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Orbital-based exchange (x) correlation (c) energy functionals, leading to the optimized effective potential
(OEP) formalism of density-functional theory (DFT), are gaining increasing importance in ground-state DFT, as
applied to the calculation of the electronic structure of closed systems with a fixed number of particles, such as
atoms and molecules. These types of functionals prove also to be extremely valuable for dealing with solid-state
systems with reduced dimensionality, such as is the case of electrons trapped at the interface between two different
semiconductors, or narrow metallic slabs. In both cases, electrons build a quasi-two-dimensional electron gas, or
Q2DEG. We provide here a general DFT-OEP formal scheme valid both for Q2DEGs either isolated (closed) or
in contact with a particle bath (open), and show that both possible representations are equivalent, being the choice
of one or the other essentially a question of convenience. Based on this equivalence, a calculation scheme is
proposed which avoids the noninvertibility problem of the density response function for closed systems. We also
consider the case of spontaneously spin-polarized Q2DEGs, and find that far from the region where the Q2DEG
is localized, the exact x-only exchange potential approaches two different, spin-dependent asymptotic limits. As
an example, aside from these formal results, we also provide numerical results for a spin-polarized jellium slab,
using the new OEP formalism for closed systems. The accuracy of the Krieger-Li-Iafrate approximation has been
also tested for the same system, and found to be as good as it is for atoms and molecules.
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I. INTRODUCTION

One of the main goals of current density-functional theory
(DFT) [1,2] is the systematic improvement of the predictive
power of the formalism. At zero temperature, which is the
case discussed here, this predictive power is intrinsically
related to the quality of the exchange (x) correlation (c)
energy functional Exc = Ex + Ec. As the exact exchange
correlation functional is unknown, and DFT gives no clue on
how to proceed to fulfill this goal, many alternatives have been
suggested and crystallized in practical calculation schemes.
Among them one can cite the local-density approximation
(LDA), already introduced in the work by Kohn and Sham [2],
taking as reference system the three-dimensional interacting
homogeneous electron gas. Later, more sophisticated func-
tionals along this line were developed, including dependen-
cies on the gradients [3,4] (GGA’s) and Laplacians [5,6]
(Laplacian-level meta-GGA’s) of the density. Most of the
functionals used in calculations for bulk solid-state systems
belong to this type. We will refer to them as density-based
functionals.

This standard approach has some difficulties, however, in
situations of reduced dimensionality, such as is the case for
carriers (usually electrons) trapped at the interface between
two different semiconductors, forming the so-called quasi-
two-dimensional electron gases (Q2DEGs). Within this con-
text, orbital-based functionals [7–9], which depend explicitly
on Kohn-Sham (KS) orbitals and eigenvalues, but implicitly
on the density, proved to be quite valuable. Among other

advantages, these orbital-based functionals adapt automat-
ically to situations of reduced dimensionality, through the
spatial extension and the anisotropy of the orbitals (for
example, extended in one plane, but localized along the
direction perpendicular to the plane). Orbital-based function-
als, for instance, are able to cover the full dimensionality
crossover from the strict two-dimensional (2D) limit to the
three-dimensional (3D) regime [10].

Compared with density-based functionals, the implicit
dependence with density of orbital-based functionals has the
consequence that the basic DFT evaluation of functional
derivatives with respect to the density becomes more involved.
The optimized effective potential (OEP) method [11,12] is
especially suited for dealing with these implicit functionals
within a KS-DFT framework. If the Hartree-Fock expression
for the exchange energy functional Ex is used, and the
correlation functional Ec is neglected, the OEP method
is equivalent to the exact x-only implementation of KS
theory. Several advantages have been reported from x-only
OEP calculations for closed systems, either localized (atoms
and molecules) or extended (solids). Among them, we can
cite the cancellation of the spurious Hartree self-interacting
energy [13], correct high-density limit [14], great improvement
in the KS eigenvalue spectrum [15,16], semiconductor band
structure and excitations [17–20], and nonlinear optical prop-
erties [21]. Concerning its application to Q2DEGs, we have
developed and applied the formalism to the calculation of the
electronic structure of n-doped semiconductor quantum wells,
considered as open systems: In Ref. [22], an orbital-based
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correlation functional has been introduced, and the corre-
sponding correlation potential generated through the OEP
formalism. Closed Q2DEGs systems have been also consid-
ered using the same formalism, like the study of metallic
slabs in the jellium approximation for the positive charge
of the ions [23–25], and recent calculations for realistic
semiconductor and insulator slabs [26,27]. The aim of this
work is (a) to provide a general OEP formalism valid both
for open and closed Q2DEGs, and determine the precise
relationship between them; and (b) to generalize the formalism
to the spin-dependent case, allowing for different spin-density
polarizations.

This work is divided in three parts. The first one (Secs. II
and III) is dedicated to define the open and closed systems
and the convenient representations (i.e., sets of variables) to
describe them. With these elements precisely defined, the OEP
equations for open and closed systems are derived. Based
on them, the relation between the corresponding open and
closed potentials is found: they differ by a spin-independent
constant. The results of this part are general, i.e., not restricted
to orbital-dependent functionals. The second part (Sec. IV)
is dedicated to obtain explicit orbital-dependent expressions
for the main elements of the formalism. First, explicit orbital
expressions are derived for the potential functional derivatives
and the derivatives with respect to orbital occupations, in the
open- and closed-system representations. Using these basic
results, explicit orbital-dependent expressions for the density
response function and the magnetic susceptibility are obtained.
For closed systems, it is found that the density response
function is singular and nondiagonal in the spin variable,
while for open systems it is diagonal in spin and nonsingular,
thus invertible. These results, combined with those of the first
part, have various important consequences, as for example the
possibility of obtaining the closed-system potential (up to a
spin-independent constant) by using the open-system density
response function, which is invertible. Also, the magnetic
susceptibility of the open system is insensitive to differences in
spin channel filling, while that of the closed system is strongly
dependent on it. Next, the OEP equations are recast in terms
of the so-called orbital shifts. Written in this form, two exact
conditions for the OEP potential are found. These are of great
relevance, both from the formal and the practical points of
view. As for example, these can be enforced during the self-
consistency loop to improve convergence. They also determine
both the asymptotic limit (open case) and the relative position
of the spin-up and -down components of the potential (open
and closed cases). For spin-polarized systems, it is found that
both spin components of the exact x-only exchange potential
tend to different asymptotic limits in the vacuum region. In the
third part of the work (Sec. V) we provide numerical results
for a spin-polarized metallic jellium slab. The main purpose
is to provide an example on how to use the newly developed
OEP formalism for closed systems. The OEP potential for
the exchange-only case is calculated and compared with the
LDA and Krieger-Li-Iafrate (KLI) approximations. It is found
that, while LDA gives a fully ferromagnetic configuration, the
OEP leads to a partial antiferromagnetic ground state. The
KLI approximation gives results very close to OEP. The OEP
potential is found to tend to different asymptotic values for
different spin components, confirming the theoretical findings.

II. QUASI-TWO-DIMENSIONAL ELECTRON GAS: OPEN
AND CLOSED SYSTEMS

In the Q2DEG the electrons are confined in one spatial
direction by a confinement potential (hereafter the quantum
well), while they are free to move in the perpendicular direc-
tion. If translational invariance in the x-y plane is assumed, and
the confinement coordinate is z, the single-particle KS orbitals
can be written as a product of a plane wave along ρ = (x,y)
and a so-called subband orbital in z:

ψiσk(r) = 1√
A

eikρξiσ (z), (1)

where k = (kx,ky) is the in-plane wave vector, A is the area
of the Q2DEG, i is the subband index, and σ the spin index,
which can take the values +1,−1 (respectively ↑,↓, depending
on context). Some assumptions have been made already by
writing Eq. (1). In the first place, the full factorization between
the solution in the x-y plane and the z direction is only valid
for a local potential [28]. However, since the OEP method
lies within the framework of the KS implementation of DFT,
the factorization implies no lack of generality, owing to the
locality of the KS potential. On the other side, the assumption
of translational invariance in the x-y plane implies some lack
of generality. According to the results in Ref. [29], however, the
assumption is well justified for the relatively high 2D densities
found typically in Q2DEGs. The energies Eiσk = k2/2 + εiσ

of the single-particle KS orbitals in Eq. (1) are the sum
of a continuous free-electron spectrum k2/2 corresponding
to the in-plane movement, and a discrete subband spectrum
εiσ related to the confined motion in the quantum well. The
subband orbitals ξiσ (z) are obtained from the KS equation for
the confinement coordinate[

−1

2

∂2

∂z2
+ Vsσ (z)

]
ξiσ (z) = εiσ ξiσ (z), (2)

where the KS potential Vsσ (z) = Ve(z) + VH(z) + Vxcσ (z),
with Ve(z) the external potential, VH(z) the Hartree potential,
and Vxcσ (z) the xc potential. If not stated otherwise, Hartree
atomic units are used throughout this work [30]. In a collinear
spin situation as we are considering here, the subband wave
functions in Eq. (2) can be taken to be real without loss of
generality. The main quantity in spin-dependent DFT is the
spin-resolved 3D electronic density [1], that is given by

nσ (z) =
∑

i

θiσ niσ ξiσ (z)2, (3)

where the occupation factors niσ are

niσ = μ − εiσ

2π
, (4)

and θiσ ≡ θ (niσ ), with θ (. . .) the Heaviside step function:
θ (x) = 1 if x > 0 and θ (x) = 0 if x < 0. μ denotes the
chemical potential. The total number of electrons per unit area
is

η =
∑
iσ

θiσ niσ = Ns

2π
μ −

∑
iσ

θiσ

2π
εiσ , (5)

where Ns = ∑
iσ θiσ is the total number of occupied subbands.

