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Strong interaction effects at a Fermi surface in a model for voltage-biased bilayer graphene
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Monte Carlo simulation of a 2+1 dimensional model of voltage-biased bilayer graphene, consisting of
relativistic fermions with chemical potential μ coupled to charged excitations with opposite sign on each layer,
has exposed noncanonical scaling of bulk observables near a quantum critical point found at strong coupling. We
present a calculation of the quasiparticle dispersion relation E(k) as a function of exciton source j in the same
system, employing partially twisted boundary conditions to boost the number of available momentum modes.
The Fermi momentum kF and superfluid gap � are extracted in the j → 0 limit for three different values of μ,
and support a strongly interacting scenario at the Fermi surface with � ∼ O(μ). We propose an explanation for
the observation μ < kF in terms of a dynamical critical exponent z < 1.
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I. INTRODUCTION

There are very few many-body systems permitting Monte
Carlo simulation without the need to confront a sign problem.
In Ref. [1] we introduced a new member to this class,
based on an effective theory of bilayer graphene in which
charge carrying excitations are modeled as Nf = 4 relativistic
fermions moving in a 2d plane. The introduction of chemical
potential μ is via a bias voltage in the perpendicular direction
which induces equal densities of electrons on one layer and
holes on the other; this is analogous to isospin chemical
potential in QCD and yields a real positive fermion determinant
amenable to orthodox Monte Carlo methods. The simulation
was performed in the vicinity of a quantum critical point
(QCP) found at strong coupling, and the main result was the
demonstration that the ground state is a superfluid formed
by condensation of electron-hole exciton pairs, and that the
response to μ is governed by the noncanonical scaling forms
(8) and (9) given in Sec. II. We expect the exciton condensation
to result in an energy gap � > 0 developing at the Dirac points.

The model [1] as originally devised for bilayer graphene
[2] is artificial in a few respects. First, the description in
terms of Nf = 4 relativistic species (i.e., Nf = 2 electrons
and Nf = 2 holes, where Nf counts the number of four-
component spinors) is only justified by the band structure of
the tight-binding model in the presence of an interlayer “skew”
coupling breaking the trigonal symmetry of the underlying
lattice [3]. Second, the interaction between charge densities is
simplified to be a local four-Fermi contact, although a more
realistic unscreened Coulomb interaction can be modeled with
the introduction of a third spatial lattice direction to capture the
electrodynamics [4]. Finally, intra- and interlayer interactions
have the same coupling strength, as a necessary condition of
keeping the fermion determinant real. Nonetheless, it shares
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the essential features of a more general model for double-
layer graphene systems in which there is some hybridization
permitting interlayer tunneling [5]. With Nf = 1 this approach
is also applicable to surface states of topological insulators,
motivating study with variable Nf [6].

Within the literature there are discrepant predictions for
the strength of the gap � generated by exciton conden-
sation in biased bilayer systems. Kharitonov and Efetov
[7] treat a Coulomb interaction among Nf = 4 flavors (in
our normalization) using a large-Nf approach (equivalent to
the random phase approximation) and treat the polarization
operator �(ω,q) due to electron-hole pairs in the static limit
ω → 0, in effect using its value in the normal state. They
find a very small value �/μ ∼ e−4Nf ∼ O(10−7). Sodemann
et al. [5] take the ω dependence of � into account, thereby
modeling the retarded character of the polarization induced
by relativistic degrees of freedom, and find a significant
reduction of screening as q,ω → 0 in a gapped phase with
� > 0. They find �/μ ∼ O(1) for values of the effective
fine structure constant α = e2/εvF > αc ∼ 1.5. In the current
paper, although the classical potential is screened ab initio,
quantum screening effects are treated consistently using
relativistic field theory; the distinctive feature is that results
are obtained in the vicinity of a QCP corresponding to a
strong coupling intralayer transition to a Mott insulating phase,
known to exist at μ = 0 from Monte Carlo simulations [6].

