do not further
renormalize the normal self-energy in the mean-field calcu-
lation. Changes of the antiferromagnetic gap therefore reflect
changes of the vertex and the Fermi surface due to self-energy
feedback during the fRG flow. We expect that renormalizing
the Fermi surface in the mean-field part of the calculation
would further increase antiferromagnetic ordering tendencies.

After stopping the fRG flow at the critical scale �c,
which we take as the mean-field scale �MF, we extract the
irreducible vertex Ũkk′ in the antiferromagnetic channel with
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transfer momentum Q = (π,π ) from the full vertex in this
channel,

Ukk′ =
∑

σ

εσ�
(4) �MF
↑σσ↑ (k + Q,k′,k′ + Q,k)|k0=k′

0=0, (22)

where Q = (0, Q), and ε↑ = 1, ε↓ = −1, via a Bethe-Salpeter-
like integral equation,

Ukk′ = Ũkk′ +
∫

p0

∫
p
Ũk pG

�MF (p)G�MF (p + Q)U pk′ , (23)

where
∫
p0

and
∫

p are shorthands for
∫

dp0

2π
and

∫
d2p

(2π)2 ,

respectively, and G�MF is the fermionic propagator including
the self-energy at scale �MF = �c. The irreducible vertex is
inserted into the antiferromagnetic gap equation

Ak = 1

2

∫
k′

Ũkk′ 〈mk′ 〉, (24)

where mk = a
†
k↑ak+ Q↑ − a

†
k↓ak+ Q↓ is the staggered magneti-

zation and a(†) are fermionic annihilation (creation) operators.
The expectation values are computed using the mean-field
Hamiltonian

HMF =
∫

k

∑
σ

[
ε(k)+��c (k)

]
a
†
kσ akσ +

∫
k
Ak

(
mk− 1

2 〈mk〉
)
.

(25)

Such an effective Hamiltonian formulation is possible because
we use a static approximation. Note that the self-consistency
equations are solved at � = 0, i.e., in the absence of a
regulator.

In Fig. 7 we show the magnetic phase diagram as obtained
from solving the gap equation for U = 3 and two values
of t ′, comparing how the renormalization of the self-energy

n
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,
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5

0.8 0.9 1 1.1
n
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A

t = −0.2, Σ = ΣΛc

t = −0.2, Σ = 0
t = −0.15, Σ = ΣΛc

t = −0.15, Σ = 0

FIG. 7. (Color online) Amplitude of the antiferromagnetic gap
function for U = 3 and two values of t ′. The results were obtained
as solutions of the gap equation, based on fRG flows in which
the normal self-energy was renormalized [labeled � = ��c ] or
neglected completely [labeled � = 0]. The normal self-energy was
not renormalized in the mean-field calculation. Dashed lines are
guides to the eye at first-order phase transitions. Dashed gray vertical
lines mark van Hove filling.

and its feedback in the fRG flow change the magnetic order
parameter. The input for the gap equation is obtained (i) from
a fRG flow in which the self-energy is neglected completely,
� = 0, and (ii) from a fRG flow in which a momentum
dependent self-energy �(k) is considered. In all cases, the
antiferromagnetic order disappears via first-order transitions.
The antiferromagnetic gap is almost unchanged where it
appears in both approximations. For t ′ = −0.2 and � = 0,
antiferromagnetism exists only close to van Hove filling.
Renormalizing the normal self-energy in the fRG flow for this
value of t ′, the antiferromagnetic phase gets significantly larger
and extends up to half-filling. For t ′ = −0.15 and � = 0, the
antiferromagnetic phase already extends to the electron-doped
side. Renormalizing the Fermi surface during the fRG flow
leads to an extension of the antiferromagnetic phase and
a strong reduction of the first-order transition between the
antiferromagnetic and the paramagnetic metal. This shift of
phase boundaries and the enlarged antiferromagnetic regimes
are the reason for the increase of critical scales in the fRG flow
as discussed in the last section. The reduction of the first-order
character of the magnetic phase transition for t ′ = −0.15
seems to be generic for cases where the antiferromagnetic
phase extends beyond half-filling. Note that the first-order
transitions to metallic states on the hole-doped side are
artifacts of our approximation, as they would be preempted
by first-order transitions to metallic incommensurate antiferro-
magnetic states [36,37]. On the other hand, our results suggest
that self-energy corrections do not qualitatively modify the
findings by Yamase et al. [36] as self-energy corrections are
of minor importance below and around van Hove filling.