Let us note that, as given above, nσ (z), niσ , and η are dimen-
sionless densities; to recover the corresponding dimensions,
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the right-hand side should be multiplied by a−3
0 , a−2

0 , and
a−2

0 , respectively. Along the text we will use the term “areal
density” to refer to η, which is a positive real number. Typically,
this areal density is about 1014–1015 electrons/cm2 for the
case of metallic jellium slabs, and about 1011 electrons/cm2

for the case of Q2DEGs in semiconductor quantum
wells.

We will consider two distinct physical situations. In one
of them, the confined electron gas in the quantum well can
exchange electrons with a particle reservoir that fixes the
chemical potential μ; we call this the open system. The second
situation corresponds to an isolated quantum well with fixed
areal density η; we will refer to this case as the closed system.
Both cases impose different constraints on the density that
can be expressed in terms of the possible density variations as
follows:

δμnσ (z ∈ reservoir) = 0, (6)∫
δηnσ (z) dz = 0, (7)

where δrnσ (z) denotes a spin-density variation that leaves r

unchanged. The superscript r = μ (η) is used to indicate the
open (closed) case. The integrals on z run from z = −∞ to ∞
in the case r = η, while they exclude the region of the reservoir
for r = μ. The first condition [Eq. (6)] is sufficient for the
reservoir to keep a fixed chemical potential μ. Moreover, by
definition the reservoir’s density is not affected by arbitrary
density variations in the region of the Q2DEG. This constraint
implies that the energy optimization in the KS scheme applies
only to the Q2DEG region and not to the reservoir, whose
density is fixed, and its change of total energy per unit area
is accounted simply by −μ�η with �η = ∑

σ

∫
δμnσ (z) dz.

The second condition [Eq. (7)] expresses the fixed areal density
constraint by restricting the density variations to only those
which leave η unchanged.

In all the following developments, η and μ will be two
fundamental variables of our Q2DEG. In some restricted
sense, the areal density η is somehow equivalent to the total
number of electrons N of a finite system, like an atom or
molecule. For instance, we have shown in Ref. [24] that the
x-only OEP potential and the associated work function of a
jellium metallic slab suffers abrupt changes as η changes, in
particular every time the occupation factor niσ corresponding
to the highest slab discrete subband becomes infinitesimally
occupied. This is qualitatively similar to the case of the exact
exchange correlation potential and the chemical potential of
finite systems, that have abrupt changes as N passes through
integer values [31,32].

III. OEP EQUATIONS FOR THE Q2DEG

Framed in the KS implementation of the DFT formalism,
the OEP method gives an integral equation for the spin-
dependent xc potential Vxcσ (r) ≡ δExc/δnσ (r), where Exc

is the exchange correlation energy. This integral equation is
written in terms of the density response function χσσ ′(r,r′) =
δnσ (r)/δVsσ ′ (r′) and δExc/δVsσ (r) [12]. In evaluating both
these potential functional derivatives, the question arises as

to how to properly account for the two different physical
situations that we are considering: A given potential variation
δVsσ (z) in the Q2DEG will in general lead to different density
variations for open and closed systems, therefore, it is expected
that the OEP equations for both cases will differ.

In the following, the xc energy of the system (or any
approximation to it) will be represented by a spin-density
functional F[{nσ (z)}] = Exc, where {nσ (z)} denotes the set
of spin-up and -down densities {nσ (z)} ≡ {n↑(z),n↓(z)}. In
several indicated cases F will also represent an arbitrary
functional of the density, therefore, we use this symbol so
as to preserve the compactness of the derivations. In order
to unambiguously define the potential functional derivatives
appearing in the OEP formulation, it becomes necessary
to work with a set of variables that determines {nσ (z)}
unequivocally. We will call such a set of variables a rep-
resentation. Suitable representations are, e.g., {Vsσ (z), μ} or
{Vsσ (z), η}. In considering open Q2DEGs, it is convenient to
work with the first representation, as δμ = 0. In the closed
case, where δη = 0, the second representation turns out to be
more convenient. Accordingly, we will call the set {Vsσ (z), μ}
the open-system representation, and the set {Vsσ (z), η} the
closed-system representation.

We will make use of the auxiliary noninteracting KS sys-
tem, whose energy Es = Ts + A

∑
σ

∫
dz Vsσ (z)nσ (z), with

Ts the noninteracting kinetic energy functional. The energy
optimization of the KS system (plus the reservoir in the open
case) for r = constant leads to

δTs = −A
∑

σ

∫
dz[Vsσ (z) − μ]δrnσ (z). (8)

The term proportional to μ in this equation is only relevant
in the open case, as it vanishes in the closed system by virtue
of Eq. (7). Additionally, we will make use of the restricted
density response function, as defined by

χr
σσ ′(z,z′) := δnσ (z)

δVsσ ′ (z′)

∣∣∣∣
r

. (9)

The notation δnσ (z)/δVsσ ′(z′)|r means that the variation is
made by keeping r and Vsσ ′(z′) fixed (with σ = − σ ); for
the sake of simplicity in notation, this is just denoted by
the symbol r . From Eq. (9), we can express an r-conserving
density variation by

δrnσ (z) =
∑
σ ′

∫
dz′χr

σσ ′(z,z′)δVsσ ′ (z′). (10)

In Secs. III A and III B, we obtain the OEP equations for open
and closed Q2DEGs, respectively. The relation between the
corresponding potentials obtained from them is then analyzed
in Sec. (III C).

A. Open systems in the open-system representation

We consider an open system in contact with a particle
reservoir which fixes the chemical potential μ. The total energy
of the interacting system plus the reservoir is

E = Ts + A

∫
dz[Ve(z) − μ]n(z) + EH + F . (11)

235145-3



S. RIGAMONTI, C. M. HOROWITZ, AND C. R. PROETTO PHYSICAL REVIEW B 92, 235145 (2015)

In terms of the open-system representation, the optimization
of the total energy for fixed μ can be carried out with the help
of Eqs. (8) and (10):

δμE

A
= −

∑
σ ′

∫
dz′

{∑
σ

∫
dz[Vsσ (z) − VH (z) − Ve(z)]

×χ
μ

σσ ′(z,z′) − 1

A

δF
δVsσ ′ (z′)

∣∣∣∣
μ

}
δVsσ ′ (z′) = 0. (12)

The KS potential Vsσ (z) that optimizes the total energy must
fulfill this equation for an arbitrary variation δVsσ ′ (z′); from
these types of considerations the name optimized effective
potential originates [33]. Therefore, the optimum Vsσ (z) is
the one that makes zero the term in curly braces. Hence, if
we call V

μ
sσ (z) to the optimizing KS potential, it satisfies the

integral equation∑
σ

∫
dz

[
V μ

sσ (z) −VH (z) −Ve(z)
]
χ

μ

σσ ′(z,z′) = 1

A

δF
δVsσ ′ (z′)

∣∣∣∣
μ

.

By defining V
μ

Fσ (z) := V
μ
sσ (z) − VH (z) − Ve(z), we arrive at

the OEP equation for the open system in the open-system
representation:

1

A

δF
δVsσ (z)

∣∣∣∣
μ

=
∑
σ ′

∫
dz′V μ

Fσ ′(z′)χμ

σ ′σ (z′,z). (13)

If C is a spin-independent constant, {Vsσ (z), μ} and {Vsσ (z) +
C,μ + C} define the same density {nσ (z)}. Therefore, F ,
being a functional of the density alone, must satisfy

F[Vsσ (z) + C,μ] = F[Vsσ (z), μ − C]. (14)

This property can be recast in a different form: If C is an
infinitesimal, the left-hand side in Eq. (14) is, to first order
in C,

F[Vsσ (z) + C,μ] = F[Vsσ (z), μ] + C
∑

σ

∫
dz

δF
δVsσ (z)

∣∣∣∣
μ

.

Analogously, for the right-hand side of Eq. (14) we can write

F[Vsσ (z), μ − C] = F[Vsσ (z), μ] − C
∂F
∂μ

∣∣∣∣
Vs	

,

where Vs	 means that the partial derivative with the chemical
potential is done keeping fixed both spin components of the
KS potential [34]. Equating the two equations above we arrive
at the following identity:∑

σ

∫
dz

δF
δVsσ (z)

∣∣∣∣
μ

= − ∂F
∂μ

∣∣∣∣
Vs	

. (15)

The only assumption in deriving this equation was that F is
a functional of the spin density, therefore, its applicability is
not limited to the xc energy functional. Summing on σ and
integrating on z on both sides of Eq. (13), we can therefore
apply Eq. (15) to the two potential functional derivatives in the
resulting expression to obtain

1

A

∂F
∂μ

∣∣∣∣
Vs	

=
∑

σ

∫
dz V

μ

Fσ (z)
∂nσ (z)

∂μ

∣∣∣∣
Vs	

. (16)

This equation will be used in Sec. III C to obtain the relation
between the OEP potentials for open and closed systems.

B. Closed systems in the closed-system representation

The derivation for this case is completely analogous
to Eqs. (11)–(13), but now in terms of the representation
{Vsσ (z), η} and without considering the reservoir. The OEP
equation for closed systems is then

1

A

δF
δVsσ (z)

∣∣∣∣
η

=
∑
σ ′

∫
dz′V η

Fσ ′(z′)χη

σ ′σ (z′,z). (17)

If C is a spin-independent constant, {Vsσ (z),η} and {Vsσ (z) +
C,η} determine exactly the same density {nσ (z)}. Therefore,
the density functional F must satisfy

F[Vsσ (z) + C,η] = F[Vsσ (z),η]. (18)

For small C, we can write to first order in C

F[Vsσ (z) + C,η] = F[Vsσ (z),η] + C
∑

σ

∫
dz

δF
δVsσ (z)

∣∣∣∣
η

,

which we can equate to Eq. (18) with the result∑
σ

∫
dz

δF
δVsσ (z)

∣∣∣∣
η

= 0, (19)

i.e., a constant spin-independent shift in the potential, at
constant η, will not change F . The same considerations
made after Eq. (15), regarding its applicability to arbitrary
density functionals, apply also to Eq. (19). Therefore, it can
be used, for example, with F = nσ ′(z′), to readily show the
singularity of the density response function in the closed-
system representation (see Sec. IV B 1).

