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We introduce exactly solvable models of interacting (Majorana) fermions in d � 3 spatial dimensions that
realize a new kind of fermion topological quantum order, building on a model presented by S. Vijay, T. H. Hsieh,
and L. Fu [Phys. Rev. X 5, 041038 (2015)]. These models have extensive topological ground-state degeneracy
and a hierarchy of pointlike, topological excitations that are only free to move within submanifolds of the lattice.
In particular, one of our models has fundamental excitations that are completely stationary. To demonstrate these
results, we introduce a powerful polynomial representation of commuting Majorana Hamiltonians. Remarkably,
the physical properties of the topologically ordered state are encoded in an algebraic variety, defined by the
common zeros of a set of polynomials over a finite field. This provides a “geometric” framework for the
emergence of topological order.
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Topological phases are remarkable quantum states of matter
with quantized properties that are stable under local perturba-
tions and can only be measured by nonlocal observables [1].
The most celebrated example is the fractional quantum Hall
state, discovered more than thirty years ago [2]. The field
of topological matter has now become an exciting research
frontier at the crossroads between theoretical physics, quantum
information, and material science.

Our theoretical understanding of topological matter is
largely built on topological quantum field theory (TQFT)
[3]. In this framework, the action of quantum fields in a
space-time manifold is independent of its metric, but depends
crucially on its topology. Canonical quantization of these
fields in a multiply connected space yields a finite-dimensional
Hilbert space, describing the degenerate ground states of
topological matter. Wilson lines describe the world lines
of quasiparticle excitations, and the expectation value of
“knotted” Wilson lines determines the quasiparticle braiding
statistics. A hallmark of topologically ordered states in two
dimensions is the presence of mobile quasiparticles with
fractional statistics, or anyons [4].

Exactly solvable models often provide ideal playgrounds
and valuable insights in theoretical studies of topological
phases. In the past, a wide array of nonchiral topological
phases in two dimensions have been obtained in spin models
[5,6], whose universal properties are captured by topolog-
ical quantum field theories. Recently, an exotic quantum
phase with extensive topological ground state degeneracy
was discovered by Haah in three-dimensional (3D) spin
models [7]. A remarkable property of this phase is that all
topological excitations are strictly localized in space, a feature
which lies beyond the paradigm of topological quantum field
theory.

In this work, we introduce a wide range of translationally
invariant, solvable Hamiltonians of interacting Majorana
fermions that exhibit a new kind of fermion topological
quantum order. These models have extensive topological
degeneracy and a hierarchy of topological excitations that
are only free to move within submanifolds of the full lattice.
In one particular Hamiltonian in d = 3 spatial dimensions,

the fundamental excitations are strictly localized, while com-
posites of these excitations are free to move along one- and
two-dimensional surfaces. The fundamental excitations are
termed “fractons,” as they behave as fractions of a mobile
particle. Due to its fermionic nature, the topological order in
our model enables an electron to break up into these immobile
fractons; this appears to be the ultimate form of electron
“fractionalization” in three dimensions.

To systematically search for these models, compute their
ground-state degeneracy on a d-dimensional torus, and study
their excitations, we introduce a purely algebraic description
of commuting Majorana Hamiltonians. We demonstrate that
on a d-dimensional lattice with a two-site basis and a single
interaction term per unit cell, an ideal Majorana Hamil-
tonian generally exhibits extensive topological degeneracy.
We emphasize that each of our models may be written in
terms of complex fermions by choosing appropriate pairings
of Majorana fermions over the entire lattice. Our models
also admit a local mapping to a boson model with identical
topological degeneracy and a similar dimensional hierarchy of
excitations, after projecting out half of the Hilbert space. We
note that one of our models has similar phenomenology to a
spin model studied in Refs. [8,9].

Our approach to studying ideal Majorana Hamiltonians
provides a novel geometrical framework for topological order,
beyond topological quantum field theory. Remarkably, a
commuting Majorana Hamiltonian on a torus specifies an
algebraic variety—defined as the common zeros of a collection
of polynomials over a finite field—that encodes all physical
properties of the topologically ordered state. While a TQFT
assigns a ground-state sector to an isotopy class of smooth,
closed curves on a manifold, our models associate ground-state
sectors with curves based on finer equivalence relations,
resulting in extensive topological degeneracy in dimensions
d � 3. We emphasize that our models are distinct from the
exotic phase realized by Haah’s code [7] and related models
[10], due to the presence of mobile topological excitations that
are composites of fractons. As a related matter, separating a
set of isolated fractons “optimally” only requires creating a
finite number of mobile excitations during intermediate steps.
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Unlike Haah’s code, this energy cost is independent of the
distance of separation.

Universal features of our interacting Majorana models
clearly demonstrate that they are in distinct phases from non-
interacting stacks of lower-dimensional systems. We consider
one of our Hamiltonians—the Majorana cubic model—as a
concrete example. First, in a noninteracting stack of lower-
dimensional systems, all pointlike topological excitations
necessarily appear at the ends of stringlike operators (Wilson
lines). In contrast, the immobile fracton excitation in the
cubic model can only appear in isolation at the corners
of membrane-like operators. This feature alone rigorously
establishes this model as distinct from any stack of lower-
dimensional systems. Second, the topological ground-state
degeneracy D for the Majorana cubic model on an L × L × L

torus satisfies log2 D = 3L − 3, for any L. The universal,
subleading correction to log2 D is a unique signature of this
exotic phase that is impossible to obtain using a stack of lower-
dimensional systems that respect the same lattice symmetries
of our model; for example, log D must simply double as the
system size doubles for a stack of lower-dimensional systems.
We emphasize that both of the above features are independent
of energetics. Even the low-energy effective theory of a stacked
system with a similar excitation spectrum would still be
describing an identifiably distinct quantum phase of matter,
as these universal properties would be different. For similar
reasons, the remaining Majorana models identified in our paper
may not be obtained by a stacking procedure.