C. Dynamic one-loop flows

In this section we briefly discuss what happens if the
frequency dependence of the vertex and the self-energy are
taken into account as described in Sec. II C. Our flow equations
are very similar to those of Husemann et al. [14] and Giering
and Salmhofer [15]. Here we also solve them away from
van Hove filling in particular close to half-filling where
antiferromagnetic hot spots exist on the Fermi surface.

We do not show results for the frequency dependence of
the exchange propagators and the self-energy, as they are
qualitatively similar to those in Refs. [14,15]. In Fig. 8 we
compare critical scales from static and dynamic one-loop flows
for U = 3 and t ′ = −0.2 as well as −0.25. We observe that
taking the frequency dependence of the self-energy and the
vertex into account yields larger critical scales and a broader
density range with antiferromagnetism as leading instability.
For t ′ = −0.25, antiferromagnetic instabilities appear, which
were not present in the static approximation. The increase
of critical scales in comparison to the static approximation
seems to be a peculiarity of the chosen regulator and
should not be misunderstood in the sense that a frequency
dependent vertex and self-energy, and in particular a reduced
quasiparticle weight, enhance ordering tendencies. Fluctuation
contributions are weighted differently in the static and the
dynamic one-loop approximation. Which one yields smaller
critical scales depends on the regularization scheme. For
a smooth multiplicative frequency regulator [14,15] and a
sharp multiplicative momentum cutoff [38], it was found for
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FIG. 8. (Color online) Critical scales �c from dynamic [dyn., full
lines] and static [stat., dashed lines] one-loop fRG flows for U = 3
and different values of t ′. Symbols indicate the leading instability as
in Fig. 1. Also shown are a few data points from dynamic one-loop
flows in which Im �� was neglected [Im � = 0, only symbols]. The
vertical dashed lines mark van Hove filling.

the repulsive Hubbard model at van Hove filling that the
critical scales were smaller in the dynamic than in the static
approximation. For the attractive Hubbard model and the same
regulator as employed in this work, the static approximation
yielded smaller critical scales and superconducting gaps than
the dynamic approximation [21]. Neglecting the frequency
dependence of the self-energy (and thus the renormalization
of the quasiparticle weight via Im �), but taking the frequency
dependence of the vertex into account, yields a further increase
of critical scales for all regulators. This is shown in Fig. 8
for the regulator used in this work for two fillings. Note that
although the critical scales are rather high in this case, they are
still significantly smaller than the critical scales of RPA-like
flows in which all fluctuation contributions are neglected (in
the latter case we obtain �c = 0.58 and 0.78 for n = 0.83 and
1.07, respectively).

Computing the self-energy in the N -patch approximation
allowed us to resolve its frequency dependence and its
momentum dependence along the Fermi surface with high
resolution. In Fig. 9 we show the variation of the quasiparticle
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FIG. 9. (Color online) Quasiparticle weight Z� along the Fermi
surface at the end of the flow for U = 3, t ′ = −0.2, and various
densities. φ = 0 and π/2 denote the antinodal region.
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FIG. 10. (Color online) Scale derivative of the quasiparticle
weight d

d�
Z� along the Fermi surface at the end of the flow for

U = 3, t ′ = −0.2, and the same densities as in Fig. 9.

weight

Z�(k) = [
1 − ∂k0 Im ��(k0,k)|k0=0

]−1
(26)

along the Fermi surface for U = 3, t ′ = −0.2, and various
fermionic densities. In all cases shown, the quasiparticle
weight is smallest very close to the antiferromagnetic hot
spots. At van Hove filling, the minimum is slightly shifted
away from the saddle point of the fermionic dispersion because
the antiferromagnetic fluctuations are incommensurate at
low scales. The quasiparticle weight also shows a sizable
anisotropy between the nodal and the antinodal direction, in
agreement with former fRG studies for similar parameters
[38,39]. With increasing filling, the anisotropy weakens and
the minima shift towards the Brillouin zone diagonal. Z�(kF )
being minimal at the hot spots is consistent with the behavior
of the spin-fermion model at a spin-density wave quantum
critical point with ordering momentum Q = (π,π ) [40]. It is
interesting that the quasiparticle weight is largest for n = 1.14,
although the critical scale is lower and the Fermi velocities at
the hot spots are slightly more antiparallel than at half-filling.