Note that Eq. (17) is invariant upon the addition of a
spin-independent constant to V

η

Fσ ′(z′), as
∑

σ ′
∫

dz′ δnσ ′(z′) =
δη = 0.

C. Relation between open- and closed-system potentials

In this section, we will find the relation between the
potentials V

μ

Fσ (z) and V
η

Fσ (z) defined by Eqs. (13) and (17),
respectively. Implicit in the derivation is the assumption that
the density functional F is well defined for both the open and
closed systems, i.e., for arbitrary areal density and chemical
potential. If we substitute the potential functional derivatives
appearing in the OEP equation for open systems [Eq. (13)]
by Eq. (A3) of Appendix A [note that for the replacement on
the right-hand side of Eq. (13) we must consider the particular
caseF = nσ ′(z′) in Eq. (A3)], we reobtain after simple algebra,
and by virtue of Eq. (16), the OEP equation for closed systems
[Eq. (17)] with V

η

Fσ (z) replaced by V
μ

Fσ (z). This means that if
V

μ

Fσ (z) is a solution of Eq. (13), then it will also be a solution
of Eq. (17). On the contrary, if V

η

Fσ (z) is a solution of the
OEP equation for closed systems [Eq. (17)], it will not in
general be a solution of the OEP equation for open systems
[Eq. (13)]. The reason for this is that V

η

Fσ (z) is defined within
an additive constant, while V

μ

Fσ (z) is not. In order to find the
precise relation between them, we begin by applying Eq. (A4)
of Appendix A to the potential functional derivatives on both
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sides of Eq. (17) with the result

1

A

δF
δVsσ (z)

∣∣∣∣
μ

=
∑
σ ′

∫
dz′ V η

Fσ ′(z′)
δnσ ′ (z′)
δVsσ (z)

∣∣∣∣
μ

+
(

1

A

∂F
∂η

∣∣∣∣
Vs	

−
∑
σ ′

∫
dz′ V η

Fσ ′(z′)
∂nσ ′(z′)

∂η

∣∣∣∣
Vs	

)
× δη

δVsσ (z)

∣∣∣∣
μ

. (20)

Taking into account that δη = ∑
σ ′

∫
dz′ δnσ ′(z′), Eq. (20) can

be recast as

1

A

δF
δVsσ (z)

∣∣∣∣
μ

=
∑
σ ′

∫
dz′ [V η

Fσ ′(z′) + C
] δnσ ′ (z′)
δVsσ (z)

∣∣∣∣
μ

,

where C is identical to the parentheses on the right-hand side of
Eq. (20). Comparing the equation above with the OEP equation
for open systems [Eq. (13)], we get the precise relation between
the open- and closed-system potentials, namely,

V
μ

Fσ (z) = V
η

Fσ (z) + 1

A

∂F
∂η

∣∣∣∣
Vs	

−
∑
σ ′

∫
dz′ V η

Fσ ′(z′)
∂nσ ′(z′)

∂η

∣∣∣∣
Vs	

. (21)

For F = Exc, this equation relates the two exchange corre-
lation potentials V

μ
xc σ (z) and V

η
xc σ (z) of our Q2DEG under

the open-system (constant μ) and closed-system (constant η)
constraints.

As discussed above, as V
μ

Fσ (z) is also a solution of Eq. (17),
V

η

Fσ (z) can be replaced by V
μ

Fσ (z) in Eq. (21) and the open-
system potential then fulfills

1

A

∂F
∂η

∣∣∣∣
Vs	

=
∑

σ

∫
dz V

μ

Fσ (z)
∂nσ (z)

∂η

∣∣∣∣
Vs	

. (22)

This condition, toghether with Eq. (17) with V
η

Fσ (z) replaced
by V

μ

Fσ (z), provides a way of obtaining the open-system
potential using the closed-system representation. Such a
calculation scheme is fully analogous to that presented for
finite systems in Ref. [35], as can be seen by comparing
with Eqs. (36) and (13) of that work. However, while in
the closed-system representation both Eqs. (17) and (22) are
needed to find the open-system potential, in the open-system
representation Eq. (13) (this work) alone suffices. The reason
for that is that the condition of Eq. (22) [which is equivalent to
Eq. (16), as will be shown in Sec. IV A 4] is already contained
in the OEP equation in the open-system representation (see
Sec. III A).

IV. OEP FOR ORBITAL FUNCTIONALS IN THE Q2DEG

The OEP formalism is well suited for orbital-based xc

energy functionals, as in such a case the potential functional
derivatives appearing in the formulation can be explicitly
obtained from the chain rule for functional derivatives, with
the subband orbitals and occupations as intermediate variables,
and first-order perturbation theory. Accordingly, we develop
in this section the OEP formalism for orbital-based functionals
of the type

F = F[{ξ iσ , niσ }], (23)

where the set of orbital variables {ξiσ , niσ } include, in
general, both occupied and unoccupied subbands. We begin by

finding explicit orbital-dependent expressions for the various
restricted derivatives of an arbitrary orbital functional F ,
namely, δF/δVsσ (z)|r and ∂F/∂r|V s	, r = μ, η (Sec. IV A).
Next, we obtain explicit orbital expressions for the KS density
response function (Sec. IV B 1) and the macroscopic magnetic
susceptibility (Sec. IV B 2). In each case, the differences
between the open and closed cases are analyzed. Using these
results, the OEP equations are recast in terms of the so-called
orbital shifts (Sec. IV C) and, in terms of them, explicit
expressions for the OEP potential are found (Sec. IV E).
Finally (Sec. IV F), the asymptotic limit of the x-only OEP
potential V r

x σ (z → ∞) is studied.

A. Calculation of restricted derivatives of orbital-based
functionals

In this section, we will use the chain rule for functional
derivatives with {ξiσ , niσ } as intermediate variables. We begin
with the calculation of the two main derivatives appearing
in the open-system representation, i.e., δF/δVsσ (z)|μ and
∂F/∂μ|Vs	 .

1. Calculation of δF/δVsσ (z)|μ
Using the chain rule we get

δF
δVsσ (z)

∣∣∣∣
μ

=
∑
iσ ′

∫
dz′ δF

δξiσ ′(z′)
δξiσ ′(z′)
δVsσ (z)

∣∣∣∣
μ

+
∑
iσ ′

∂F
∂niσ ′

δniσ ′

δVsσ (z)

∣∣∣∣
μ

. (24)

From first-order perturbation theory, the potential functional
derivative of the KS orbitals is

δξiσ ′(z′)
δVsσ (z)

= δσσ ′ξiσ (z)Giσ (z′,z), (25)

Giσ (z′,z) =
∑
j �=i

ξjσ (z′)ξjσ (z)

εiσ − εjσ

, (26)

independently of μ. For the potential functional derivative of
the occupations in the right-hand side of Eq. (24), we have
from Eq. (4) and first-order perturbation theory

δniσ ′

δVsσ (z)

∣∣∣∣
μ

= −δσσ ′

2π
ξiσ (z)2. (27)

Replacing Eqs. (25) and (27) in (24) we obtain

δF
δVsσ (z)

∣∣∣∣
μ

=
∑

i

∫
dz′ δF

δξiσ (z′)
ξiσ (z)Giσ (z′,z)

− 1

2π

∑
i

∂F
∂niσ

ξiσ (z)2. (28)
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2. Calculation of ∂F/∂μ|Vs�

The electronic structure remains unchanged as long as Vsσ

remains fixed, therefore, it is not necessary to consider changes
in the shape of the KS orbitals when evaluating ∂F/∂μ|Vs	 .
Using Eq. (4) we get

∂F
∂μ

∣∣∣∣
Vs	

=
∑
iσ

∂F
∂niσ

∂niσ

∂μ

∣∣∣∣
Vs	

= 1

2π

∑
iσ

∂F
∂niσ

. (29)

Note that this result is also obtained if we integrate
on z both sides of Eq. (28), taking into account that∫

dz ξiσ (z)Giσ (z′,z) = 0 due to the orthogonality of the KS
orbitals and also the property of Eq. (15).

We continue in the following with the remaining derivatives
related to the closed-system representation.

3. Calculation of δF/δVsσ (z)|η
Applying the chain rule, we have

δF
δVsσ (z)

∣∣∣∣
η

=
∑
iσ ′

∫
dz′ δF

δξiσ ′(z′)
δξiσ ′(z′)
δVsσ (z)

∣∣∣∣
η

+
∑
iσ ′

∂F
∂niσ ′

δniσ ′

δVsσ (z)

∣∣∣∣
η

. (30)

The result for the derivative δξiσ ′(z′)/δVsσ (z)|η is identical
to Eq. (25) because the subband wave functions are fully
determined by Vsσ (z) [this can also be seen from Eq. (A4)
with F = ξiσ (z) and the fact that ∂ξiσ /∂η|Vs	 = 0]. For the
potential functional derivative of the occupation factors we
have, taking into account Eqs. (A3) and (29) with F = niσ ′

and Eq. (27),

δniσ ′

δVsσ (z)

∣∣∣∣
η

= 1

2π

[
δμ

δVsσ (z)

∣∣∣∣
η

− δσσ ′ξiσ (z)2

]
. (31)

The functional derivative of the chemical potential is obtained
from Eq. (5) together with the first-order perturbation theory
result δεiσ /δVsσ ′ (z) = δσσ ′ξiσ (z)2:

δμ

δVsσ (z)

∣∣∣∣
η

= 1

Ns

∑
i

θiσ ξiσ (z)2. (32)

Inserting Eq. (32) in (31) we have

δniσ ′

δVsσ (z)

∣∣∣∣
η

= − 1

2π

∑
j

[
δσσ ′δij − θjσ

Ns

]
ξjσ (z)2. (33)

Finally, substituting in Eq. (30)

δF
δVsσ (z)

∣∣∣∣
η

=
∑

i

∫
dz′ δF

δξiσ (z′)
ξiσ (z)Giσ (z′,z)

− 1

2π

∑
ijσ ′

[
δσσ ′δij − θjσ

Ns

]
∂F

∂niσ ′
ξjσ (z)2. (34)

By comparing Eqs. (34) and (28), we obtain

δF
δVsσ (z)

∣∣∣∣
η

= δF
δVsσ (z)

∣∣∣∣
μ

+ 1

2πNs

∑
iσ ′

∂F
∂niσ ′

∑
j

θjσ ξjσ (z)2,

(35)

in agreement with Eq. (A3), as can be verified taking into
account additionally Eqs. (29) and (32).