The results of [1] were interpreted in terms of strong
interaction effects at a Fermi surface; if exciton pairs within
a shell of thickness � condense around the Fermi surface
centered at kF , then the anomalous scaling (8,9) is consistent
with a BCS mechanism with � ∼ O(μ). Everything is to be
viewed in the context of an effective field theory valid near the
QCP. In order to put this picture on firmer footing, and also to
expose the Fermi surface, in this paper we use Monte Carlo
simulation to calculate the quasiparticle dispersion relation
E(k), identifying kF with the location of the minimum and �

with E(kF ). The main results are summarized in Fig. 5 below.
In Sec. II we present the model and review the main findings
of [1], then in Sec. III present the calculation of E(k). Our
results, summarized in Sec. IV, indeed support the picture of a
Fermi surface disrupted by strong interactions, leading to the
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formation of a gap � increasing monotonically with μ. We
also discuss our observation of the striking inequality μ < kF ,
and propose an explanation in terms of an estimate for the
dynamical critical exponent z < 1.

II. FORMULATION AND SIMULATION OF THE MODEL

Here we recap the formulation of a model for low-energy
electron excitations in bilayer graphene introduced in [1]. The
main physical idea is based on Nf = 2 flavors of relativistic
fermion moving within each layer, described by Grassmann
fields ψ,ψ̄ , with (Euclidean) action [8,9]:

Smono =
∑
a=1,2

∫
dx0d

2x(ψ̄aγ0∂0ψa + vF ψ̄a �γ · �∇ψa

+ iA0ψ̄aγ0ψa) + 1

2e2

∫
dx0d

3x(∂iA0)2. (1)

Here e is the effective electron charge whose value depends
on the dielectric properties of the substrate, the 4 × 4
Dirac matrices satisfy {γμ,γν} = 2δμν,μ = 0,1,2, and A0

is a fluctuating 3 + 1d electrostatic potential field sourced
by the charge density ψ̄γ0ψ ; A0 is a remnant of the full
electromagnetic field in the instantaneous approximation
justified for Fermi velocity vF � c.

A description of bilayer graphene in terms of Nf = 4
relativistic fermions requires some justification. For a per-
fect bilayer formed from two monolayers stacked in AB
configuration with interlayer coupling strength t ′ ∼ O(0.1)t ,
where t is the hopping parameter in the original tight-binding
Hamiltonian, the electron dispersion relation in the vicinity
of the Dirac point is quadratic, only becoming approximately
relativistic (i.e., linear) for ka � t ′/t [10]. Theoretical studies
suggest however that the presence of a “skew” interlayer
coupling with strength t3 breaking the trigonal symmetry of the
crystal, the parabolic bands split to form separate Dirac cones
so that Nf = 4 is a reasonable approximation for ka � t3t

′/t2

[3]. A similar effect results from mechanical deformation.
The second ingredient is that the layers are given equal and

opposite constant bias voltages ±μ, inducing on one layer a
negatively charged concentration of particles and on the other a
positively charged concentration of holes. As the notation im-
plies, the bias voltage is precisely a chemical potential, in this
case formally similar to an isospin chemical potential in QCD.
Euclidean formulations of systems with μ �= 0 are generically
afflicted with a “sign problem,” i.e., the Lagrangian density L
is no longer positive definite, or even real, since the inequiv-
alence under time reversal translates into inequivalence under
complex conjugation in Euclidean metric. However, the case of
isospin chemical potential is known not to have a sign problem
and is hence simulable using orthodox Monte Carlo methods.

The model we use to describe voltage-biased bilayer
graphene in terms of Nf = 4 relativistic fermions is described
by the following Lagrangian [1]:

L = (ψ̄,φ̄)

(
D[V ; μ] ij

−ij D[V ; −μ]

)(
ψ

φ

)
+ 1

2g2
V 2

≡ ̄M + 1

2g2
V 2. (2)

Here ψ and φ are 4 × 2-component spinors each describing
two Dirac flavors, with ψ,ψ̄ corresponding to electron degrees
of freedom on one layer and φ,φ̄ holes on the other; V is
an auxiliary field defined on the timelike links of the lattice
yielding a screened version of the electrostatic potential in (1);
and j a symmetry-breaking gap parameter due to interlayer
pairing. Although V defined in this way yields a potential
with no classical Coulomb r−1 tail, it was shown in [6] that
V and A0 in (1) have the same large-Nf quantum corrections,
and the models coincide in the strong coupling limit e2,g2 →
∞. Because some weak interlayer hybridization is likely to
be present in double-layer systems, in general j �= 0 [5];
however we will attempt to extrapolate j → 0 so that exciton
condensation can be viewed as a spontaneous symmetry
breaking U (4) ⊗ U (4) → U (4) [1]. In continuum notation the
covariant derivative operator including the bias voltage is

D[V ; μ] = δα,β

( ∑
ν=0,...,2

γν∂ν + (iV + μ)γ0

)

= −D†[V ; −μ], (3)

where α,β run over Nf = 2 Dirac flavors. The minimal
coupling to V implies that ψψ , φφ, and φψ interactions are
all of equal strength, which is required for the action to be real
following integration over the fermions. This corresponds to
the interlayer separation d → 0 in the double-layer model [5].