The angular dependence of the scale derivative of the
quasiparticle weight is qualitatively similar to that of Z�,
as can be seen in Fig. 10. In case the antiferromagnetic
fluctuations are commensurate, the maximum is located at
the antiferromagnetic hot spots. At van Hove filling, the
maximum is shifted slightly away from the saddle points due
to incommensurate magnetic fluctuations. Note that a positive
d

d�
Z� yields a reduction of Z� during the flow.

IV. CONCLUSION

In this paper we have analyzed the impact of self-energy
effects on functional renormalization group flows away from
van Hove filling. For the latter filling, which was mostly studied
before, our conclusions agree very well with the literature.
In particular, fluctuation induced deformations of the Fermi
surface have a small impact on the flow. This changes for
higher fillings, where antiferromagnetic hot spots exist. In
this regime, mostly antiferromagnetic fluctuations lead to a
flattening of the Fermi surface, which itself amplifies the
magnetic fluctuations. This effect is well known and here we
showed that it significantly enhances ordering tendencies to
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commensurate antiferromagnetism and leads to higher critical
scales. Interestingly, for the parameters considered in this
work the maximum of critical scales is always shifted towards
half-filling.

Using a combination of functional renormalization group
and mean-field theory, we showed that self-energy corrections
lead to strong shifts of magnetic phase boundaries and can
reduce the first-order character of antiferromagnetic phase
transitions. The former is the underlying reason for the
enhanced ordering tendencies and critical scales as found in
the renormalization group flow.

Also considering the frequency dependence of the vertex
and the self-energy within a dynamic approximation, we found
a further increase of critical scales and enlargement of the
parameter region with antiferromagnetic order. Note that the
critical scales are nevertheless significantly smaller than in an
RPA-type approximation where fluctuations are neglected.

On the question whether deformations of the Fermi surface
have a qualitative impact on phase diagrams derived from
one-loop functional renormalization group flows, our results
suggest that they are indeed important close to first-order phase
transitions with finite ordering wave vectors as in the case of

antiferromagnetism, or in the presence of hot spots. For lower
electron densities below and around van Hove filling, they
seem to be of minor importance.
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APPENDIX A: FLOW EQUATIONS FOR THE VERTEX
AND THE SELF-ENERGY

In this Appendix we describe the flow equations for the
vertex and the self-energy in somewhat more detail. Note that
we exploit translation invariance, spin rotation invariance, and
time reversal symmetry for their derivation.

The flow equation for the effective interaction in the
magnetic channel reads

d

d�
M�

kk′(q) = 1

2

∫
d3p

(2π )3

d

d�

[
G�

(
p − q

2

)
G�

(
p + q

2

)]
�

(4) �
↑↓↑↓

(
k + q

2
,p − q

2
,p + q

2
,k − q

2

)

×�
(4) �
↓↑↓↑

(
k′ − q

2
,p + q

2
,p − q

2
,k′ + q

2

)
. (A1)

Inserting the channel decomposition of the vertex, its component relevant for this flow equation reads

�
(4) �
↑↓↑↓

(
k + q

2
,p − q

2
,p + q

2
,k − q

2

)
=−U + 2M�

kp(q) + M�
k+p−q

2 ,
k+p+q

2
(p − k) − C�

k+p−q

2 ,
k+p+q

2
(p − k) − P �

k−p+q

2 ,
p−k+q

2
(p + k),

(A2)

where �
(4) �
↓↑↓↑(k′ − q

2 ,p + q

2 ,p − q

2 ,k′ + q

2 ) = �
(4) �
↑↓↑↓(k′ + q

2 ,p − q

2 ,p + q

2 ,k′ − q

2 ) due to symmetries. For the effective interaction
in the charge channel, we obtain

d

d�
C�

kk′(q) =
∫

d3p

(2π )3

d

d�

[
G�

(
p − q

2

)
G�

(
p + q

2

)][
�

(4) �
↑↑↑↑

(
k + q

2
,p − q

2
,p + q

2
,k − q

2

)