4. Calculation of ∂F/∂η|Vs�

With the same considerations previous to Eq. (29) and
applying the chain rule, we have

∂F
∂η

∣∣∣∣
Vs	

=
∑
iσ

∂F
∂niσ

∂niσ

∂η

∣∣∣∣
Vs	

.

The partial derivatives of the occupation factors niσ can be
readily obtained from their definition in Eq. (4) and the result

∂μ

∂η

∣∣∣∣
Vs	

= 2π

Ns

,

that can be obtained from Eq. (5) and the fact that
∂εiσ /∂η|Vs	 = 0. Combining everything we get

∂F
∂η

∣∣∣∣
Vs	

= 1

Ns

∑
iσ

∂F
∂niσ

. (36)

Comparing Eq. (36) with (29) we obtain, additionally,

∂F
∂η

∣∣∣∣
Vs	

= 2π

Ns

∂F
∂μ

∣∣∣∣
Vs	

.

This result shows that Eqs. (16) and (22) are equivalent.

B. Density- and spin-density response functions

1. Density-density response function

As an application of the results obtained in Sec. IV A, we
derive here explicit orbital expressions for the density response
function χr

σσ ′(z,z′) as defined in Eq. (9), for r = μ, η. Setting
F = nσ (z) in Eq. (28), we obtain

χ
μ

σσ ′(z,z′) =
∑

i

∫
dz1

δnσ (z)

δξiσ ′(z1)
ξiσ ′(z′)Giσ ′(z1,z

′)

− 1

2π

∑
i

∂nσ (z)

∂niσ ′
ξiσ ′(z′)2. (37)

From Eq. (3), we obtain

δnσ (z)

δξiσ ′(z1)
= 2 δσσ ′δ(z − z1)θiσ niσ ξiσ (z),

∂nσ (z)

∂niσ ′
= δσσ ′θiσ ξiσ (z)2

to find, after corresponding replacements in Eq. (37),

χ
μ

σσ ′(z,z′) = 2 δσσ ′
∑

i

θiσ niσ ξiσ (z)Giσ (z,z′)ξiσ (z′)

− δσσ ′

2π

∑
i

θiσ ξiσ (z)2ξiσ (z′)2. (38)

For the fixed η case, we make analogous replacements to
Eq. (34) with the result

χ
η

σσ ′(z,z′) = 2δσσ ′
∑

i

θiσ niσ ξiσ (z)Giσ (z,z′)ξiσ (z′)

− 1

2π

∑
i,j

[
δσσ ′δij − θjσ ′

Ns

]
θiσ ξiσ (z)2ξjσ ′(z′)2

(39)
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or, in a more compact form,

χ
η

σσ ′(z,z′) = χ
μ

σσ ′(z,z′) + 1

2πNs

∑
ij

θiσ θjσ ′ξiσ (z)2ξjσ ′(z′)2.

(40)

For an arbitrary perturbation of the KS potential δVsσ (z),
there will be a charge transfer between the quantum well
and the particle reservoir at fixed μ in the open system. In
contrast, in the closed system such a perturbation will cause a
charge transfer between subbands. From Eq. (40), we see that
χ

η

σσ ′(z,z′) is nondiagonal in spin, therefore, the perturbation
will cause in general a net charge transfer between subbands
with different spin component. In terms of the density response
function, the change on the total charge for the spin projection
σ can be written as

δrησ =
∑
σ ′

∫
dz dz′ χr

σσ ′(z,z′)δVsσ ′ (z′).

For the open case r = μ, using Eq. (38) we get

δμησ = − 1

2π

∑
i

θiσ δVs iσ , (41)

where we have used that
∫

dz ξiσ (z)Giσ (z,z′) = 0 and δVs iσ

is defined by

δVs iσ =
∫

dz ξiσ (z)2δVsσ (z). (42)

Consistently with Eq. (38), that is diagonal in spin, we find
from Eq. (41) that a change in the KS potential for spin
component σ does not affect the occupation of the opposite
spin component. For the closed case r = η we find, resorting
now to Eq. (39),

δηησ = Nsσ

2πNs

∑
i

θiσ δVs iσ − Nsσ

2πNs

∑
i

θiσ δVs iσ ,

which implies

δηησ = − δηησ ,

i.e., a flow of charge δηησ from one spin component to the
other, as expected for a closed system. In the equations above,
Nsσ = ∑

i θiσ is the number of occupied subbands with spin
component σ .

From Eqs. (38) and (39), the following symmetry properties
for the density response functions are verified:

χ
μ

σσ ′(z,z′) = χ
μ

σσ ′(z′,z) = χ
μ

σ ′σ (z,z′),

χ
η

σσ ′(z,z′) = χ
η

σ ′σ (z′,z).

We also derive∑
σ ′

∫
dz′χμ

σσ ′(z,z′) = −
∑

i

θiσ

2π
ξiσ (z)2,

∑
σ ′

∫
dz′χη

σσ ′(z,z′) = 0,

that is, the density response function for the Q2DEG closed
system is singular, as in the case of solids [18,19]. In contrast,
for the open Q2DEG system, it is nonsingular and can be
inverted [22,36]. The issue of the invertibility of the density

response function is discussed further in the following. The
fact that the density response function for finite systems in
closed and open environments is different has been already
discussed in Ref. [37].

2. Spin-density and macroscopic magnetic susceptibility

Up to now, we have used only spin-resolved variables
in the representations of the Q2DEG. Additional convenient
variables for spin-polarized systems are the total density
n(z) and the magnetization density m(z), which relate to the
spin-resolved density through

n(z) =
∑

σ

nσ (z), (43)

m(z) = −μB

∑
σ

σ nσ (z), (44)

with μB being the Bohr magneton. In the KS system, n(z) and
m(z) couple, respectively, to the scalar potential Vs(z) and the
magnetic field Bs(z):

Vs(z) =
∑

σ

Vsσ (z)/2, (45)

Bs(z) = −
∑

σ

σVsσ (z)/(2μB), (46)

which can be equally used, together with the areal density η

(chemical potential μ), to build alternative representations of
the Q2DEG for closed (open) systems. In analogy to Eq. (9),
we can define the spin-density response function

χr
mm(z,z′) = δm(z)

δBs(z′)

∣∣∣∣
Vs,r

(47)

with r = μ, η. The response function in the equation above
relates to their spin-density counterparts in Eq. (9) by

χr
mm(z,z′) = μ2

B

∑
σσ ′

σσ ′χr
σσ ′(z,z′). (48)

The magnetic susceptibility χr
mm is defined by Eq. (47).

In terms of it, the macroscopic magnetic susceptibility,
representing the total magnetic polarization m induced by a
homogeneous (i.e., independent of z and ρ) magnetic field Bs ,
is given by

∂m

∂Bs

∣∣∣∣
Vs,r

=
∫

dz dz′ χr
mm(z,z′). (49)

In order to obtain the macroscopic magnetic susceptibility,
we begin by replacing Eq. (48) in (49) and then replace
χr

σσ ′(z,z′) in the resulting expression by Eqs. (38) and (39)
for open and closed systems, respectively. The calculation is
straightforward, with the result

∂m

∂Bs

∣∣∣∣
Vs,μ

= Nsμ
2
B

2π
, (50)

∂m

∂Bs

∣∣∣∣
Vs,η

= Nsμ
2
B

2π

[
1 −

(
Ns↑ − Ns↓

Ns

)2
]

(51)

= 2μ2
B

π

(∑
σ

1

Nsσ

)−1

. (52)
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From Eq. (50), we see that the KS magnetic susceptibility
for an open system is independent of the distribution of
electrons between the up and down subbands. This contrasts
with the closed-system case: From Eq. (51) we see that the
result depends on how electrons distribute in the different spin
components. When Ns↑ = Ns↓ (e.g., the spin-unpolarized con-
figuration) the susceptibilities for open and closed Q2DEGs
coincide. However, in the ferromagnetic case (Ns↑ = Ns ,
Ns↓ = 0), while the susceptibility for the open system remains
finite, it becomes zero for the closed system. This is the
expected result because a closed system with a ferromagnetic
configuration is saturated: incrementing B will not change
the total magnetization because the number of electrons can
not increase in the majority spin component. In contrast, in
the open case, the reservoir can always provide electrons to
increase the induced magnetization. This notable difference
between the static noninteracting susceptibilities for open and
closed systems is a consequence of the respective constraints
and points to the importance of accurately accounting for them
into the theory. It also suggests analogous differences for the
interacting susceptibilities. For Ns = 2, Eq. (50) reproduces
the Pauli paramagnetic susceptibility of a strict 2D noninter-
acting electron gas [38]. In the limit Ns � 1, one recovers the
expression for the 3D homogeneous noninteracting electron
gas [39].