In terms of staggered fermion fields living on the sites x,y

of a 2 + 1d cubic lattice D is written

Dlatt
x,y = 1

2

[
η0xe

μ(1 + iVx)δy,x+0̂ − η0xe
−μ(1 − iVx)δy,x−0̂

+
∑
ν=1,2

ηνx(δy,x+ν̂ − δy,x−ν̂)

]
, (4)

where the sign factors ηνx ≡ (−1)x0+···+xν−1 ensure a covariant
weak-coupling continuum limit. Equation (4) was also used
to model electron excitations in monolayer graphene [11].
Note that in 2 + 1d a single staggered fermion automatically
describes Nf = 2 continuum flavors [12]. We work in units in
which both spatial as and temporal at lattice spacings are set
to unity (equivalent to setting the bare Fermi velocity vF = 1);
note that for a noncovariant action there is no reason a priori
to assume as = at , though since the value of the ratio at/as

is driven by UV physics it does not depend on μ and only
weakly on j , so may be assumed constant throughout this
paper. On the assumption that the dimension of Dlatt is even,
it is straightforward to use (3) to show

detM = det[D†D + j 2] > 0 (5)

and hence there is no obstruction to Monte Carlo simulation
using orthodox numerical techniques.

In [1] we presented results from numerical simulation of the
model (2) and (4) using a hybrid Monte Carlo algorithm. The
coupling g−2a′ = 0.4, where the factor a′ = a2

s a
−1
t follows

because the interaction couples charge densities, was chosen
in the vicinity of the quantum critical point (QCP), although
since Nf = 4 � Nf c = 4.8(2) [6] it is hard to ascertain with
confidence on which side of the phase boundary at μ = 0 we
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are sitting. Two principal observables were monitored as a
function of μ and j , namely the carrier density

nc ≡ 1

2

∂ lnZ
∂μ

= 1

2
〈ψ̄D0ψ − φ̄D0φ〉, (6)

and the exciton condensate

〈〉 ≡ ∂ lnZ
∂j

= i〈ψ̄φ − φ̄ψ〉. (7)

Following extrapolation to the limit j → 0 (so long as
μat < 0.3 at which point saturation artifacts set in and the
continuum approximation fails), both observables showed
behavior consistent with rising smoothly from zero as μ is
increased, with

nc ∝ μ3.32(1), (8)

〈〉 ∝ μ2.39(2). (9)

This is to be contrasted with the expectations from weak
coupling. In free field theory the carrier density depends on
the volume contained within the Fermi surface; for relativistic
fermions kF ≈ μ and hence in 2 + 1d nc ∝ μ2. Similarly, in
weak coupling we expect the exciton condensate to arise from
electron-hole pairing with equal and opposite momenta from
within a shell of thickness 2� centered on kF ; hence 〈〉 ∝
�μ. The noncanonical scaling is taken to be a symptom
of strong field fluctuations near the QCP. Moreover, since
according to Luttinger’s theorem nc ∝ k2

F even in the presence
of interactions, we can adapt this argument to estimate the
scaling of the gap �(μ):

�(μ) = 〈(μ)〉
n

1
2
c (μ)

∝
{

constant weak coupling;
μ1.44(1) near QCP.

(10)

While the numerical value for the exponent should probably
not be taken too seriously, the qualitative difference between
the scaling predicted in weak coupling and observed near
the QCP is striking; indeed, Fig. 13 of [1] shows the ratio
〈〉/n

1/2
c extrapolated to j → 0 almost linearly proportional

to μ. Since near a QCP μ is the only energy scale in the
problem, naively � ∝ μ is expected. As both arguments
contain assumptions, it is clear that a direct calculation of
� from the quasiparticle propagator 〈(0)̄(x)〉 is needed.

