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Collective field theory for quantum Hall states
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We develop a collective field theory for fractional quantum Hall (FQH) states. We show that in the leading
approximation for a large number of particles, the properties of Laughlin states are captured by a Gaussian free
field theory with a background charge. Gradient corrections to the Gaussian field theory arise from the covariant
ultraviolet regularization of the theory, which produces the gravitational anomaly. These corrections are described
by a theory closely related to the Liouville theory of quantum gravity. The field theory simplifies the computation
of correlation functions in FQH states and makes manifest the effect of quantum anomalies.
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I. INTRODUCTION

Since the work of Laughlin [1], a common approach to
analyzing the physics of the fractional quantum Hall effect
(FQHE) starts with a trial ground-state wave function for N

electrons. Despite its success, this approach is an impractical
framework for studying the collective behavior of a large
number of electrons (N ∼ 106, in samples exhibiting the
QHE). As a result, some subtle properties of QHE states,
such as the gravitational anomaly [2–10], were computed only
recently.

The effects of quantum anomalies are essential in the
physics of the QHE. Although anomalies originate at short
distances on the order of the magnetic length, they control the
large-scale properties of the state, such as transport. It was
recently shown in Ref. [10] that, like the Hall conductance,
transport coefficients determined by the gravitational anomaly
are expected to be quantized on QH plateaus. For this reason,
it is important to formulate the theory of the QH effect in a
fashion that makes the quantum anomalies manifest. The field
theory approach seems the most appropriate for this purpose.

In this paper, we develop a field theory for Laughlin
states. This approach naturally captures universal features of
the QHE, and it emphasizes the geometric aspects of QH
states. We demonstrate how the field theory encompasses
recent developments in the field [2–10], and we obtain some
properties of quasihole excitations. A preliminary treatment of
this approach appears in Ref. [3].

The field theory framework uncovers a connection between
the QHE and random geometry, specifically two-dimensional
(2D) Liouville quantum gravity. Since its introduction, the
Laughlin wave function has been a practical model wave
function mainly because of the plasma analogy. This analogy
to a 2D statistical mechanical system allowed the most salient
features of the state—uniform density and fractional quasihole
charge—to be easily captured by a saddle-point approach to
the partition function of the equivalent plasma.

Every analysis to date has stopped at the saddle point. As
a result, subtle features of the theory such as the gravitational
anomaly were missed. We show how the Laughlin wave-
function maps to a full quantum field theory. This approach
allows us to go beyond the saddle point and includes quantum
fluctuations previously inaccessible by the plasma picture.

We present an analysis of the path-integral measure based
on quantum anomalies. In the process, we find that accounting

for the anomalies gives rise to the Liouville action. Thus, the
correction to the plasma mapping involves a quantum theory
of gravity, or random geometry.

The universal properties of the QHE are encoded in the
dependence of the ground-state wave function on electromag-
netic and gravitational backgrounds (see, e.g., [2]). For that
reason, we study QH states on a Riemann surface, and for
simplicity we focus on genus-0 surfaces.

We restrict our analysis to the Laughlin states. Our approach
is closely connected to the hydrodynamic theory of QH states
of Ref. [11] and the collective field theory approach of Gervais,
Sakita, and Jevicki developed in Ref. [12] and extended in
Refs. [13,14]. The action of the field theory for Laughlin states
is written in Sec. III. The leading part, Eq. (10), is equivalent
to the classical energy of a 2D neutralized Coulomb plasma
when the discreteness of particles is not taken into account.
This is used in the familiar plasma analogy of Ref. [1] to deduce
the equilibrium density, as well as properties of the quasihole
state such as charge and statistics. The other terms in the action
are more subtle but equally significant, and they give rise to
important effects including the gravitational anomaly.