×�
(4) �
↓↑↑↓

(
k′ − q

2
,p + q

2
,p − q

2
,k′ + q

2

)
+ �

(4) �
↑↓↓↑

(
k + q

2
,p − q

2
,p + q

2
,k − q

2

)

×�
(4) �
↓↓↓↓

(
k′ − q

2
,p + q

2
,p − q

2
,k′ + q

2

)]
+ d

d�
M�

kk′(q), (A3)

where

�
(4) �
↑↑↑↑

(
k + q

2
,p − q

2
,p + q

2
,k − q

2

)
= M�

kp(q) + C�
kp(q) − M�

k+p−q

2 ,
k+p+q

2
(p − k) − C�

k+p−q

2 ,
k+p+q

2
(p − k)

+P �
k−p+q

2 ,
k−p−q

2
(k + p) − P �

k−p+q

2 ,− k−p−q

2
(k + p), (A4)

�
(4) �
↑↓↓↑

(
k + q

2
,p − q

2
,p + q

2
,k − q

2

)
= U + C�

kp(q) − M�
kp(q) − 2M�

k+p−q

2 ,
k+p+q

2
(p − k) + P �

k−p+q

2 ,
k−p−q

2
(p + k). (A5)

Symmetries allow us to rewrite �
(4) �
↓↑↑↓(k′ − q

2 ,p + q

2 ,p − q

2 ,k′ + q

2 ) = �
(4) �
↑↓↓↑(k′ + q

2 ,p − q

2 ,p + q

2 ,k′ − q

2 ) and �
(4) �
↓↓↓↓(k′ −

q

2 ,p + q

2 ,p − q

2 ,k′ + q

2 ) = �
(4) �
↑↑↑↑(k′ + q

2 ,p − q

2 ,p + q

2 ,k′ − q

2 ). Note that the contributions of the particle-particle channel in
Eq. (A4) vanish in case only singlet pairing fluctuations are considered.
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The flow of the effective interaction in the particle-particle channel is determined by the flow equation

d

d�
P �

kk′(q) = −1

2

∫
d3p

(2π )3

d

d�

[
G�

(
q

2
− p

)
G�

(
q

2
+ p

)][
�

(4) �
↑↓↓↑

(
k + q

2
,
q

2
− k,

q

2
− p,

q

2
+ p

)

×�
(4) �
↑↓↓↑

(
q

2
+ p,

q

2
− p,

q

2
− k′,

q

2
+ k′

)
+ �

(4) �
↑↓↑↓

(
q

2
+ k,

q

2
− k,

q

2
− p,

q

2
+ p

)

×�
(4) �
↓↑↓↑

(
q

2
+ p,

q

2
− p,

q

2
− k′,

q

2
+ k′

)]
, (A6)

where

�
(4) �
↑↓↓↑

(
q

2
+ k,

q

2
− k,

q

2
− p,

q

2
+ p

)
= U + P �

kp(q) − 2M�
p−k+q

2 ,
k−p+q

2
(−k − p) + C�

k+p+q

2 ,
q−k−p

2
(k − p) − M�

k+p+q

2 ,
q−k−p

2
(k − p),

(A7)

�
(4) �
↑↓↑↓

(
q

2
+ k,

q

2
− k,

q

2
− p,

q

2
+ p

)
=−U − P �

k,−p(q) + 2M�
k+p+q

2 ,
q−k−p

2
(k − p) − C�

p−k+q

2 ,
q+k−p

2
(−k − p)

+M�
p−k+q

2 ,
q+k−p

2
(−k − p). (A8)

Note that due to symmetries �
(4) �
↑↓↓↑( q

2 + p,
q

2 − p,
q

2 − k′, q

2 + k′) = �
(4) �
↑↓↓↑( q

2 + k′, q

2 − k′, q

2 − p,
q

2 + p) and �
(4) �
↓↑↓↑( q

2 + p,
q

2 −
p,

q

2 − k′, q

2 + k′) = �
(4) �
↑↓↑↓( q

2 + k′, q

2 − k′, q

2 − p,
q

2 + p). As we neglect triplet pairing fluctuations, it is useful to work with a
flow equation for the effective interaction in the singlet particle-particle channel, which is given by

d

d�
P

S,�
kk′ (q) = 1

2

(
d

d�
P �

kk′(q) + d

d�
P �

k,−k′(q)