III. QUASIPARTICLE DISPERSION

While the results outlined in the previous section are
intriguing, the conclusions, drawn from simulations of systems
with both significant UV and IR artifacts on a restricted range
of μ values, are necessarily provisional. In this paper we
will present complementary information through analysis of
the quasiparticle dispersion relation E(�k), which will enable
identification of the Fermi momentum kF and direct estimation
of the superfluid gap �. The basic observables are the timeslice
correlators in momentum space:

CN (�k,t) =
∑

�x
〈ψ(�0,0)ψ̄(�x,t)〉e−i�k.�x,

CA(�k,t) =
∑

�x
〈ψ(�0,0)φ̄(�x,t)〉e−i�k.�x, (11)

where we distinguish between normal propagation of an
electron or hole within a layer, and anomalous propagation
in which an electron moving in one layer is absorbed by
an exciton, transferring its momentum to an electron moving
in the other. On a finite volume in the absence of explicit
symmetry breaking j = 0, the anomalous component CA

necessarily vanishes.
Many momentum modes must be available in order to

obtain a good resolution for E(�k). Naively this would entail
making at least one of the spatial dimensions of the lattice as
large as possible [13]. It is much more efficient, however, to
employ partially twisted boundary conditions [14] in which
the constraint ψ(Lx) = eiθx ψ(0), with the angle θx adjustable,
is implemented in the calculation of the propagator (11) so that
accessible modes have

kx = 2πn + θx

Lx

. (12)

In practice the twist is implemented via a field redefinition
so that each x link in (4) is multiplied by a phase e±iθx/Lx .
Treating +x and −x independently, the choice θx = 2π/3
permits an effective tripling of the number of available
modes for a given Lx for the cost of an extra inversion
(although equivalent statistics requires twice as many twisted
inversions as nontwisted). For the two volumes investigated
here, the accessible modes were kas = 0, π

48 , . . . , nπ
48 , . . . ,(323)

and kas = 0, π
72 , . . . , nπ

72 , . . . ,(483). In all cases the maximum
accessible momentum for staggered fermions is π

2 .
Results were generated at g−2a′ = 0.4 at μat = 0.1,0.2 on

323 and μat = 0.1,0.15,0.2 on 483, with exciton source j ã =
0.005,0.01,0.02, . . . ,0.05 (here ã = aα

s a1−α
t with α defined by

the renormalization prescription adopted for the nonconserved
density ψ̄φ). A hybrid Monte Carlo algorithm with δτ =
0.0025 and mean trajectory length τ̄ = 2 (323) or τ̄ = 1 (483)
was used, and propagator measurements taken at the end of
every trajectory using a randomly chosen point source. The
results presented arise from O(5000) measurements at j ã =
0.005 up to O(3 × 104) at j ã = 0.05. Since the conventional
staggered fermion mass term is absent from (4), the global
symmetry

ψ �→ eiαε(x)ψ, ψ̄ �→ eiαε(x)ψ̄, φ �→ e−iαε(x)φ,

φ̄ �→ e−iαε(x)φ̄, (13)

with ε(x) ≡ (−1)x0+x1+x2 , means that CN (k,t) vanishes for t

even and CA(k,t) for t odd. Moreover, only ReCN and ImCA

survive the ensemble average. The resulting correlators are
then fitted to the forms [15]

CN (k,t) = Ae−EN t + Be−EN (Lt−t), (14)

CA(k,t) = C(e−EAt − e−EA(Lt−t)), (15)

to yield the k-dependent amplitudes A,B,|C| and the energy
E, which is extracted independently from both CN and CA.
Stable fits for CN (t) and CA(t − 1) were found for the windows
tat ∈ [7,25] (323) and tat ∈ [7,41] (483). It is slightly unusual
to have to deal with excited state contamination when fitting
a fermion propagator, which may be a symptom of the strong
fluctuations near a QCP; this was found to be an issue
particularly for k � kF .
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A j=0.05
B j=0.005
B j=0.05
|C| j=0.005
|C| j=0.05

FIG. 1. (Color online) Amplitudes obtained from fits to (14) and
(15) on 483 at μat = 0.1.

It is instructive first to consider the fitted amplitudes: Fig. 1
shows results from μat = 0.1 on 483, for two values of the
exciton source j . In the normal channel the time-asymmetric
form of CN is manifest, and changes in character as k increases.
For small k the forwards propagating signal is stronger,
but B/A grows with k and for kas � 0.2 the backwards
signal dominates. The interpretation is as follows [15]: for
k < kF the dominant excitations are holelike, and for k > kF

particlelike. Increasing j ã from 0.005 to 0.05 has the effect
of smearing the Fermi surface so that quasiparticles tend to
become an admixture of both, and the disparity between A

and B diminishes. The effect of smearing is also seen in the
anomalous channel, where CA grows steadily in magnitude
with increasing j . In weakly coupled models [13,15] |C(k)| is
nonmonotonic with a maximum near kF where particle-hole
mixing is strongest, but here the behavior is less clear cut. The
same trends with both k and j are observed at larger μ.