II. COLLECTIVE FIELD THEORY

We start with some general remarks about the collective
field theoretical approach. To compute the expectation value
of an observable O(z1, . . . ,zN ) within the ground state
�(z1, . . . ,zN ), one has to evaluate a multiple integral over
the individual particle coordinates,

〈O〉 =
∫

�∗O� dV1 · · · dVN , dVi =
√

g(zi)d
2zi, (1)

and then proceed with the large-N limit. The field theory
approach assumes instead that the appropriate variables are
collective modes. In the QH systems, the ground state at a
fixed background gauge potential is a holomorphic function
of coordinates. On a Riemann surface, this means that the
wave function is holomorphic in complex (or isothermal)
coordinates where the metric is ds2 = √

g dz dz̄. Therefore,
holomorphic collective modes suffice for a complete field
theory of the QHE. On genus-0 surfaces they are power sums,

a−k =
N∑

i=1

zk
i , k � 1, Dϕ =

∏
k>0

da−kdā−k.
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The sum is taken in the N → ∞ limit, and the measure of
integration Dϕ represents a functional integration over the real
collective field ϕ(ξ ), where we denote ξ = (z,z̄). For further
discussion of the measure, see Sec. VI. The field is defined such
that its current, the holomorphic derivative ∂zϕ, is a generating
function of the modes a−k ,

i∂zϕ ≡ −i
∑
k�1

a−kz
−k−1. (2)

In this definition we assume that the field has no zero modes∫
ϕ dV = 0 and is therefore globally defined on the Riemann

surface. Expectation values are obtained by a functional
integral over the field with the appropriate action

〈O〉 =
∫

O[ϕ]e−�[ϕ]Dϕ∫
e−�[ϕ]Dϕ

(3)

as opposed to the multiple integral in Eq. (1). The collective
field ϕ defined by its expansion at infinity (2) can be extended
to the finite part of the plane excluding the positions of particles
where the current has poles ∂ϕ|z→zi

∼ −1/(z − zi). This field
is defined as

ϕ(ξ ) = 4π
∑

i

G(ξ,ξi), (4)

where G is the Green function of the Laplace-Beltrami
operator � with the zero mode removed, and which satisfies

−�G(ξ,ξ ′) = δ(2)(ξ −ξ ′) − 1

V
.

By definition, the collective field is a solution of the Poisson
equation

−�ϕ = 4π

(
ρ − N

V

)
, (5)

where ρ(ξ ) is the particle density.
We now specialize our discussion to the Laughlin state on

genus-0 surfaces, but the final results hold for any genus. The
Laughlin wave function reads

� = 1√
Z

∏
i<j (zi − zj )me

1
2

∑
i Q(ξi ), (6)

��Q = −2eB, (7)

where m = 1/ν is an integer, ν is the filling fraction, and Q is
the “magnetic” potential of a slowly varying magnetic field B.
Below we set e = � = 1.

The normalization Z , known as the generating functional,
was studied in Refs. [2,3]. The generating functional is
independent of the choice of coordinates and depends only on
the geometry of the surface through functionals of the metric.

At a given magnetic field, the state is normalizable if the
maximal number of particles is

N = νNφ + 1
2χ, (8)

where χ is the Euler characteristic of the surface (χ = 2 for a
sphere) and Nφ = 1

2π

∫
B dV is the total number of magnetic

flux quanta. We assume that the state contains a maximal
number of particles so the surface is completely filled and the
particle density has no boundary.

Our goal is to represent the probability density dP =
|�|2 ∏

i dVi as a functional integral over the collective field
Eq. (4) such that dP → e−�[ϕ]Dϕ.

III. MAIN RESULTS

Now we can formulate some results for the Laughlin state.
We compute the action �[ϕ] in Eq. (3) in the leading 1/N

approximation. The action consists of three parts,

�[ϕ] = �G[ϕ] + �B[ϕ] + �L[ϕ], (9)

which are conveniently written in terms of the field ϕ and
related field σ = log

√
ρ/(N/V ),

�G[ϕ] = 1

8πν

∫
[(∇ϕ)2 − Rϕ − 4νBϕ]dV, (10)

�B[ϕ] = 2

ν

(
ν − 1

2

)
N

V

∫
e2σ σ dV, (11)

�L[ϕ] = 1

24π

∫
[(∇σ )2 + Rσ ]dV, (12)

where R is a scalar curvature of the surface. The actions (10)–
(12) are derived in Secs. IV–VII. We remind the reader that the
field ϕ is defined such that

∫
ϕ dV = 0, so the coupling with

the curvature R and the magnetic field B in Eq. (10) occurs
only if the curvature and magnetic field are not uniform. If they
are uniform, the magnetic field enters only through relation (8).