I. OVERVIEW

Due to the length of this paper, we begin with a detailed
summary of our findings. We consider exactly solvable
Hamiltonians of interacting Majorana fermions that realize
exotic forms of topological order. On a d-dimensional lattice
with a basis, these Hamiltonians will be the sum of a single
type of local operator over all lattice sites

H = −
∑
m

Om (1)

so that all operators mutually commute and square to the
identity, i.e.,

[Om,On] = 0, (2)

(On)2 = +1. (3)

The operator On is required to be a product of an even number
of Majorana fermions, so that the fermion parity of the entire
system is conserved. A ground state |�〉 of (1) will satisfy the
constraint that

Om |�〉 = |�〉 , (4)

for all m.
In Sec. II, we introduce a purely algebraic approach

to systematically search for and study topological order in
commuting Majorana Hamiltonians (1). A similar approach
has been used previously to study topological order in
commuting Pauli Hamiltonians [11]. We represent the operator
O appearing in (1) as a set of Laurent polynomials over the
field F2, which consists of two elements {0,1} withZ2 addition

and multiplication. We derive a mathematical condition for a
set of such polynomials to represent a commuting Majorana
Hamiltonian with topological order. This polynomial repre-
sentation enables us to analytically determine the topological
ground state degeneracy on a d-dimensional torus and deduce
properties of topological excitations using algebraic methods.

Using this polynomial approach, we demonstrate the
following remarkable results. First, a topologically ordered
commuting Majorana Hamiltonian on a lattice with a two-site
basis may be entirely specified by a single polynomial over
F2. The ground-state degeneracy for such a Hamiltonian on a
d-dimensional torus of size L, which we denote by D0, will
generally take the asymptotic form,

log2 D0 = c Ld−2 + O(Ld−3), (5)

for some constant c. We perform an exhaustive analysis and
discover a class of commuting Majorana fermion models on a
three-dimensional lattice with a two-site basis, which exhibit
extensive topological degeneracy of the form (5) with d = 3.

Remarkably, despite being translationally invariant, our
models admit fundamental pointlike excitations that are strictly
localized in space, and cannot move without paying a finite en-
ergy cost to create additional excitations. Composites of these
fundamental excitations, however, are topological excitations
that are free to move within submanifolds of the d-dimensional
lattice. We term these fundamental excitations that behave
as fractions of mobile particles “fractons.” Furthermore, we
refer to bound states of fractons that can only move freely
along an n-dimensional manifold as “dimension-n” particles.
In particular, a dimension-2 particle can be an anyon with
well-defined fractional statistics.

To motivate further study of ideal Majorana Hamiltonians,
we now describe in detail the phenomenology of fracton
excitations and their composites in the simplest of our models,
the Majorana cubic model. As shown in Fig. 1(a), here the
operator On is the product of the eight Majorana fermions at
the vertices of a cube. The Hamiltonian is simply the sum of
these operators over a face-centered-cubic (fcc) array of cubes,
forming a three-dimensional checkerboard. Since adjacent
cubes share a common edge with two vertices, operators
On on different cubes are mutually commuting, and their
common eigenstate defines the ground state. For convenience
in later analysis, we choose to identify four species of cube
operators—A,B,C, and D—as shown in Fig. 1(b).

A fundamental excitation in the Majorana cubic model is
obtained when the eigenvalue of a cube operator On is flipped.
The product of On over all cubes of a single type (A,B,C, or
D) is equal to the fermion parity � of the entire system and is
fixed:

� =
∏
p∈A

Op =
∏
p∈B

Op =
∏
p∈C

Op =
∏
p∈D

Op. (6)

Therefore, a single cube-flip excitation cannot be created
alone, and is a topological excitation. Remarkably, the funda-
mental cube excitation in this model is completely immobile,
as we observe through the following physical argument. In the
cubic model, acting on the ground state with a single Majorana
fermion flips the eigenvalues of four adjacent cube operators,
as shown in Fig. 1(b). This four-cube excitation may trivially
move by acting with a Majorana bilinear. If the fundamental
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−→ On ≡
∈cube(n)

γ

−→ γj

γj

A

B

C

D

(a)

(b)

FIG. 1. (Color online) Majorana cubic model. The Majorana
cubic model is defined on a cubic lattice, as in (a), with a single
Majorana fermion per lattice site (colored red). The operator On is
the product of the 8 Majorana fermions at the vertices of a cube.
The Hamiltonian is a sum of these local operators over every other
cube (colored blue in (a)) in a checkerboard pattern. As any pair
of operators either share exactly one edge or none, all operators
mutually commute. We choose to label the cubic operators A,B,C,
and D as shown in (b). Acting with a single Majorana operator γj at
the indicated site creates these four excitations.

cube excitation were mobile, then it would be possible to move
it in any arbitrary direction, as the cube operator itself preserves
all lattice symmetries. In this case, the cube excitation would
have well-defined (fermion or boson) statistics, and a four-cube
bound state could never be a fermion. Therefore, it must be the
case that the fundamental cube excitation is frozen. A rigorous
proof of the immobility of the fundamental excitation is given
in Sec. IV using the polynomial representation of the ideal
Majorana Hamiltonian.