Figure 2 shows results from fits to the dispersion E(k)
for various μ at j ã = 0.01 from (14) and (15). The common

0 0.2 0.4 0.6 0.8 1
kas

0

0.1

0.2

0.3

Eat
 μ=0.10 483

 μ=0.10 323

 μ=0.15 483

 μ=0.15 483 anom
 μ=0.20 323

 μ=0.20 483

FIG. 2. (Color online) Dispersion relation E(k) in the normal
channel (unless stated) for various μ, for fixed j ã = 0.01.

0 0.1 0.2 0.3 0.4 0.5
kas

0

0.1

0.2

Eat ja=0.005
ja=0.01
ja=0.02
ja=0.03
ja=0.04
ja=0.05

FIG. 3. (Color online) E(k) in the normal channel for μat = 0.1,
for various j on 483.

feature is that E(k) is nonmonotonic with a minimum in
the neighborhood where the amplitude ratio A/B ≈ 1, which
we have identified as the Fermi momentum kF . For k < kF

quasiparticle excitations are holelike, and the energy needed
to excite them from the ground state decreases as k ↗ kF . For
k > kF , excitations are particlelike and the opposite holds true:
indeed, in this regime results from all three μ values studied are
plausibly consistent with being drawn from the same branch of
the dispersion curve appropriate to the vacuum (i.e., with zero
bias voltage). Figure 2 compares results from two volumes
323 and 483, and also for μat = 0.15 with fits in both normal
(14) and anomalous (15) channels. On the assumption that a
smooth curve may be drawn through the admittedly noisy data,
there is no evidence for any significant finite volume artifacts,
or systematic difference between the two channels.

Figure 3 plots E(k) for various j at μat = 0.1 on 483. The
nonmonotonicity observed above becomes more pronounced
as j → 0, and since there is little shift in the minimum with
j , we adopt the pragmatic procedure of identifying the Fermi
momentum kF with the value of k where E is minimum. The
resulting estimates are shown in Table I; the quoted error is
half the mode spacing on 483, except at μat = 0.2, where
the dispersion is flatter and a full mode spacing is taken. The
first observation is that kF is systematically greater than μ,
consistent with the precocious saturation of nc(μ) observed in
[1]. This is discussed further in Sec. IV, but already we note
a discrepancy with the expectation kF = μ for free massless
fermions with as = at . Setting aside the issue of the smearing
of the Fermi surface by an exciton gap � > 0, we can at
this stage test consistency with Luttinger’s theorem, which

TABLE I. Estimates for the Fermi momentum kF and comparison
with Luttinger’s theorem.

μat kF as nfree
c (μ)a2

s nfree
c (kF )a2

s nc(μ,j → 0)a2
s

0.10 0.175(22) 0.0032 0.011(3) 0.0095(1)
0.15 0.262(22) 0.0080 0.023(4) 0.0328(2)
0.20 0.436(44) 0.0139 0.068(15) 0.0905(3)
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FIG. 4. (Color online) Gap � vs j for various μ. Filled symbols
are from 483, empty from 323, and the dotted lines are fits to normal
data on 483 using (16).

states that nc depends solely on the geometry of the Fermi
surface characterized by kF , independent of the nature of the
interactions. The third column of Table I shows the carrier
density nfree

c evaluated for free massless fermions on the same
483 lattice at the reference value of μ, and the fourth with μ set
equal to kF in the second column; the fifth column gives the
value of nc in the interacting theory in the limit j → 0 obtained
in [1]. In all cases nfree

c (μ) � nfree
c (kF ), while the values of

nfree
c (kF ) and nc(μ) are comparable, which is encouraging;

however as μ increases nfree
c (kF ) < nc(μ) indicative of the

difficulties in precisely locating kF due to both the limited
momentum resolution and perhaps the absence of a sharp
Fermi surface due to exciton condensation.