The action is nonlinear since σ and ϕ are connected by
Eq. (5). It consists of three distinct terms at different orders in
1/N , in descending order. This can be seen by noticing that ϕ

defined by (4) is of the order N , while σ is of the order 1.
The leading term (10) of the action is the Gaussian free

field with a background charge that describes the coupling
to curvature; cf. [15–17]. The background charge is directly
related to the shift χ/2 in Eq. (8). Perturbatively, the action
(10) is equivalent to the Liouville theory of gravity (see, e.g.,
[18]) in the sense that the background charge increases the
central charge of the Gaussian field from 1 to 1 + 3ν−1. As a
consequence, the conformal dimension of the vertex operator
e−aϕ is

ha = 1
2a(1 − aν). (13)

The conformal dimension is equal to the spin of the quasihole.
This result refines the erroneous notion that the spin of a
quasihole matches its mutual statistics and the charge deficit;
both equal the filling fraction ν at a = 1.1

Formally the action (10) is that of a Gaussian free field and
possesses conformal invariance. This invariance breaks at the
next order of the action (11), except in the case of the bosonic
Laughlin state ν = 1/2 at which (11) vanishes.

Finally, the Polyakov-Liouville action (12) manifests the
gravitational anomaly. This part of the action alone is identical
to the action of the Liouville theory of gravity if the density
ρ = (N/V )e2σ is identified as a random metric [from this point
of view, the field ϕ plays the role of a random Kähler potential

1To the best of our knowledge, the spin of the quasihole was
correctly computed in Ref. [30]; see also [19,20].
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(cf. [21])]. The action does not possess the cosmological term
since the number of particles is fixed and

∫
e2σ dV = V . We

can check the consistency of the action against some known
results.

Minimizing the action, we find the first three leading terms
of the 1/N expansion of the ground-state value of the particle
density previously obtained in Ref. [2]. If the magnetic field is
uniform, it is also a gradient expansion in curvature,

〈ρ〉 = ρ̄ +
[

1

2ν

(
ν − 1

2

)
+ 1

12

]
(l2�)

R

8π
, ρ̄ = νB

2π
+ R

8π
,

(14)

where l = √
�/eB is the magnetic length.

The ρ̄ term in Eq. (14) comes from (10). Integrating over
the density yields the particle number (8), where the R/(8π )
term yields the background charge of χ/2 due to the Gauss-
Bonnet theorem

∫
R dV = 4πχ . The order l2 term in Eq. (14),

which receives contributions from both (11) and (12), does not
contribute to the particle number.

Linearizing the action on a flat space yields the propagator
of density modes,

�[ϕ] ≈ V

2N

∑
k

S−1(k)|ρk|2, (15)

where S(k) is the static structure factor expanded to order k6,
first computed in Ref. [22] (see also [2]),

S−1(k) = 2

(kl)2

[
1 + 1

ν

(
ν − 1

2

)
(kl)2 + 1

48ν
(kl)4 · · ·

]
.

Other results are described below.

IV. BOLTZMANN WEIGHT

The first step in constructing the collective field theory is
expressing the wave function (6) as a functional of the collec-
tive field. The amplitude of (6) is interpreted as the Boltzmann
weight of the neutralized Coulomb plasma |�|2 ∼ e−E , with
temperature set to unity. We express the energy in terms of
the Green function and the Kähler potential K defined by the
conditions ∂z∂z̄K = (π/V )

√
g and K ∼ log |z|2 + O(1/|z|)

at infinity. Note that for constant B, the potential becomes
Q = −NφK . The energy reads

E = − 2
∫ ∫

ρ(ξ )G(ξ,ξ ′)B(ξ ′)dVξdVξ ′ − N

∫
Q

dV

V

− 1

2
NNφ

∫
K

dV

V
+ 2π

ν

∑
i �=j

G(ξi,ξj ). (16)

The last term in Eq. (16) takes into account the discreteness of
particles.