C. OEP equations in terms of the orbital shifts

The OEP equations can be conveniently formulated in terms
of the orbital shifts ψr

F iσ (z). The orbital shift for subband iσ

represents the first-order variation of the KS orbital ξiσ (z)
due to a perturbation �V r

F iσ (z) = θiσV r
Fσ (z) − uF iσ (z) where

uF iσ (z) is the orbital potential given by [40]

uF iσ (z) = 1

2Aniσ

1

ξiσ (z)

δF
δξiσ (z)

. (53)

Accordingly, from Eq. (25), in terms of the Green’s function
Giσ the orbital shifts are given by

ψr
F iσ (z) =

∫
dz′�V r

F iσ (z′)Giσ (z′,z)ξiσ (z′), (54)

from which the orthogonality property
∫

dz ψr
F iσ (z)ξiσ (z) = 0

is derived.
Replacing Eqs. (28) and (38) on the left and right sides of

Eq. (13), respectively, and rearranging terms, we obtain the
OEP equation for the open system in terms of the shifts:∑

i

niσ ξiσ (z)ψμ

F iσ (z) = 1

4π

∑
i

C
μ

F iσ ξiσ (z)2, (55)

where the scalars Cr
F iσ are defined by

Cr
F iσ = θiσV

r

F iσ − 1

A

∂F
∂niσ

, (56)

V
r

F iσ =
∫

dz ξiσ (z)2V r
Fσ (z). (57)

Similarly, if we replace Eqs. (34) and (39) on the left and
right of Eq. (17), respectively, the OEP equation for the closed

system is obtained:∑
i

niσ ξiσ (z)ψη

F iσ (z)

= 1

4π

∑
i

[
C

η

F iσ − θiσ

Nsσ C
η

Fσ + Nsσ C
η

Fσ

Ns

]
ξiσ (z)2. (58)

Integrating over z both sides of Eqs. (55) and (58) and using
the orthogonality between the shifts and the KS orbitals, we
obtain the following conditions on the scalars Cr

F :

C
μ

Fσ = 0, (59)

C
η

Fσ = C
η

Fσ ≡ C
η

F , (60)

where the overline indicates C
r

Fσ = ∑
i C

r
F iσ /Nsσ , which in

the case of occupied-orbital functionals (i.e., functionals that
depend exclusively on occupied KS orbitals and occupations)
is simply an average of the Cr

F iσ ’s over occupied subbands.
In the strict ferromagnetic case Nsσ �= 0 and Nsσ = 0, the
optimization of Eq. (12) is performed only for the relevant
spin component σ , while the component σ is ignored. This
leads, for the closed case, to an OEP equation identical to
Eq. (58) but without the term proportional to C

η

Fσ . Therefore,
in the strict ferromagnetic case the condition of Eq. (60) plays
no role. Returning to the general case Nsσ ,Nsσ �= 0, the spin
independence of C

η

Fσ given by Eq. (60) allows to define a
spin-independent scalar C

η

F . With this a more compact form
of the OEP equation for closed systems [Eq. (58)] can be
written:∑

i

niσ ξiσ (z)ψη

F iσ (z) = 1

4π

∑
i

[
C

η

F iσ − θiσC
η

F
]
ξiσ (z)2.

(61)

Upon addition of a spin-independent constant K to V r
Fσ (z), the

shifts remain unchanged, while the scalars transform according
to C

r

Fσ → C
r

Fσ + K and Cr
F iσ → Cr

F iσ + θiσK . Then, if
V

η

Fσ (z) is a solution of Eq. (61), V
η

Fσ (z) + K is a solution
too, in agreement with the conclusions of Sec. III B for the
closed-system potential. On the other side, if a spin-dependent
constant Kσ is added to the solution V

η

Fσ (z), the scalars
transform according to C

η

Fσ → C
η

Fσ + Kσ . Therefore, by
virtue of Eq. (60), the shifted potential V η

Fσ (z) + Kσ will not be
a solution unless Kσ = Kσ = K . In other words, the condition
of Eq. (60) fixes the relative position of the potentials V

η

Fσ (z)
and V

η

Fσ (z). For the open system, in contrast, if V
μ

Fσ (z) is a
solution of Eq. (55), V

μ

Fσ (z) + K will not be a solution of it
because a term proportional to K appears on the right-hand
side. Thus, V

μ

Fσ (z) is completely determined by Eq. (55).
Finally, let us define Ṽσ (z) ≡ V

η

Fσ (z) − C
η

F . By following
similar arguments as before, it can be readily verified that
ψ

η

F iσ (z) = ψ̃iσ (z) and C
η

F iσ = C̃iσ + θiσC
η

F , where ψ̃iσ (z)
and C̃iσ are obtained, respectively, from Eqs. (54) and (56)
with V r

Fσ = Ṽσ (z). Replacing these expressions for ψ
η

F iσ (z)
and C

η

F iσ in Eq. (61) we see that Ṽσ (z) satisfies an equation
that is formally identical to Eq. (55). This means that V μ

Fσ (z) =
Ṽσ (z), i.e., the two self-consistent solutions for closed and open
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systems are intrinsically linked by the relation

V
μ

Fσ (z) = V
η

Fσ (z) − C
η

F , (62)

in agreement with Eq. (21). Since V
η

Fσ (z) is determined up
to a floating constant, choosing the condition C

η

F = 0 to
fix this constant leads to an exact matching of both OEP
potentials. This condition is equivalent to the condition of
Eq. (22) which fixes the floating constant for the open-system
potential when calculated in the closed-system representation.
The fact that V

μ

Fσ (z) and V
η

Fσ (z) are so simply related as
above is one of the main findings of this work since it opens
the way to perform calculations for a given Q2DEG closed
system using OEP equations for a Q2DEG open system, and
vice versa, depending just on convenience. For instance, the
noninvertibility of the density response function for closed
Q2DEG systems is an obstacle for the numerical evaluation
of V

η

Fσ (z), starting from Eq. (17). The same problem arises in
solid-state applications of the OEP method, where it is solved,
for example, by expressing the OEP equations in a restricted
reciprocal space G excluding the G = 0 component [18,19].
We offer here an alternative solution to this problem: Solve
the OEP equations for the system of interest in an open
environment, for which the density-response function is
invertible [36], and then return to the physical closed situation
using Eq. (62).

Equation (62) tells us that for given values of η and μ, as
determined from Eq. (5), the corresponding OEP potentials
differ by a constant. This constant is arbitrary because V

η

Fσ (z),
which enters in the definition of the constant in Eq. (56),
is defined up to an arbitrary constant. Nevertheless, as the
right-hand side of Eq. (62) is invariant upon addition of a spin-
independent constant to V

η

Fσ (z), this arbitrariness of C
η

F does
not affect the important result that the open-system potential is
completely determined. A few remarks regarding its relation to
finite systems and solids are in order here: As explained above,
setting C

η

F = 0 makes the two potentials identical, therefore
the choice C

η

F = 0 is equivalent to the exact condition C
μ

F = 0
of Eq. (59) which fixes the open-system potential. This exact
condition is in full analogy to the Eq. (13) of Ref. [35] for
finite systems, as discussed above in relation to Eq. (22). Also,
the exact condition C

μ

F = 0 leads to a discontinuity in the
open-system exchange (exchange correlation) OEP potential
every time a new subband begins to be occupied, as shown
in Ref. [40] (Ref. [22]). For closed Q2DEGs, as those studied
in Refs. [23–25], the same types of discontinuities appear.
This is in analogy to the discontinuities in finite systems [31]
and solids [32] when the total number of electrons N passes
through integer values. The issue of the discontinuities in
finite systems of the derivative of the exchange correlation
energy with respect to the particle number, and of the
exchange correlation potential, and of the static and dynamic
exchange correlation kernel when passing through integer
values of N has been exhaustively discussed recently in
Refs. [35,41,42].

The relevance of Eqs. (59) and (60) should be emphasized
here, as follows. (i) Both constraints are already contained in
the defining OEP equations for open [Eq. (55)] and closed
[Eq. (61)] systems. In other words, if the solution to any of
these two equations is found, the respective constraints of

Eqs. (59) or (60) are automatically satisfied. It is important
to stress the fact that Eq. (59) is a consequence of the OEP
equations for open systems, and should not be confused
with the so-called “HOMO constraint” as applied to finite
systems (see Ref. [43] and Sec. IV F). Although the constraints
of Eqs. (59) or (60) are already contained in the OEP
equations, knowing about their existence is extremely useful
for the numerical solution of the OEP equations, either as a
means to verify the accuracy of the numerical results, or by
forcing their satisfaction through the self-consistent iterative
numerical loop. We have found crucial this last application
for achieving the self-consistent numerical results presented
in the following. More discussions about these points are
given in Sec. V, devoted to the numerical results. (ii) The
one-subband limit (either N↑ = N↓ = 1 or Nσ = 1,Nσ �= 1)
for occupied-orbital functionals of Eqs. (55) and (61) is
interesting since it admits an analytical solution, and it is
physically relevant [44]. In this situation, the right-hand side
of both equations becomes zero, and the analytical solutions
are V r

Fσ (z) = uF1σ (z), with the constraints C
μ

F1σ = 0 and
C

η

F1↑ = C
η

F1↓ = C
η

F1. As in the general case, the solution
V

η

Fσ (z) is defined up to a floating constant. For F = Ex ,
the analytical expression for uF1σ (z) is given in Eq. (46) of
Ref. [45]. (iii) Equation (60) admits an interesting physical
interpretation. As discussed in Appendix B, its satisfaction
guarantees that the total energy of an interacting closed system
be an extremal with respect to density magnetization variations
δm.