In Fig. 4 we plot the gap � defined as the energy E(kF ).
Data from all available fits on both volumes are shown, in
both normal and anomalous channels. As before there is little
evidence for a systematic effect with lattice volume and both
channels yield consistent results. The dashed lines show an
extrapolation to j = 0 based on the quadratic form

� = �0 + aj + bj 2. (16)

It is clear limj→0 �(j ) �= 0 which is direct evidence for
spontaneous gap formation via exciton condensation for all
three values of μ. The resulting extrapolations, together with
the estimates for kF (μ) from Table I are shown in Fig. 5,
which is the main result of this paper. In the region of μ

studied it is clear that � varies strongly with and is of the same
order of magnitude as the chemical potential μ, which are
notable features of this particular model proposed in [1], and
indicative of strong interactions at the Fermi surface. This
conclusion holds in both normal and anomalous channels,
appears to be independent of volume, and is striking enough
to be robust against uncertainties introduced by the ad hoc
nature of our analysis [an analytic form against which to fit
the dispersion E(k) would be very valuable], the IR and UV
artifacts inherent in studies of lattice models with μ �= 0 [16],
and lack of knowledge of the physical anisotropy at/as . On the
basis of the three chemical potentials studied both � and kF

appear to scale superlinearly with μ, in qualitative agreement
with (10).

0 0.05 0.1 0.15 0.2 0.25
μat

0

0.1

0.2

0.3

0.4

0.5

Δat

483 N
483 A
323 N
323 A
kFas

FIG. 5. (Color online) �(j = 0) vs μ. The square symbols de-
note kF from Table I.

IV. DISCUSSION

In this paper we have used lattice Monte Carlo simulation
techniques to explore the quasiparticle dispersion relation
in an interacting field theory with nonzero charge density,
and shown that for k ∼ kF the excitations are gapped with
� ∼ O(μ), and � scaling faster than linearly with μ. This is
in sharp contrast to results from comparable studies of other
simulable models with μ �= 0. In [13] the gap in the 3 + 1d

Nambu Jona-Lasinio model (a relativistic analog of the original
BCS model) was shown to be approximately constant above
onset, independent of and numerically much smaller than μ,
consistent with the BCS result � ∼ �UV exp(−c�2

UV/μ2). In
QCD with gauge group SU(2) there is a so-called quarkyonic
regime above onset where 〈〉 ∝ μ2 [16]; this is consistent
with degenerate fermions in 3 + 1d with a gap � ∼ O(�QCD)
independent of μ. It is also very different from the result
�/μ ∼ O(10−7) obtained by self-consistent diagrammatic
techniques [7], although comparable with the large values of
�/μ obtained in [5], where it was found that � depends
sensitively on the treatment of screening effects, and in
particular on the reduction of screening once the superfluid
gap forms. One feature of our approach which does merit
comparison with the treatment in [5] is that competition
between inter- and intralayer pairing condensates can be
addressed; see Fig. 11 of [1].

We now return to Table I and the issue of why μat < kF as .
In [1] it was suggested this is because in a strongly self-bound
system the Fermi energy is necessarily less than the Fermi
momentum in natural units. While this may be plausible for a
system where μ � � is by far the largest scale, it is difficult
to see how this picture can persist in the regime we have been
focusing on. Another possibility, which we cannot dismiss,
is that the disparity is a lattice artifact caused by a large
induced anisotropy at/as ∼ O(0.5). Indeed, if we assume the
Fermi velocity remains close to one even in the presence
of interactions, then the dispersion data of Fig. 2 might
suggest at/as ≈ 0.3. However, a more compelling possibility
is that E(k) is not a linear relation, but rather a power law
characteristic of a nearby QCP. Rewrite the scaling form (8) as
nc ∝ μ2/z; the Luttinger scaling nc ∝ k2

F then gives E ∝ kz,
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where guided by Fig. 2 we assume the relation between EF

and kF completely characterizes the quasiparticle dispersion.
In this scenario the scaling (8) extracted from bulk observables
in [1] thus yields an estimate for the dynamical critical
exponent

z ≈ 0.6. (17)

Much greater numerical precision than achieved in Fig. 2
would be needed to distinguish these two possibilities un-
ambiguously. Another route would be to perform a “biased
bilayer” study for a related 2 + 1d theory, the Thirring model
[17], whose behavior as a function of Nf and μ is qualitatively
similar to the model here [18], but whose continuum action is
manifestly covariant implying at ≡ as throughout.

Finally, we note that the superlinear scaling of �(μ) is also
suggestive of a power law � ∝ μσ , with σ > 1, modifying

our naive expectation � ∝ μ. Clearly a much more extensive
simulation campaign is required to verify this interesting
possibility.
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