In the continuum limit, we have to replace the sums over
particle positions

∑
i �=j G(ξi,ξj ) by integrals over the density

taking into account the excluded self-interaction at i = j .
We must therefore regularize the Green function G(ξi,ξj ) at
coinciding points. The regularized Green function is defined by
subtracting the logarithm of the geodesic distance |ξ − ξ ′|g1/4

between the points in units of the typical separation between

particles, which is of the order of ρ−1/2,

GR(ξ ) = lim
ξ→ξ ′

(
G(ξ,ξ ′) + 1

4π
log[|ξ − ξ ′|2ρ√

g]

)
. (17)

Thus
∑

i �=j G(ξi,ξj ) must be replaced by∫ [∫
G(ξ,ξ ′)ρ(ξ ′)dVξ ′ − GR(ξ )

]
ρ(ξ )dVξ .

Bringing all pieces together and integrating by parts,

E = E0 + �G[ϕ] − 1

2ν

∫
ρ log ρ dV, (18)

where �G[ϕ] is given by (10), and

E0 = N

νV

∫ ∫
log |ξ − ξ ′|2

(
ρ̄(ξ ′) − 1

2

N

V

)
dVξdVξ ′ ,

where ρ̄ is defined in Eq. (14). This gives the field-theoretical
representation of the wave function. We comment that the
short-distance regularization is determined by the density ρ

and for that reason depends on the state of the plasma. A
similar regularization scheme was employed for a 1D plasma
in Ref. [23].

V. ENTROPY

The next step is to pass from integration over coordinates of
individual particles to integration over the macroscopic den-
sity. This is a standard method in statistical mechanics (used
in a setting similar to ours in Ref. [23]). The transformation
defines the Boltzmann entropy SB[ρ] = − ∫

ρ log(ρ/ρ̄) dV ,∏
i

√
g(ξi)d

2ξi → eSB Dρ.

Combining the Boltzmann weight and the entropy, we obtain
the probability density

dP → e−E[ρ]+SB [ρ]Dρ.

Here, the free energy of local equilibrium is

E − SB = E0 + �G + �B.

We observe that the Boltzmann entropy and the short-distance
regularization of the Coulomb energy (18) combine to
form �B .

VI. GHOSTS

The next step is to determine the measure Dρ. Passing from
ρ → ϕ comes at the price of a Jacobian, which is given by the
spectral determinant of the Laplace-Beltrami operator,

Dρ ∼ det(−�)Dϕ. (19)

The determinant can be represented by (1,0) Faddeev-Popov
ghosts as det(−�) = ∫

e− ∫
η̄(−�)η dV Dη Dη̄, where η are

complex fermionic modes.

VII. GRAVITATIONAL ANOMALY

The last step involves the functional measure in Eq. (19).
The procedure we outline below is commonly used in the
theory of quantum gravity. Let us denote by X a field ϕ or
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ghosts η,η̄ and consider the deviation δX from a given value
of the field, say its mean. We define the norm of the deviation
as

||δX||2 =
N∑

i=1

[δX(ξi)]
2 =

∫
(δX)2ρ dV (20)

and assume that the measure is normalized as∫
DX exp[−||δX||2] = 1. Such normalization is supported

by calculations based on the Ward identity for Laughin states
[3]. Thus the measure for both ϕ and the ghost fields depends
in a nontrivial fashion on the density, and thus on ϕ itself.
So although the ghosts appear decoupled from the rest of the
action, in fact they are not.

The density ρ appearing in Eq. (20) can be treated as
a conformal factor of the metric and thus removed from
the measure by a conformal transformation of coordinates
dV → ρ−1dV . It is known, however, that under conformal
transformation, the measure transforms anomalously as

DX → ecX �L[σ ]DX,

where cX is the central charge of the field X, where �L[ρ] is
the Polyakov-Liouville action (5) [24]; see also [25]. This is
the Weyl or gravitational anomaly, which appears here in a
similar fashion as in the quantum theory of gravity. Applying
this to the collective field ϕ with the central charge +1 and
ghost with the central charge −2, we obtain the measure

e−�L[ρ]Dϕ Dη Dη̄.