As a final remark to this section, let us emphasize that
the OEP equations for open [Eq. (55)] and closed [Eq. (61)]
situations derived here are valid both for the case where the
functional F depends on occupied orbitals alone (as is the
case of the exchange functional), and also for the case where
it depends on occupied and unoccupied orbitals (as is the case
of the correlation energy functional derived in Refs. [22,45]
for the Q2DEGs in semiconductor quantum wells).

D. OEP equations as first-order density shifts

A known property of the OEP potential for occupied-
orbital functionals is that the density is unchanged to first
order upon the orbital-dependent perturbation �Vxciσ (r) =
Vxcσ (r) − uxciσ (r) (see, e.g., Ref. [46]). Here we show, also for
occupied-orbital functionals [47], that the potentials defined by
the OEP Eqs. (55) and (58) fulfill this important property. In
the present case the derivation is more involved because the
right-hand side in Eqs. (55) and (58) is not zero. This term, that
comes from taking into account variations in the occupations,
is exactly zero in the usual OEP approach in which orbital
occupations are kept fixed [8,9].

Using similar arguments as those to derive Eqs. (38)
and (39), it can be shown that for an orbital-dependent
perturbation �V r

F iσ (z) of the KS potential, the first-order
change in the density is

δμnσ (z) = 2
∑

i

θiσ niσ ξiσ (z)ψμ

iσ (z) − θiσ

2π
�V

μ

F iσ ξiσ (z)2

(63)
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for an open system, and

δηnσ (z)

= 2
∑

i

θiσ niσ ξiσ (z)ψη

iσ (z) − 1

2π

∑
i

θiσ

×
[
�V

η

F iσ − Nsσ �V
η

F iσ + Nsσ �V
η

F iσ

Ns

]
ξiσ (z)2 (64)

for a closed system. The overline indicates an integral
analogous to Eq. (42). For occupied-orbital functionals F that
can be explicitly written as functionals of the set {kFiσ ξiσ (z)}
(with kFiσ = θiσ n

1/2
iσ the subband Fermi momentum), as is the

case, for example, for all explicit density functionals as well
as the exact-exchange energy functional, it can be shown (see
Appendix C) that

uF iσ = 1

A

∂F
∂niσ

. (65)

This implies that the scalars in Eq. (56) fulfill

Cr
F iσ = �V

r

F iσ . (66)

Replacing Eq. (66) in Eqs. (63) and (64), we see immediately
that the fulfillment of the OEP equations (55) and (58) for an
occupied-orbital functional F implies that

δrnσ (z) = 0. (67)

This equation admits a very appealing physical interpre-
tation: The potential V r

Fσ (z) that optimizes the energy of
the interacting Q2DEG is such that the first-order change
in the density vanishes when the KS system is perturbed with
the orbital-dependent perturbation �V r

F iσ (z).
If the restriction over occupied-only functionals is lifted,

one arrives at

δrnσ (z)

2
= −

unocc∑
i

niσ ξiσ (z)ψr
F iσ (z)

+ 1

4π

unocc∑
i

[
Cr
F iσ − θiσC

r

F
]
ξiσ (z)2, (68)

where the summations on the right-hand side run over
unoccupied orbitals. In this case, an interpretation of the OEP
potential as made after Eq. (67) does not seem to be possible
because there is not an obvious reason for the right-hand side
of Eq. (68) to be exactly zero.

E. Explicit expressions for V r
Fσ (z) in terms of the shifts

By virtue of the completeness of the basis formed by the
single-particle KS orbitals, it can be shown using Eqs. (26)
and (54) that the shifts satisfy the following differential
equation:

[Hsσ (z) − εiσ ]ψr
F iσ (z) = −[

�V r
F iσ (z) − �V

r

F iσ

]
ξiσ (z),

(69)

where the KS Hamiltonian Hsσ (z) is identical to the expression
in square brackets on the left-hand side of Eq. (2). Using this
result and Eq. (2), after some algebra it is possible to find that

the potential V r
Fσ (z) can be written as the sum of two terms

V r
Fσ (z) = V

r,KLI
Fσ (z) + V

r,�
Fσ (z), (70)

where the first term is to be identified with the Krieger-Li-
Iafrate (KLI) approximation [48]

V
r,KLI
Fσ (z) =

∑
i

θiσ niσ ξiσ (z)2

nσ (z)

[
uF iσ (z) + �V

r

F iσ

]
, (71)

and the second term is

V
r,�
Fσ (z) =

∑
i

θiσ niσ

2nσ (z)

[
ξiσ (z)ψr

F iσ (z)′′ − ξiσ (z)′′ψr
F iσ (z)

]
,

(72)

where the prime denotes derivation with respect to z. Up to
now, we have not taken into account the OEP equation and
therefore Eq. (70) is trivial in the sense that it is verified for
arbitrary V r

Fσ (z). In order to incorporate the OEP equation, we
derive twice Eqs. (55) and (61) with respect to z and use the
conditions on the C

r

Fσ from Eqs. (59) and (60). Restricting to
the case of occupied-orbital functionals F one gets, after some
algebra,

V
r,�
Fσ (z) = −

∑
i

θiσ niσ

nσ (z)

d

dz

[
ψr

F iσ (z)ξiσ (z)′
]

+
∑

i

θiσ

Cr
F iσ − C

r

Fσ

8πnσ (z)

d2ξiσ (z)2

dz2
. (73)

Equations (70), (71), and (73) together with the corresponding
conditions from Eq. (59) or (60) completely determine the
potential V r

Fσ (z). They must be solved self-consistently. It
should be clear at this point that the set of Eqs. (55) and (61) is
fully equivalent to Eqs. (70) plus the constraints of Eqs. (59)
and (60). The use of one set of equations or the other is just
a question of convenience; in our case, we have used the
form (70) for the numerical calculations, and the forms (55)
or (61) for obtaining analytical results, like the asymptotic
limits to be discussed following.

Since our OEP equations and the associated constraints
are different from the ones used usually in deriving the KLI
approximation, some justification is needed for the label “KLI”
in Eqs. (70) and (71). In the first place, the explicit expression
for V

r,KLI
Fσ (z) in Eq. (71) is identical to the one in previous

works [9]. Second, by following the steps in Ref. [8], it can be
shown that ∫

dz nσ (z) V
r,�
Fσ (z) = 0. (74)

In words, the meaning of this equation is that the weighted
average of the terms in V r

Fσ beyond the KLI approximation
is zero. This is exactly the same that has been found in
previous works, and used as argument to justify both the
approximation and its well-documented good performance for
localized systems such as atoms and molecules [8], and also
for extended systems [26,27].

F. Asymptotic limits for x-only OEP

Here, we will be mainly concerned with the asymptotic
limit of V

η
x σ (z), that is, in the special case when F = Ex is the
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exact-exchange energy functional. Solving Eq. (62) for V
η
x σ (z)

and taking the limit z → ∞,

V η
x σ (z → ∞) = V μ

x σ (z → ∞) + C
η

x . (75)

Now, in previous works we have already obtained that [22,40]

V μ
x σ (z → ∞) → �V

μ

xmσ σ = V
μ

xmσ σ − uxmσ σ , (76)

with i = mσ being the last occupied (the more energetic)
energy level corresponding to spin σ . Using Eq. (62) once
more,

V
μ

xmσ σ = V
η

xmσ σ − C
η

x , (77)

and replacing in the previous equation,

V μ
x σ (z → ∞) → V

η

xmσ σ − uxmσ σ − C
η

x . (78)

Returning to Eq. (75),

V η
x σ (z → ∞) → �V

η

xmσ σ = V
η

xmσ σ − uxmσ σ . (79)

Since in the closed system V
η
x σ (z) is defined up to a

floating constant, one can choose (either for σ =↑ or σ =↓,
but not for both) that V

η
x σ (z → ∞) → 0 by imposing the

condition �V
η

xmσ σ = 0, that implies that V
η

xmσ σ = uxmσ σ . On
the other side, the other spin component of the exchange
potential, V

η
x σ (z), is fully determined by the constraint in

Eq. (60), and has then the asymptotic limit V
η
x σ (z → ∞) →

�V
η

xmσ σ = V
η

xmσ σ − uxmσ σ , which in general will be different
from zero. Regarding the open system, its asymptotic limit
is given by Eq. (76). In this case, if n↑ �= n↓ and both
densities are different from zero, the spin-dependent OEP
exchange potential tends to two different constant values
far in the vacuum region. In the spin-unpolarized case, the
asymptotic limit V

η
x σ (z → ∞) = V

η
x σ (z → ∞) := V

η
x (z →

∞) → �V
η

xmσ σ = �V
η

xmσ σ := �V
η

xm. Fixing the floating

constant by the standard choice �V
η

xm = 0, then V
η
x (z →

∞) → 0. The spin-unpolarized asymptotic limit in the open
system has been discussed in Ref. [40]. It has been shown
there that V

μ
x σ (z → ∞) = V

μ
x σ (z → ∞) := V

μ
x (z → ∞) →

�V
μ

xmσ σ = �V
μ

xmσ σ := �V
μ

xm. And since �V
μ

xm �= 0 in gen-
eral, the OEP exchange potential of the spin-unpolarized open
system tends to a well-determined single finite value in the
asymptotic region.

In the context of finite systems such as atoms and molecules,
the equivalent to the condition V

η

xmσ σ = uxmσ σ has been
obtained in several works, either by appealing to fractional
particle numbers [48], from scaling arguments [49], or from
analyzing the asymptotic limit of the corresponding x-only
OEP equations [8]. This constraint, denoted in this context as
the “HOMO constraint,” is very useful in helping for solving
the intrinsic invertibility problem of the density-response
function for this type of system [43]. An important difference,
however, is that this “HOMO constraint” is applied in finite
systems to both spin components, while in our Q2DEG case
we have found that it only can be applied to one of the two
spin components (closed case) or to none of them (open case),
for a spin-polarized situation. As discussed above, this has the
consequence that the asymptotic value of the “unconstrained”
spin component of the OEP potential has in general a nonzero

asymptotic value. A numerical example of this behavior is
given in the next section.