We now analyze the fracton bound states in the Majorana
cubic model in detail, along with the mutual statistics of the
excitations. Using the labeling of the cube operators shown
in Fig. 1(b), we find the hierarchy of quasiparticles shown in
Table I in the Majorana cubic model. The fundamental fracton
excitation appears at the corners of membrane-like operators
and may only be created in groups of four. Two-fracton bound
states can form dimension-1 particles or dimension-2 anyons.
Remarkably, a dimension-2 anyon has π mutual statistics with
a fracton lying in its plane of motion. As a result, while the
fracton is immobile, its presence may be detected by a braiding
experiment. Furthermore, the exact location of a single fracton

TABLE I. Hierarchy of excitations in the Majorana cubic model.
The fundamental cube excitation is a fracton, while two-fracton bound
states can behave as particles that are free to move along either one-
or two-dimensional surfaces. The operator that creates each type of
excitation is indicated.

Excitation Type Statistics Operator

ABCD Majorana Fermion γ

AA,BB, Dim.-2 anyon Boson Pair of adjacent
CC,DD Wilson lines

AB, AC, AD, Dim.-1 particle Single Wilson line
BC, BD, CD

A, B, C, D Fracton membrane

within a finite volume V may be determined by braiding
dimension-2 anyons in the three mutually orthogonal planes
around the boundary ∂V . In this way, the exact quasiparticle
content within V is effectively encoded “holographically” and
may be determined by ∼O(�) braiding experiments, where �

is the linear size of a box bounding V .
We now proceed to explore the hierarchy of excitations in

detail.
Dimension-1 particle. The dimension-1 particle may be

created by acting with a single Wilson line operator, defined
by the product of the Majorana operators along a straight path
�. Up to an overall prefactor of ±1,±i, we write the Wilson
line operator as

Ŵ� ∝
∏
n∈�

γn. (7)

As shown in Fig. 2(a), the straight Wilson line anticommutes
with two cube operators at each of its end points; the two
cube excitations at a given end point are of different types.
As a result, Ŵ� creates pairs of excitations of the form
AB,AC,AD,BC,BD, or CD. Remarkably, these two-fracton
bound states are only free to move along a line, by simply
extending the Wilson line operator Ŵ� by acting with a
Majorana bilinear along the path �. If we try to move this
two-fracton bound state in a plane, we must introduce a corner
in the Wilson line, which localizes an additional topological
excitation at the corner, as shown in Fig. 2(b); the excitation
cannot be removed by the action of any local operator. As
the pattern of excitations produced by a Wilson line Ŵ� is
sensitive to the geometry of �, the two-fracton bound states
AB,AC,AD,BC,BD, and CD are restricted to move along
a line and behave as dimension-1 particles. We emphasize
that they cannot move in a higher-dimensional space without
creating additional cube excitations.

Dimension-2 anyon. Acting with a pair of adjacent Wilson
lines Ŵ

(1)
� and Ŵ

(2)
�′ along parallel paths � and �′, respectively,

also creates a pair of two-fracton bound states localized at the
ends, as shown in Fig. 3(a). At each end of the path, however,
the operator Ŵ

(1)
� Ŵ

(2)
�′ now creates pairs of cube excitations of

the same type (AA,BB,CC, or DD). These two-fracton bound
states, where each fracton is of the same type, are allowed to
move freely in the two-dimensional plane orthogonal to the
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Ŵ =
n∈

(iγ2nγ2n+1)A

B

D

A

Ŵ

(a)

(b)

FIG. 2. (Color online) Dimension-1 particle. Excitations (col-
ored) may be created by acting with Wilson line operators. In (a),
a straight Wilson line creates pairs of dimension-1 particles at the end
points. The dimension-1 particle may hop freely in the direction of
the Wilson line, by acting with Majorana bilinear terms. Remarkably,
the dimension-1 particle cannot hop in any other direction without
creating additional excitations. Introducing a “corner” in the Wilson
line, as in (b), creates an additional topological excitation localized
at the corner.

shortest line segment connecting the two paths � and �′ without
creating additional excitations; this is shown in Fig. 3(b).
We note that detailed geometric features of a single Wilson
line, such as the presence of sharp corners, determine the
pattern of excitations created from the ground state. However,
when acting with an appropriate pair of adjacent Wilson
lines, the excitations created at the sharp corners may be
annihilated. Therefore, a pair of adjacent Wilson lines may
be deformed in the plane with no energy cost. We conclude
that the AA,BB,CC, and DD two-fracton bound states are
dimension-2 anyons.