After the Polyakov-Liouville action is taken into account, the
short-distance regularization of the field ϕ and ghosts does
not depend on density. Since the ghosts are decoupled, their
contribution is the spectral determinant of the Laplace operator.
Summing up, the probability distribution is

dP = Z−1det(−�)e−E0−�[ϕ]Dϕ. (21)

The ghosts determinant contributes to the finite-size correction
to the free energy of the Coulomb plasma [3,26].

Now we turn to some applications.

VIII. DENSITY AND GENERATING FUNCTIONAL

We start by computing the generating functional—the
normalization factor of the Laughlin wave function or (21).
The integral on the left-hand side of (21) is 1. The relevant
contribution to the integral on the right-hand side of (21) comes
from the Gaussian approximation. It consists of the on-shell
action �[ϕc] computed on the “classical” solution ϕc, which
minimizes the action. Computing Gaussian fluctuations, it is
sufficient to take into account only the leading part of the action
(10), ∫

e−�[ϕ]Dϕ = [det(−�)]−
1
2 e−�[ϕc].

Thus integrating (21) gives

Z = [det(−�)]
1
2 e−�0 , �0 = E0 + �[ϕc]. (22)

In the three first leading orders in the 1/N solution of
δ�[ϕ]/δϕ = 0 is the ground-state value of the field ϕc = 〈ϕ〉,
which, through (5), determines the ground-state value of

the density. Solving in the leading order in 1/N , we obtain
Eq. (14).

Inserting (14) back into (9), we find

�[ϕc] = −2π

ν

∫ ∫
ρ̄(ξ ′)G(ξ,ξ ′)ρ̄(ξ ′)dVξdVξ ′ .

The final result for the functional �0 in Eq. (22) is best
expressed in terms of the gauge potential and spin connection.
Their complex components are defined by

2i(∂z̄Az − ∂zAz̄) = B
√

g, 2i(∂z̄ωz − ∂zωz̄) = 1
2R

√
g.

In the transverse gauge ∂z̄Az = −∂zAz̄, ∂z̄ωz = −∂zωz̄, the
functional �0 has a compact form,

�0 = − 2

πν

∫ ∣∣∣∣
(

νAz + 1

2
ωz

)∣∣∣∣
2

dz dz̄.

It remains to recall the value of the spectral determinant of
the Laplace operator in Eq. (22). Up to a metric-independent
term, it is given by the Polyakov formula [27]

log det(−�) = − 1

3π

∫
|ωz|2dz dz̄.

As a result (cf. [3]),

logZ=
∫ [

2

πν

∣∣∣∣
(

νAz + 1

2
ωz

)∣∣∣∣
2

− 1

6π
|ωz|2

]
dz dz̄. (23)

In the form (23) it is valid on a surface with any genus.
The authors of Ref. [10] argued that the elements of the

Hessian matrix of the generating functional,

σH = π

2

δ2 logZ
δAzδAz̄

, 2ςH = π

2

δ2 logZ
δωzδAz̄

, − cH

12
= π

2

δ2 logZ
δωzδωz̄

,

are universal transport coefficients precisely quantized on QH
plateaus. Here σH is the Hall conductance, ςH determines the
current caused by changing the metric, and the third coefficient,
cH , describes forces exerted on the fluid as a result of changing
the metric. We refer to [10] for further details. For Laughlin
states, these coefficients are encoded in Eq. (23),

σH = ν, ςH = 1/4, cH = 1 − 3/ν. (24)

IX. QUASIHOLES—GAUGE ANOMALY

Introduced by Laughlin [1], a quasihole state with charge a

on a compact surface reads

�a = e
1
2 νa[Q(w)−aK(w)]

√
Za[w,w̄]

[
N∏

i=1

(zi −w)ae−
a
2 K(zi ,z̄i )

]
�, (25)

where w is a holomorphic coordinate of the quasihole, � is the
ground state (6) with N particles subject to the condition (8), a
is a positive integer less than m = 1/ν, and K is defined above
(16). The factor of exp [− a

2 K(ξi)] neutralizes the insertion
of the quasihole. This state covers the entire surface. The
exponential factor of aν

2 [Q − aK] in Eq. (25) is added for
convenience.