)

= −1

4

∫
d3p

(2π )3

d

d�

[
G�

(
q

2
− p

)
G�

(
q

2
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)][
�

(4) �
↑↓↓↑

(
q

2
+ k,

q

2
− k,

q

2
− p,

q

2
+ p

)

−�
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↑↓↑↓

(
q

2
+ k,

q

2
− k,

q

2
− p,

q

2
+ p

)]

×
[
�

(4) �
↑↓↓↑

(
q

2
+ p,

q

2
− p,

q

2
− k′,

q

2
+ k′

)
− �

(4) �
↑↓↑↓

(
q

2
+ p,

q

2
− p,

q

2
− k′,

q

2
+ k′

)]
. (A9)

These flow equations were evaluated within the approximation scheme described in Sec. II C and Appendix B. As we do not
renormalize the fermion-boson vertices, we set the external fermionic frequencies to zero, k0 = k′

0 = 0. In order to obtain flow
equations for the bosonic exchange propagators, we project the flow equations for the coupling functions by averaging external
fermionic momenta k and k′ over the Fermi surface, as described in Ref. [21].

The flow equation for the self-energy (7) reads

d

d�
��(k) =

∫
d3p

(2π )3
[�(4) �

↑↑↑↑(k,p,p,k) + �
(4) �
↑↓↓↑(k,p,p,k)]S�(p), (A10)

where the relevant components of the vertex are given by
Eqs. (A4) and (A5) with q = 0.

APPENDIX B: SOME DETAILS OF NUMERICAL
IMPLEMENTATION

In the dynamic approximation, the exchange propagators
depend on frequency and momentum q = (q0,q). These
dependencies are discretized on a three-dimensional grid.
The momentum dependence is described with two grids in
polar coordinates around q = 0 and q = π , with an increased
density of grid points around these momenta, similarly to the
grid used in Ref. [25]. The angular dependence is discretized
using 3–7 angles in the first octant of the Brillouin zone, which
is sufficient due to lattice symmetries, and 20–40 points for
the radial dependence. The number of grid points was chosen

higher in channels in which the effective interaction became
large at low scales (for example, the magnetic channel with
momenta close to q ≈ π or the d-wave pairing channel with
momenta close to q ≈ 0), while less points were used for
effective interactions that remained small during the flow (for
example, s-wave charge density wave fluctuations with q ≈ 0).
In case the leading instability was towards incommensurate
states, we adjusted the momentum grid in such a way that the
density of grid points is higher close to the anticipated position
of the incommensurate peaks. The frequency dependence is
discretized on a nonequidistant grid with typically 30–40
frequencies between q0,min = 0 and q0,max = 250, where the
density of grid points decreases towards higher frequencies.
Linear interpolation is used for intermediate momenta and
frequencies. We neglect the dependence of the effective
interactions on the fermionic relative frequencies k0, k′

0, which
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turned out to have a small impact on critical scales [15,21]. The
flow equations are evaluated for k0 = k′

0 = 0, which allows to
capture the “bosonic” features in the frequency dependence of
the vertex [41] at small frequencies. In the static approximation
we neglect the dependence on q0 and evaluate all effective
interactions for q0 = 0. The exchange propagators are then
discretized on a two-dimensional grid and the numerical effort
for solving the flow equations is significantly reduced.

These approximations transform the functional flow equa-
tions into a system of nonlinear ordinary differential equations.
The coefficients on the right-hand sides are given by three-

dimensional integrals over loop momenta and frequencies
in the dynamic approximation. In the static approximation
all frequency integrals are solved analytically and only two-
dimensional integrals have to be computed. The integrals
are computed numerically with an adaptive algorithm with
absolute and relative precision of 10−5 and 10−3, respectively.
The flow equations were solved numerically with an adaptive
fifth-order Runge-Kutta routine [42] with absolute and relative
accuracy goals of 10−3. The numerical solution was started at
a high scale �0 = 100, where the initial conditions can be
computed in second-order perturbation theory.
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