Braiding a dimension-2 anyon around a closed loop in the
plane is equivalent to acting with the product of cube operators
within the two-dimensional region enclosed by the loop; this is
shown for a particular choice of loop in Fig. 3(c). As a result,
braiding a dimension-2 anyon around a closed loop enclosing a
single fracton in the plane produces an overall minus sign. The
ability to detect a fracton with a dimension-2 anyon produces
nontrivial mutual statistics between the dimension-2 anyon
and other particles in the excitation spectrum of the Majorana
cubic model. First, a dimension-2 anyon has π mutual statistics

Ŵ
(1)

Ŵ
(2) =

n∈R
On

Ŵ
(1)

Ŵ
(2)

Ŵ
(1)B

B

Ŵ
(2)

B

B

Ŵ
(1)

Ŵ
(2)

(a)

(b)

(c)

FIG. 3. (Color online) Dimension-2 anyon. Acting with two ad-
jacent Wilson line operators Ŵ1 and Ŵ2 creates pairs of excitations
at the end points of the same type (AA,BB,CC, or DD). These
two-fracton excitations are free to move in a two-dimensional plane
orthogonal to the shortest line segment connecting the pair of Wilson
lines. Furthermore, in (b) we may detect a fracton (colored blue)
by braiding a dimension-2 anyon around a closed loop enclosing
the fracton. As the braiding operator, a pair of closed Wilson line
operators Ŵ1Ŵ2 is equal to the product of the enclosed cube operators
as shown above. Therefore, the braiding produces an overall minus
sign if an odd number of fractons are enclosed.

with any dimension-1 particle in the same plane, as braiding
the dimension-2 anyon in a closed loop will only detect one
of the two fractons that make up the dimension-1 particle.
Furthermore, the dimension-2 anyon has π mutual statistics
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M̂

B

B

FIG. 4. (Color online) Membrane operator and fracton excita-
tions. Acting with a product of Majorana operators on a surface
� creates localized excitations at the corners of the boundary ∂� as
shown above.

with dimension-2 anyons that are free to move in adjacent,
parallel planes.

Fractons and membrane operators. Acting with Majorana
operators on a flat, two-dimensional membrane � creates
fracton excitations at the corners of the boundary of �, as
shown in Fig. 4. We write the membrane operator up to an
overall prefactor of ±1,±i as

M̂ ∝
∏
n∈�

γn. (8)

For a rectangular membrane in the x-y plane, the boundary
∂� is a closed, rectangular loop with dimensions �x and �y .
We note that if �x and �y are both even, then the fracton
excitations created at the corners of ∂� will all be of the same
type. Alternatively, if �x is odd and �y is even, then the pairs
of fracton excitations separated in the y direction will be of
the same type, while fractons separated in the x direction will
be distinct. We emphasize that a fracton can only appear in
isolation at the corners of membrane operators. This can be
proven explicitly by adapting an argument in Ref. [8].

Extensive topological degeneracy. Using the algebraic
representation of the Majorana cubic model, we compute its
ground-state degeneracy D0 to be

log2 D0 = 3L − 3 (9)

on an L × L × L three-torus, with periodic boundary condi-
tions imposed in the x,y, and z directions, with each cube
having unit side length. Pairs of stringlike Wilson loop opera-
tors wrapping nontrivial cycles of the torus—corresponding to
tunneling dimension-2 anyons—distinguish the ground-state
sectors. As the number of distinct dimension-2 anyons grows
linearly with system size, the ground-state degeneracy is
necessarily extensive.

We emphasize that the algebraic approach allows us
to systematically search for topologically ordered, ideal
Majorana Hamiltonians, rigorously characterize the nature of
excitations, and calculate the ground-state degeneracy in a
wide range of Majorana models using techniques in algebraic

geometry. As a result, the next two sections of this work
introduce and focus on the polynomial representation of ideal
Majorana Hamiltonians and draw broad conclusions based
on this representation. In Sec. III, we present the 6 distinct
three-dimensional Majorana models with nearest-neighbor
interactions that are topologically ordered. In particular, one
of our models, which may naturally be written in terms
of complex fermions on an fcc lattice, has a fundamental
excitation that may only freely move along a line in the (1,1,1)
direction.

We conclude, in Sec. IV, with a proof of the presence of
fractons in the Majorana cubic model, and briefly outline the
phenomenology of excitations in the remaining models.

II. TOPOLOGICAL ORDER IN COMMUTING
MAJORANA HAMILTONIANS

In this section, we introduce a representation of the
operators in the ideal Majorana Hamiltonian (1) as a vector
of Laurent polynomials over the finite field F2. The algebraic
representation provides an important starting point for study-
ing and classifying Majorana Hamiltonians. We demonstrate
that the following conditions, that

(i) all operators in the ideal Hamiltonian mutually com-
mute, and

(ii) degenerate ground states of the Hamiltonian are locally
indistinguishable,

may be phrased entirely in the polynomial representation. The
ground-state degeneracy of an ideal Majorana Hamiltonian (1)
on the torus can be computed as the dimension of a quotient
ring [11].

We demonstrate that an ideal Majorana Hamiltonian obey-
ing (i) and (ii) on a lattice with a two-site basis and a single
interaction term per unit cell may be specified by a single
polynomial over F2. We use this result to systematically search
for and characterize commuting Majorana Hamiltonians. In
d = 3 dimensions, we find 6 distinct, nontrivial models with
nearest-neighbor interactions, extensive topological degener-
acy, and a dimensional hierarchy of excitations.