V. NUMERICAL EXAMPLE FOR A JELLIUM
METALLIC SLAB

The jellium-slab model for a metallic surface represents an
example of Q2DEG [50,51]. In this model, the positive ions
inside the metal are replaced by a uniform 3D slab charge
distribution n+(z) (the jellium):

n+(z) = n0 θ

(
d

2
− |z|

)
, (80)

where d is the width of the slab with edges at z = − d/2 and
z = d/2 and n0 = η/d [52]. The attractive jellium confines the
movement of electrons in the z direction, while they are free to
move along the translational invariant x-y plane. Defined this
way, the slab has global (but not local) neutrality. The same
model has been studied in the past for the spin-unpolarized
case [23–25]. We want here to give a numerical example of
the utility of the spin-dependent OEP formalism for closed
Q2DEGs developed in the previous sections, for a concrete
spin-polarized situation.

The calculation of the x-only OEP (x-OEP) spin-dependent
exchange potential for the closed system V

η
x σ (z) amounts to

the numerical solution of Eqs. (70), (71), and (73), imposing
the fulfillment of Eq. (60). In the case of the x-only KLI
(x-KLI) approximation, the last term in the right-hand side of
Eq. (70) was removed. In all the results shown following, the
correlation potential has been neglected.

This set of equations has to be solved in a self-consistent
procedure. The standard way, which we have applied, consists
of the following steps: (i) Solve the Kohn-Sham equations
[Eq. (2)] for each spin projection with an initial approximated
KS potential. We have used as initial potential V

η,KLI
sσ (z) =

Ve(z) + VH(z) + V
η,KLI
x σ (z) in the case of x-OEP. (ii) Use the

resulting orbitals ξiσ (z) and energies εiσ to obtain the orbital
potentials uxiσ (z) and then solve the differential equation
Eq. (69) for the orbital shifts ψ

η

xiσ (z). (iii) Insert the orbitals,
subband occupations, orbital potentials, and orbital shifts in
Eqs. (70), (71), and (73) to obtain an improved V

η
x σ (z). (iv)

Update the KS potential using a mixture of the initial KS
potential and the new one. (v) Self-consistently solve the
Kohn-Sham equations with the improved approximation. (vi)
Repeat these steps until convergence is achieved. Step (ii),
where the orbital potentials and orbital shifts are numerically
determined, is by far the more demanding step of the x-OEP
self-consistent loop regarding the computational time. This
step is the main difference with the self-consistent x-KLI
loop, where the calculation starts from an x-LDA seed for
the initial KS potential and there is no need of solving the
differential equation for the shifts [53]. This, together with the
fact that the mixing factor used in step (iv) may be greater
in the self-consistent x-KLI loop, combines in yielding great
savings of computational cost, and as we will show, with only a
small loss of accuracy as compared to the x-OEP result. More
details on the numerical technique for solving the Q2DEG’s
OEP equations are given in Refs. [23–25].

Inside the iterative self-consistent loop we have used the
invariance upon the addition of a spin-independent constant to
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FIG. 1. Upper panel: total [n(z)] and spin-dependent densities
[nσ (z)]. Full lines are for the x-OEP case, dashed and dotted lines
correspond to the x-KLI and x-LDA approximations, respectively.
Lower panel: magnetizations m(z) = μB [n↓(z) − n↑(z)]. The slab
parameters are rs = 5.0 and d = 0.8 λF .

V
η
x σ (z) in order to enforce the limit V

η

s↑(z → ∞) → 0 for the
most populated spin component, chosen here (arbitrarily) as
the up-spin component; this is equivalent to the assumption
that V

η

x ↑(z → ∞) → 0. As discussed above, if i = m↑ is
the last occupied slab discrete level corresponding to the
most populated spin component, this assumption is enforced
by the constraint �V

η

xm↑↑ = V
η

xm↑↑ − uxm↑↑ = 0. With this
choice and the condition given by Eq. (60), the less populated
spin component (σ =↓) of the x-OEP and x-KLI exchange
potentials is fully determined.

Densities and magnetizations for a narrow slab with rs = 5
and d = 0.8 λF (with λF as defined in Ref. [30]) are shown
in Fig. 1, for three different approximations: x-LDA, x-KLI,
and x-OEP. While the total densities are essentially the same
in the three approximations, spin-discriminated densities are
much more sensitive to which approximation is used, leading
to the different magnetizations shown in the lower panel. It
is interesting to compare m(z) for the x-LDA and the x-OEP
calculations. In the x-LDA case (dotted line), m(z) < 0 in
the full z range, corresponding to a ferromagnetic ground
state. Conversely, the x-OEP gives a slightly antiferromagnetic
configuration with m(z) < 0 on the sides of the slab and
m(z) > 0 close to the center. This result is counterintuitive:
As compared to x-OEP, the x-LDA potential underestimates
the exchange interaction, therefore, it is natural to expect that
x-OEP would favor a global ferromagnetic configuration more
strongly than LDA.

Nevertheless, this result can be understood on the basis that,
separately for each spin component, the x-OEP potential favors
spatial charge accumulation more effectively than x-LDA, in
order to maximize the negative exchange interaction energy.
Under this basic fact, we can analyze the different potentials
and densities for each spin component.
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FIG. 2. External plus Hartree (dotted lines), exchange (dashed
lines), and Kohn-Sham (full lines) self-consistent potentials for the
x-OEP, x-KLI, and x-LDA approximations (upper, middle, and lower
panels, respectively), for the same slab of Fig. 1. For z < 0, the σ = ↓
(minority-spin component) electronic structure is shown; for z > 0,
the σ = ↑ (majority-spin component) electronic structure is shown.
μ is the chemical potential, and the horizontal straight lines represent
the spin-dependent KS eigenvalues εiσ . In the upper panel, the x-KLI
KS potential has been included, for comparison.

As displayed in Fig. 2, for σ =↓ (minority-spin compo-
nent), the x-OEP potential is deeper than the x-LDA one, as
can be seen from the difference � = Vx ↓(−d/2) − Vx ↓(0):
�(OEP) 
 0.0716 H > �(LDA) 
 0.0602 H. Therefore, the
spin-down x-OEP potential favors charge accumulation in the
center more effectively than x-LDA. The case for σ =↑ is
more involved because there are two occupied subbands. Due
to symmetry considerations, the subband of lowest energy
ξ1↑(z) is symmetrical around the center of the slab, while
ξ2↑(z) is antisymmetrical and therefore exactly zero in the slab
center. As a consequence, it turns out to be more favorable
to accumulate charge on the sides of the slab through the
building of a barrier in the middle. The height of this barrier is
roughly given by �b = Vx ↑(0) − Vx ↑(min), where Vx ↑(min)
is the potential’s minimum. We have �b(OEP) 
 0.0211 H >

�b(LDA) 
 0.0095 H. In sum, the combined effect of a deeper
potential for σ =↓ and a higher middle barrier for σ =↑
leads to a slight antiferromagnetic configuration for x-OEP,
not observed in the x-LDA result. The x-KLI magnetization
lies in-between the x-LDA and x-OEP.

An interesting feature regarding the results displayed in
Fig. 2 is the much slower decay of the x-OEP and x-KLI
exchange potentials, as compared with the x-LDA. This has
been already discussed for the spin-unpolarized situation,
were it has been found that V

η

x ↑(z → ∞) = V
η

x ↓(z → ∞) →
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FIG. 3. Asymptotic behavior of the spin-dependent exchange
potential in the x-OEP approximation, for the same slab of Fig. 1;
the slab center is at z = 0. Full curves represent V η

x σ (z), with σ = ↑
(σ = ↓) for the majority- (minority-) spin component. The dashed
curve is an approximate asymptotic limit for the many-subband
x-OEP exchange potential (see text for more details), and the two
arrows on the right signal the two different asymptotic limits for the
↑ and ↓ exchange potentials.

− e2/z, both for the x-OEP and x-KLI approximations
[23–27]. The x-LDA exchange potential, on the other side,
decays much more rapidly, following the exponential decay of
the density displayed in Fig. 1.

We have included in the top panel of Fig. 2 the KLI results
for the spin-dependent KS potentials of the middle panel;
clearly the KLI potentials are hardly distinguishable from
the full OEP exchange potentials, suggesting once more the
accuracy of the KLI approximation as applied to Q2DEGs [40].

We display in Fig. 3 an enhanced view of the upper panel of
Fig. 2, for small enough energies, and for values of z deep in the
vacuum region (z � d). The asymptotic limit of the minority-
spin component (with just one occupied subband) is given
by V

η

x ↓(z → ∞) → V
η

x1↓ − ux1↓ − e2/z 
 0.0065 H − e2/z.
On the other side, the asymptotic limit for the majority-
spin component (with two occupied subbands) is given by
V

η

x ↑(z → ∞) → V
η

x2↑ − ūx2↑ − e2/z = −e2/z, according to
our choice of the floating constant for V

η
x σ (z) discussed above

(V
η

x2↑ − ux2↑ = 0). For z = 15 λF , we obtain that V
η

x ↓(z =
15 λF ) 
 0.0024 H, while V

η

x ↑(z = 15 λF ) 
 − 0.0041 H, in
good agreement with the results displayed in Fig. 3. The
important point here is that V η

x ↑(z → ∞) �= V
η

x ↓(z → ∞), and
there is no possible choice of the unique floating constant that
allows the matching of the two asymptotic limits. This is a con-
sequence of the crucial constraint imposed by Eq. (60). This
is true, of course, if n↑ �= n↓. If n↑ = n↓, the spin-unpolarized
case, V

η

x ↑(z) = V
η

x ↓(z), so both potentials approach the same
asymptotic limit automatically, and the choice for the floating
constant defines the (arbitrary) zero of energy or vacuum level.
It should be noted that the dashed curve in Fig. 3 corresponds
to an accurate analytical approximation for V

η

x ↑(z), valid in
the asymptotic regime; the explicit expression for it is given
by Eq. (35) in Ref. [24].