A quasihole is represented by the vertex operator
Va(w,w̄) = e−aϕ(w,w̄). In particular, the normalization factor
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Za , the generating functional for a quasihole state, reads up to
constants

Za[w,w̄] ∼ 〈Va(w,w̄)〉,
where the average is taken over the ground state (6) without
the quasihole. As such, the quasihole may be seen as a source
for the action (10) � → � + aϕ(w). However, there is a
caveat. The quasihole disturbs the electronic density around
itself in a vicinity of the size of the magnetic length. At the
limit of a vanishing magnetic length, the density becomes
singular. At the same time, the derivation of the action was
based on the assumption that the density is smooth. Therefore,
the derivation must be reexamined to take into account the
feedback of the singularity.

The leading 1/N value of (23) is given by the Gaussian part
of the action (10),

Za ≈ exp

(
−a〈ϕ〉 + a2

2
〈ϕ2〉c

)
. (26)

The mean of the field ϕ determined by (10) is

〈ϕ(ξ )〉 ≈ 4π

∫
G(ξ,ξ ′)ρ̄(ξ ′)dVξ ′ = νQ + 1

2
log

√
g(ξ ).

The variance is 〈ϕ2〉c ≡ 〈ϕ2〉 − 〈ϕ〉2 = 4πνGR , where the
regularized Green function is given by (17). But the GR

depends on the density itself, and in the leading approximation
one replaces the density by its mean such that 〈ϕ2〉c =
ν log (〈ρ〉√g). Putting this together, we obtain

Za ≈ (
√

〈ρ〉)νa2
(
√

g)−ha , (27)

where ha = a
2 (1 − νa) is the conformal dimension as in

Eq. (13).
In the leading approximation, the factor 〈ρ〉 in Eq. (27)

can be treated as a constant. Then (21) suggests that ha is
the conformal dimension of the quasihole state: the quasihole
state transforms as a primary field under a holomorphic
transformation. Symbolically,

w → f (w), Va → [f ′(w)]haVa.

Because the state is holomorphic [up to the normalization
factors in Eq. (25)], the holomorphic dimension ha is also the
spin of the state. Later we show this in a more direct manner.

In the next-to-leading approximation, we cannot assume
that the density (27) is a constant. As with the gravitational
anomaly above, the field transforms as ϕ → ϕ − aν log

√
ρ,

which modifies the vertex operator,

Va = (
√

ρ)νa2
e−aϕ,

such that the regularization of the two-point correlation
function at coincident points is independent of the state density.
Alternatively, we may say that the quasihole contributes to
the action as a source � → � + aϕ − a2ν log

√
ρ. Thus the

stationary point of the action reads

δ�

δϕ(ξ )
= −a

(
1 + νa

8πρ
�

)
δ(w − ξ ). (28)

In the linear approximation, we treat ρ in Eq. (28) as a constant
≈ν/(2πl2) and use (15). As a result, we obtain the first two

terms of the expansion in (kl)2,

ρk ≈ 2νa

(kl)2

(
−1 + a

4
(kl)2

)
S(k) ≈ −νa + (kl)2

2
(aν − ha).

Equivalently, the first two moments of the density δρ = 〈ρ〉 −
N
V

are ∫
δρ dV = −νa, (29)

1

2l2

∫
r2δρ dV = −νa + ha. (30)

The first is the fractional charge deficit −νa. This result goes
back to [1]. The second moment is more involved [28,29]. It
shows the dimension of the state [3]. Curiously, the second
moment vanishes at ν = 1

3 and a = 1.
Having determined the generating functional, we com-

pute the adiabatic phase γC acquired by the quasiholes by
transporting one around a closed path C. For simplicity, we
compute the adiabatic phase when one hole with coordinate
w1 moves around a closed path C enclosing another quasihole
with coordinate w2. The extension of (26) and (27) to the case
of two quasiholes is

Za1a2 (w1,w2) = Za1 (w1)Za2 (w2)e4πνa2a1G(w1,w2), (31)

where we used 〈ϕ(w2)ϕ(w2)〉c = 4πνG(w1,w2) and (26).
The adiabatic phase reads

γC = 2i

∫ [∮
C
�∂w1�dw1

]
dV1 · · · dVN.