A. Algebraic representation

To study commuting Majorana Hamiltonians, we represent
the operator O appearing in Eq. (1) as a polynomial over
the field F2. A similar mapping has been introduced in the
context of Pauli Hamiltonians [11]. Consider a d-dimensional
lattice with translation operators {t1, . . . ,td} and an n-site unit
cell. We restrict n to be an even integer so that there is a
well-defined number of complex fermions per lattice site. We
label the Majorana fermions within the unit cell at the origin
as γj for j = 1,2, . . . ,n. All other Majorana fermions on the
lattice are obtained by acting with translation operators.

Any Hermitian operator acting on this lattice may be written
as a sum of products of Majorana operators. Formally, we may
write a summand O as

O =
n∏

j=1

∏
{ni }

(
tn1

1 · · · tnd

d · γj

)cj (n1,...,nd )
(10)

with ni ∈ Z and cj (n1, . . . ,nd ) ∈ {0,1}. For simplicity, we
have omitted the prefactor ±1,±i in the expression for O,
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which plays no role in our analysis. We introduce a purely
algebraic representation of this operator by noting that any
product of translation operators may be written as a monomial,
e.g., tn1

1 · · · tnd

d ⇐⇒ x
n1
1 · · · xnd

d . In this way, the action of
the translation group is naturally represented by monomial
multiplication.

Recall that distinct Majorana fermions anticommute and
that each Majorana operator squares to the identity. Therefore
at each site within a unit cell, the identity 1 and γ under
multiplication form the group Z2, with the two operators
represented by the group elements 0 and 1, respectively. In
this representation, the operator equality γ 2 = 1 maps to
the Z2 group addition 1 + 1 = 0. This simple algebra of
Majorana fermions allows us to write any product of Majorana
operators as the sum of monomials—representing the location
of each Majorana operator via the action of the translation
group—with Z2 coefficients. As an example, consider a lattice
with a single site per unit cell, and the Majorana operator
γ at the origin. A Majorana bilinear admits the following
polynomial representation:

γ · (
tm1

1 tm2
2 · · · tmd

d · γ
) ⇐⇒ 1 + x

m1
1 x

m2
2 · · · xmd

d . (11)

In this notation, operator multiplication corresponds to poly-
nomial addition with Z2 coefficients.

For the general case of a unit cell with n sites, we represent a
product of Majorana operators as a vector of polynomials over
F2, with the j th entry of the vector representing the action of
the translation group on γj , the j th Majorana fermions in the
unit cell at the origin. For example, the operator (10) may be
written as

S(x1,...,xd ) =
∑
{ni }

x
n1
1 · · · xnd

d

⎛
⎜⎜⎝

c1(n1,...,nd )
c2(n1,...,nd )

...
c2n(n1,...,nd )

⎞
⎟⎟⎠. (12)

Adopting the terminology in Ref. [11], we refer to S as the
“stabilizer map” for the remainder of this work.

To illustrate the algebraic representation of operators in
commuting Majorana Hamiltonians, we present a concrete
example. Consider the Majorana plaquette model in Ref. [12],
which is defined on a two-dimensional honeycomb lattice with
one Majorana fermion per site and a Hamiltonian of the form
(1), where Op is the product of the six Majorana fermions
at the vertex of a hexagonal plaquette p. We show a single
hexagonal plaquette on the lattice in Fig. 5(a), along with the
Majorana fermions γa and γb within the two-site unit cell.
The corresponding stabilizer map S(x,y) for the six-Majorana
operator is given by

S(x,y) =
(

1 + x + y

1 + x + xȳ

)
. (13)

Here, we adopt the notation that ȳ ≡ y−1,x̄ ≡ x−1. As shown
in Ref. [12], this Hamiltonian exhibits a novel form of Z2

topological order with fermion-parity-graded excitations and
exact anyon permutation symmetries.

Next, we consider the action of an arbitrary operator
W on the ground state |�〉 of the commuting Majorana
Hamiltonian. When W anticommutes with an operator On

(a) (b)

FIG. 5. (Color online) The Majorana plaquette model, as studied
in [12]. Consider a honeycomb lattice with a single Majorana fermion
on each lattice site. We define an operator Op as the product of the
six Majorana fermions on the vertices of a hexagonal plaquette p, as
shown in (a). The colored plaquettes in (b) correspond to the three
distinct bosonic excitations with mutual semion statistics (A, B, or C)
that may each be created in pairs by acting with Wilson line operators.

in the Hamiltonian, it flips its eigenvalue and thus creates an
excitation. We use a polynomial to record the locations of
all excitations in the state W |�〉; each location is labeled by
the translation vector connecting it to the origin. Specifically,
for a Hamiltonian with stabilizer map S(x1, . . . ,xd ) and an
arbitrary operator W with a polynomial representation P (W )
of the form (12), we define the “excitation map” E(x1, . . . ,xd )
so that E(x1, . . . ,xd ) · P (W ) ∈ F2[x±1

1 , . . . ,x±1
d ] describes the

excitations created by W . In the Supplemental Material [13],
we demonstrate that E is simply given from the stabilizer map
as follows:

E(x1, . . . ,xd ) = S(x1, . . . ,xd ), (14)

where S(x1, . . . ,xd ) ≡ [S(x1, . . . ,xd )]T .
As an example, the excitation map for the Majorana pla-

quette model is given by E(x,y) = (1 + x̄ + ȳ, 1 + x̄ + x̄y).
Below, we show the action of the operator γa at the origin in
the Majorana plaquette model, which creates three adjacent
excitations as specified by the red points. The locations
of the excitations are obtained by performing the matrix

multiplication of E with the polynomial representation (1
0)

of γa:

E(x,y) ·
(

1
0

)
= 1 + x̄ + ȳ. (15)

Therefore, the action of γa may be represented by the
polynomial 1 + x̄ + ȳ, labeling the locations of the flipped
plaquettes; here, the plaquette operator corresponding to the
origin (i.e., the location “1”) is to the right of γa , as can be
seen from its polynomial representation (13).