VI. CONCLUSIONS

In summary, we have generalized the optimized effective
potential implementation of ground-state DFT, as applied
to quasi-two-dimensional electron gases in two important
directions: (a) open versus closed systems, and (b) spin-
unpolarized versus spin-polarized configurations. Regarding
the first item, we have found that the OEP potentials for the
open and closed possible representations of a given physical
system are just related by a simple spin-independent constant:
V

η

F,σ (z) = V
μ

F,σ (z) + C
η

F . This essentially means that both
descriptions lead to the same results for the density, as
for any other ground-state physical magnitude, and that the
choice of which representation to use is mainly a question
of convenience. For instance, quasi-two-dimensional electron
gases at the interface between two different semiconductors are
usually represented as open systems, while metallic jellium
slabs are usually represented as closed systems. This work
suggests that these choices are not unique, and that both types
of systems may be represented equivalently as open or closed.
As a consequence, a calculation scheme is advanced to avoid
the noninvertibility problem of the density-response function
for closed Q2DEG systems.

Regarding the second issue, we have found the fundamental
conditions of Eqs. (59) and (60). In the case of spin-polarized
systems, their satisfaction implies that both spin-up and -down
OEP potentials are different for all values of the position
coordinate, even far in the vacuum region for the jellium slab
model of a metallic surface. This results from the fact that for a
spin-polarized system we have two different asymptotic limits
for the spin-up and -down OEP potentials, but just a single
spin-independent floating constant for the closed system, and
no floating constant at all for the open case. This crucial
point has been illustrated through the numerical solution of a
spontaneously spin-polarized narrow metallic slab, for which
the x-OEP exchange potential has been obtained exactly.
The x-KLI approximation for the same system has been
also tested, and found to be quite accurate, similarly to its
well-documented accuracy found in non-condensed-matter
systems, such as atoms and molecules.
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APPENDIX A: RELATION BETWEEN OPEN- AND
CLOSED-SYSTEM POTENTIAL FUNCTIONAL

DERIVATIVES

Consider a variation δVsσ ′ (z′) = εδσσ ′δ(z − z′), δη = 0 in
the {Vsσ ,η} representation, with ε a small real number. For this
variation, the change in a density functional F will be

δF = ε
δF

δVsσ (z)

∣∣∣∣
η

. (A1)
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Now, consider an equivalent variation in the {Vsσ ,μ} repre-
sentation, that is, one with the same δVsσ ′ (z′) as above and a
variation δμ that keeps the areal density unchanged. Such δμ

is easily found by applying Eq. (A1) to F = μ − Vsσ ′ (z′):
δμ = εδμ/δVsσ (z)|η. With this result, we can express the
variation δF in Eq. (A1) in the representation {Vsσ ,μ} as

δF = ε
δF

δVsσ (z)

∣∣∣∣
μ

+ ε
∂F
∂μ

∣∣∣∣
Vs	

δμ

δVsσ (z)

∣∣∣∣
η

. (A2)

We can now equate Eqs. (A1) and (A2) to find the following
relation between fixed-η and fixed-μ functional derivatives:

δF
δVsσ (z)

∣∣∣∣
μ

= δF
δVsσ (z)

∣∣∣∣
η

− ∂F
∂μ

∣∣∣∣
Vs	

δμ

δVsσ (z)

∣∣∣∣
η

. (A3)

In an analogous fashion, considering first a variation with δμ =
0 and the equivalent variation δη that leaves μ unchanged in
the {Vsσ ,η} representation, the related equation is obtained:

δF
δVsσ (z)

∣∣∣∣
η

= δF
δVsσ (z)

∣∣∣∣
μ

− ∂F
∂η

∣∣∣∣
Vs	

δη

δVsσ (z)

∣∣∣∣
μ

. (A4)

APPENDIX B: PHYSICAL INTERPRETATION OF EQ. (60)

We begin by writing the total energy of the interacting
system as

E = Ts + A

∫
dz Ve(z)n(z) + EH + F (B1)

= Es + EH − A

∫
dz VH(z)n(z)

+F − A
∑

σ

∫
dz VFσ (z)nσ (z). (B2)

The ground-state density is obtained from optimizing Eq. (B1)
with respect to the density. To perform an equivalent opti-
mization using Eq. (B2) it is essential to realize that the KS
potential Vsσ in Es = Ts + A

∑
σ

∫
dz Vsσ (z)nσ (z), as well as

its components VH and VFσ , must be kept fixed when varying
the density (or equivalent representing variables). Otherwise,
the optimized functional is not the same as the fundamental
one of Eq. (B1).

Taking as independent variables the set {Vs,Bs,η}, the
optimization of Eq. (B2) with respect to Bs is written

∂E

∂Bs

∣∣∣∣
Vsη

= ∂Es

∂Bs

∣∣∣∣
Vsη

+
[

∂F
∂Bs

∣∣∣∣
Vsη

− A
∑

σ

∫
dz VFσ (z)

∂nσ (z)

∂Bs

∣∣∣∣
Vsη

]
= 0. (B3)

The analogous term to the one in square brackets for the
Hartree component is zero, therefore, it is not written in the
above equation. Only the macroscopic component has been
taken in writing Eq. (B3). By definition, both E and Es are
optimized at the same density, therefore, the term in square

brackets in Eq. (B3) must be zero:

∂F
∂Bs

∣∣∣∣
Vs,η

− A
∑

σ

∫
dz VFσ (z)

∂nσ (z)

∂Bs

∣∣∣∣
Vs,η

= 0. (B4)

This is just a form of the OEP equation: The optimized
potential VFσ (z) must satisfy Eq. (B4) in order to have
a common density (equivalently a common set {Vs,Bs,η})
optimizing both E and Es .

For an orbital-based functional F , we can apply now
the chain rule to the magnetic field functional derivative
∂F / ∂Bs |Vs,η

. We do not include derivatives with respect to
orbital shapes, as they remain fixed for a uniform (i.e., z and
ρ independent) change of Bs :

∂F
∂Bs

∣∣∣∣
Vs,η

=
∑
iσ

∂F
∂niσ

∂niσ

∂Bs

∣∣∣∣
Vs,η

, (B5)

subsequent application of the chain rule with respect to Vsσ

gives, for the magnetic field derivative on the right-hand side,

∂niσ

∂Bs

∣∣∣∣
Vs,η

=
∑
σ ′

∫
dz dz′ δniσ

δVsσ ′ (z′)

∣∣∣∣
η

δVsσ ′ (z′)
δBs(z)

∣∣∣∣∣
Vs,η

. (B6)

The first derivative on the right-hand side is given by
Eq. (33). The second is easily obtained from Vsσ (z) =
Vs(z) − μBσBs(z), with the result δVsσ ′ (z′)/δBs(z) =
−μBσ ′δ(z − z′). In sum, after integrating the resulting ex-
pression and taking into account the value of the magnetic
susceptibility for the closed system [Eq. (51)], we obtain

∂F
∂Bs

∣∣∣∣
Vs,η

= μB

2

∂m

∂Bs

∣∣∣∣
Vs,η

∑
iσ

σ

Nsσ

∂F
∂niσ

. (B7)

Applying Eq. (B7) to the first term of Eq. (B4) and to
the derivative of nσ (z) in the second term, we obtain, after
using (38) and integrating on z,

∂F
∂Bs

∣∣∣∣
Vs,η

− A
∑

σ

∫
dz VFσ (z)

∂nσ (z)

∂Bs

∣∣∣∣
Vs,η

= μB

2

∂m

∂Bs

∣∣∣∣
Vs,η

∑
σ

σC
η

Fσ = 0 (B8)

with C
η

Fσ as defined in Sec. IV C. The second equality in
Eq. (B8) is the same as the condition (60) for closed systems.
Taking into account the first equality in Eq. (B8), together with
Eq. (B3) and the definition δG|Vsη ≡ ∂G/∂Bs |VsηδBs , for G an
arbitrary functional of {Vs,Bs,η}, we can write

δE|Vs,η
= δEs |Vs,η

+ μB

2

(∑
σ

σC
η

Fσ

)
δm|Vs,η

. (B9)

Thus, the second equality of Eq. (B8) (or equivalently [60])
expresses the stability of the closed interacting system with
respect to the total magnetization m.
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APPENDIX C: RELATION BETWEEN uF,iσ AND ∂F/∂niσ

FOR ORBITAL FUNCTIONALS F

For functionals that depend explicitly on the set
{piσ (z) = kFiσ ξiσ (z)}, we can apply the chain rule for func-
tional derivatives to obtain

∂F
∂niσ

=
∑
jσ ′

∫
dz

δF
δpjσ ′(z)

∂pjσ ′(z)

∂niσ

= 1

2n
1/2
iσ

∫
dz ξiσ (z)

δF
δpiσ (z)

(C1)

and
δF

δξiσ (z)
=

∑
jσ ′

∫
dz′ δF

δpjσ ′(z)

δpjσ ′(z)

δξiσ (z)
= n

1/2
iσ

δF
δpiσ (z)

. (C2)

From Eqs. (C1) and (C2) we conclude that

∂F
∂niσ

= 1

2niσ

∫
dz ξiσ (z)

δF
δξiσ (z)

, (C3)

which, taking into account Eq. (53), implies Eq. (65). A
relation analogous to Eq. (C3) was obtained for the case of
the exact-exchange energy functional in Ref. [48]. Here, we
see that this property is generally valid for all functionals that
admit an explicit representation in terms of {piσ (z)}.
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