Since the state is a holomorphic function of the position
of the quasiholes, only the normalization factor in Eq. (25)
contributes to the phase,

γC = −2πa1ν �C + i

∮
C
∂w1 logZa1a2dw1.

The first term is the Aharonov-Bohm phase picked up by a
particle with charge −a1ν enclosing the magnetic flux �C =
(N� + a1 + a2)area(C)/V in units of the flux quantum. The
contribution of the second term follows from (31),

i

∮
C
∂w1 logZa1a2dw1 = −ha1�C + 2πνa1a2. (32)

It contains the solid angle �C = i
∮

d log
√

g = 1
2

∫
C RdV .

The coefficient in front of it is the spin of the quasihole, equal
to the holomorphic dimension (13). This formula extends the
result of Ref. [30], which was for the adiabatic phase of a
single quasihole (a = 1) on a sphere.

The last term in Eq. (32), 4πiνa2a1
∮

dG(w1,w2), which
vanishes if the contour C does not enclose w2, is commonly
referred to as the mutual statistics of the quasiholes. When the
quasiholes are identical, it is equal to νa2, and it differs from
the spin.

X. EFFECT OF SPIN

Lastly, we comment on the effect of spin of quantum Hall
states. The spin, yet another characterization of the QH state
was introduced in Ref. [3]. The inclusion of spin comes
as a generalization of the lowest Landau level (LLL). We
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recall that the LLL are defined as zero modes of the anti-
holomorphic component of the kinetic momentum operator
π̄ = −i�∂̄ + �sω̄ − eĀ where ω̄ = −(i/2)∂̄ log

√
g, where

parameter s is the spin. Throughout, the paper we set the spin to
zero. Inclusion of spin shifts the magnetic potential Q in (7) by
−s log

√
g, such that the modified Q now satisfies the Poisson

equation �Q = − 2e
�

B + sR. As a result, the action acquires
an additional term s

4π

∫
ϕRdV, which shifts the background

charge in the Gaussian action

�G[ϕ] = 1

8πν

∫
[(∇ϕ)2 − (1 − 2νs)Rϕ − 4νBϕ]dV.

The Boltzmann entropy (11) and the Polyakov-Liouville action
(12) remain the same. Below we list some effects of spin.

Spin does not appear in local properties evaluated at
distances where change of curvature is negligible, for example
in a flat space. In particular the structure factor S(k) of Sec. III,
the charge of the quasi-hole (29) and its moment (30) are
independent of spin.

However, global characteristics depend on spin. As such,
the relation (8) between the total number of particles and
magnetic flux becomes

N = νNφ + 1

2
(1 − 2νs)χ. (33)

The spin modifies the conformal dimension (13) defined in
(27) and appearing in the adiabatic phase (32)

ha = 1

2
a(1 − 2νs − aν).

However, the second moment (30) will not acquire any spin
dependence, and will maintain its relation to the conformal
dimension at s = 0.

Spin also enters the generating functional (23)

logZ=
∫ [

2

πν

∣∣∣∣
(

νAz + 1

2
(1 − 2νs)ωz

)∣∣∣∣
2

− 1

6π
|ωz|2

]
dzdz̄.

Consequently, the Hall conductance does not depend on spin,
but the geometric transport coefficients in (24) do

ςH = 1

4
(1 − 2νs), cH = 1 − 3ν−1(1 − 2νs)2

For more details regarding the inclusion of spin into the
FQHE on a curved space, see Ref. [3].

XI. CONCLUSION

In summary, we formulated the theory of the Laughlin QH
states as a field theory of a scalar Bose field. The field theory
consists of the Gaussian action with the background charge
and the subleading corrections representing the gravitational
anomaly. We demonstrated that this theory captures conformal
properties of quasiholes, the adiabatic transport, and it clarifies
the effect of the gravitational anomaly.

Finally, we comment that the action similar to (9) has been
considered in Ref. [21] as an admissible action for a random
metric. The actions become analogous upon identifying the
fluctuating density as a random metric and the field ϕ as a
fluctuating Kähler potential.
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