A dictionary that summarizes the relationship between
Majorana operators and polynomials is given in Table II.

B. Topological order and ground-state degeneracy
in the algebraic representation

The polynomial representation of Majorana operators
serves as a starting point for constructing commuting Ma-
jorana Hamiltonians that exhibit topological orders. As we
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TABLE II. Summary of the polynomial representation of Majo-
rana operators. An arbitrary operator in d spatial dimensions, written
as the product of Majorana fermions, may be represented as a vector
with entries in the (Laurent) polynomial ring F2[x±1

1 , . . . ,x±1
d ].

Operator Polynomial

Majorana fermion: Vector over F2:
γj 
ej

(j = 1, . . . ,n for each (n-dimensional unit vector
site in the unit cell) with j th entry equal to 1)

Translation: Monomial multiplication:
tn1

1 tn2
2 · · · tnd

d γj x
n1
1 x

n2
2 · · · xnd

d 
ej

Multiplication: Addition in F2[x1, . . . ,xd ]:
γj · tn

kγ� 
ej + (xk)n 
e�

demonstrate in the Supplemental Material [13], for a transla-
tionally invariant Majorana Hamiltonian with a single operator
per lattice site, all operators mutually commute if and only if
its stabilizer map S(x1, . . . ,xd ) satisfies the condition

S(x1, . . . ,xd ) · S(x1, . . . ,xd ) = 0. (16)

More generally, if the Hamiltonian contains multiple operators
per lattice site {O(i)}, then we may define a set of stabilizer
maps for each type of operator {Si}, so that the condition
Si(x1, . . . ,xd ) · Sj (x1, . . . ,xd ) = 0 for all i,j guarantees that
all terms in the Hamiltonian commute.

We next formulate a necessary and sufficient algebraic
condition for topological order in commuting Majorana
Hamiltonians, which requires that any degenerate ground
states of a topologically ordered Hamiltonian cannot be
distinguished by local operators. The local indistinguishability
is equivalent to the condition that, for any local operator Mi ,

	GS Mi 	GS = c(Mi) 	GS, (17)

where 	GS is the projector onto a ground-state sector and
c(Mi) is a constant that only depends on the operator. For our
case, consider an operator MI that is the product of Majorana
operators, and P (Mi), the polynomial representation of Mi . If
Mi anticommutes with any term in the Hamiltonian, then Mi

creates excitations when acting on the ground state, and we
have 	GS Mi 	GS = 0. If Mi commutes with the Hamiltonian,
then P (Mi) ∈ ker E, as Mi creates no excitations. In this case,
the condition 	GS Mi 	GS = c(Mi)	GS is guaranteed if Mi

may be written as a product of operators already appearing in
the Hamiltonian. More generally, any local operator M that
commutes with the Hamiltonian then takes the form

M =
∑

i

Mi, (18)

where each term Mi is the product of operators already
appearing in the Hamiltonian. This condition is necessary for
distinct ground-state sectors to be locally indistinguishable.

In our polynomial representation, we enforce the condition
(17) by requiring that the stabilizer and excitation maps satisfy
the following condition on an infinite lattice:

ker E ∼= imS. (19)

Recall that the image of S is the set of all polynomial linear
combinations of S(x1, . . . ,xd ), taking the form of∑

{ni }
x

n1
1 · · · xnd

d S(x1, . . . ,xd ), (20)

and representing all operators that can be written as a product
of the commuting operators appearing in the Hamiltonian.
On the other hand, the kernel of the excitation map E is the
set of all operators that do not create any excitation when
acting on the ground state. The above algebraic condition (19)
for topological order is thus equivalent to the statement that
any operator that creates no excitations on a ground state on
an infinite lattice is necessarily a product of operators {On}
already appearing in the Hamiltonian. In other words, there are
no nontrivial, locally conserved quantities, and any degenerate
ground states of the Hamiltonian are locally indistinguishable.
In summary, imposing the commutativity (16) and local indis-
tinguishability (19) conditions on a stabilizer map produces an
ideal Majorana Hamiltonian with topological order.

We may compute the ground-state degeneracy of an ideal
Majorana Hamiltonian in the polynomial representation via
constraint counting. A lattice with 2M Majorana fermions
defines a 2M -dimensional Hilbert space. On the torus, however,
fixing the eigenvalues of the commuting operators in the ideal
Majorana Hamiltonian only imposes M − k multiplicatively
independent constraints, since the product of certain operators
appearing in the Hamiltonian will yield the identity. The
ground-state degeneracy is simply given by the space of states
satisfying the constraints, which is precisely 2M/2M−k = 2k .
As each ideal Majorana Hamiltonian in this work consists of
exactly one term for each pair of Majorana modes, we see
that k is directly equal to the number of constraints on the
commuting operators appearing in the Hamiltonian.

For example, in the Majorana plaquette model, we may
group the plaquette operators {Op} into three types (A,B, and
C) as shown in Fig. 5(b). On the torus, the product of the
A-, B-, and C-type operators is identical and equal to the total
fermion parity [12]. This yields the following two independent
constraints:∏

p∈A

Ôp

∏
p∈B

Ôp =
∏
p∈B

Ôp

∏
p∈C

Ôp = 1, (21)

and produces a 22-fold degenerate ground state on the
torus. These constraints may be compactly represented using
polynomials labeling the locations of the A-, B-, and C-type
plaquettes. For example, the collection of all A plaquettes is
captured by the polynomial

pA = (1 + xy + x2y2)

(
L−1∑
n=0

x3n

)(
L−1∑
m=0

y3m

)
. (22)

It is straightforward to expand pA to verify that the exponents
of the nonzero terms describe the positions of A plaquettes.
Here, L specifies the periodic boundary conditions in the x and
y directions, so that xL = 1,yL = 1. Similarly, the collections
of all plaquettes in B and C are encoded in ypA and x̄ypA,
respectively. The constraints (21) arise from the fact that (pA +
ypA)S = 0, using Eq. (13) and the boundary conditions.

In terms of the stabilizer map, any multiplicative constraint
on the operators in the ideal Majorana Hamiltonian on the
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torus is in one-to-one correspondence with a solution p of the
equation p · S = 0, so that the polynomial p is an element of
the kernel of S. Therefore, the number of independent relations
is given by

k = dimF2 [ker(S)]. (23)

We rewrite the expression (23) in a more convenient form
for calculations that will also allow us to make general
statements about the scaling behavior of the ground-state de-
generacy with system size for an ideal Majorana Hamiltonian
of the form (1). As proven in Corollary 4.5 in Ref. [11], Eq. (23)
is equivalent to the dimension of the following quotient ring:

k = log2 D = dimF2

(
F2[x1, . . . ,xd ]

I (S) + bL

)
. (24)

Here, I (S) the ideal generated by the stabilizer map; if
ST = (s1, . . . ,s2n) then I (S) is the space of polynomials in
F2[x±1

1 , . . . ,x±1
d ] obtained as a linear combination of {si}:

I (S) ≡
{

p =
2n∑
i=1

cisi

∣∣∣∣ ci ∈ F2
[
x±1

1 , . . . ,x±1
d

]}
. (25)

We will denote the ideal generated by a set {s1, . . . ,sn} by
〈s1, . . . ,sn〉. Furthermore, we define the ideal bL ≡ 〈xL

1 −
1, . . . ,xL

d − 1〉. As the quotient space identifies the zero
element in F2[x±1

1 , . . . ,x±1
d ] with the generators of I (S) + bL,

we observe that the ideal bL is used to enforce the periodic
boundary conditions on a d-dimensional torus with side
length L.

We emphasize that the ideal I (S) is the space of excitations
that can be created through the action of any operator on the
ground state. Therefore, the expression (24) may be physically
interpreted as counting certain superselection sectors of
the ideal Majorana Hamiltonian. Any p ∈ F2[x±1

1 , . . . ,x±1
d ]

corresponds to a virtual eigenstate of the Hamiltonian with
excitations at the locations specified by the polynomial p.
Certain states, however, cannot be created by acting with an
operator on a ground state |�〉 due to the k constraints on the
commuting operators. For example, in the Majorana plaquette
model, it is impossible to obtain a state with a single plaquette
excitation by acting on the ground state, since the products of
A,B, and C plaquettes must satisfy (21). As I (S)/[I (S) ∩ bL]
is the set of excitations that can be created by the action
of operators on the ground state for a finite system, the
quotient space (F2[x±1

1 , . . . ,x±1
d ]/bL)/{I (S)/[I (S) ∩ bL]} =

F2[x1, · · · ,xd ]/[bL + I (S)] is the set of virtual eigenstates
of the Hamiltonian that cannot be deformed into each other
through the action of any local operator. For the Majorana
plaquette model, this quotient space is

F2[x,y]

〈1 + x + y, x + y + xy, xL − 1, yL − 1〉
∼= F2

2 (26)

when L mod 3 = 0 so that there are an equal number of A,B,
and C plaquettes. In this case, the trivial vacuum (0) and
a state with a single plaquette excitation (1) on A,B, or C

correspond to the four superselection sectors in the quotient
ring. A summary of the physical interpretation of various
algebraic quantities in the context of a commuting Majorana
Hamiltonian is given in Table III.

TABLE III. Dictionary of various algebraic quantities and their
physical interpretation in the context of a commuting Majorana
Hamiltonian.

Algebraic Expression Physical Interpretation

S(x1,..,xd ) · S(x1,..,xd )=0 Commutativity condition, that all
operators {On} appearing in the
Hamiltonian mutually commute.

im(S) Set of operators that may be written
as the product of commuting
operators {On} in the Hamiltonian.

ker(E) Set of operators that create no
excitations when acting on the
ground state |�〉.

k = dimF2 [ker(S)] The number of independent relations
among the commuting operators
in the Hamiltonian, when placed
on a torus. The ground-state
degeneracy D = 2k .

p ∈ F2[x±
1 , . . . ,x±

d ] A configuration of excitations,
specified by the locations of
operators {On} with flipped
eigenvalue −1.

q ∈ I (S) A configuration of excitations that
may be created by acting with an
operator on the ground state |�〉.

The expression for the ground-state degeneracy (24) is
convenient as the dimension of a quotient ring may be
computed using algebraic techniques. Most often, we will
determine a Gröbner basis for the ideal I (S) + bL in order to
determine membership in the quotient ring. For a polynomial
ring R, we may define a total monomial ordering (e.g.,
lexicographic order with x1  x2  · · ·  xd ); we denote the
leading monomial in a polynomial h ∈ R as LM(h) with
respect to this ordering. Given an ideal I = 〈s1, . . . ,sn〉 of a
polynomial ring, there exists a canonical choice of generators
for the ideal, known as the Gröbner basis {g1, . . . ,gn}, with the
property that for any f ∈ I,LM(f ) ∈ 〈LM(g1), . . . ,LM(gn)〉,
i.e., any element of the ideal has a leading term contained in the
ideal generated by the leading terms of the Gröbner basis. As a
result, the dimension of the quotient ring dim[R/I ] is merely
given by the number of monomials that are smaller (in the
monomial ordering) than all of the leading terms in the Gröbner
basis. This is because any polynomial p ∈ R may be reduced
by the Gröbner basis until the leading term of the reduced
polynomial satisfies LM(pred) < LM(gi) for all i = 1, . . . ,n.
Therefore, each monomial m satisfying m < LM(gi) for all
i corresponds to a unique representative of the quotient
ring R/I .

We note that calculations of the ground-state degeneracy for
any commuting Majorana Hamiltonians presented in this work
are done by determining a Gröbner basis for the ideal I (S) +
bL. In this way, the calculation of the degeneracy reduces to
counting points in an algebraic set.
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C. Unitary and stable equivalence

The polynomial representation of the ideal Majorana
Hamiltonian contains built-in redundancies, since we may
redefine the unit cell or translation operators on the d-
dimensional lattice. For the stabilizer map, the translation
corresponds to multiplication of any entry of S(x1, . . . ,xd )
by a monomial. In this way, a stabilizer map S(x1, . . . ,xd )
is only defined up to monomial multiplication on each of
its entries. Furthermore, for an ideal Majorana Hamiltonian
with longer-range interactions, we may always enlarge the
unit cell. As our focus will be on Majorana models with
nearest-neighbor interactions, we neglect this redundancy in
the stabilizer map.

Equivalence relations, given by local unitary transforma-
tions on ideal Majorana Hamiltonians, may also be considered
in the polynomial language. For instance, two ideal Majorana
Hamiltonians defined by stabilizer maps S(x1, . . . ,xd ) and
S ′(x1, . . . ,xd ) are unitarily equivalent if there exists a matrix
U such that S ′(x1, . . . ,xd ) = U · S(x1, . . . ,xd ), where U ∈
O(n;F2), an orthogonal matrix over F2 satisfying UT U = 1.
This guarantees that if S(x1, . . . ,xd ) · S(x1, . . . ,xd ) = 0, then
S ′(x1, . . . ,xd ) · S ′(x1, . . . ,xd ) = 0 as well. Finally, we take
two stabilizer maps to be stably equivalent if we can obtain
one from the other by attaching a trivial (dimerized) set of
Majorana fermions. This is expressed as S(x1, . . . ,xd )T ∼
S(x1, . . . ,xd )T ⊕ (0, . . . ,0,1,1).

III. EXTENSIVE TOPOLOGICAL DEGENERACY IN d � 3

Using the commutativity (16) and local indistinguishability
(19) conditions, and the built-in redundancy in the polynomial
description, we demonstrate in the Supplemental Material
[13] that an ideal Majorana Hamiltonian defined on a d-
dimensional lattice with a two-site basis is topologically
ordered if the stabilizer map may be written in the following
form, after multiplying each entry by appropriate monomials:

S =
⎛
⎝f (x1, . . . ,xd )

f (x1, . . . ,xd )

⎞
⎠, (27)

where f (x1, . . . ,xd ) ∈ F2[x±1
1 , . . . ,x±1

d ] and f and f̄ are
co-prime; i.e., f and f̄ have no common polynomial factors.
As a result, a topologically ordered, ideal Majorana Hamil-
tonian with a two-site basis may be specified by a single
polynomial. For example, the stabilizer map for the Majorana
plaquette model takes the form ST = (f (x,y), x · f (x,y))
with f (x,y) = 1 + x + y.

The dimension of the quotient ring (24) scales as the
dimension of the space of the zeros of the ideal I (S) over
the field extension F2m when L = 2m − 1. As a result, for an
ideal Majorana Hamiltonian (1) with a two-site unit cell, the
space of solutions to

f (x1, . . . ,xd ) = 0, f (x1, . . . ,xd ) = 0 (28)

generally defines a (d − 2)-dimensional variety, so that the
ground-state degeneracy scales on the d-dimensional torus
with side length L as log2D = cLd−2 + · · · for some constant
c. We emphasize that this produces a class of ideal Majorana
models with extensive topological degeneracy in d = 3 dimen-

sions. Remarkably, while our models have a two-dimensional
Hilbert space and a single interaction term per lattice site,
this only constrains the full Hilbert space up to extensive
topological degeneracy.

We have exhaustively searched for distinct, ideal Majorana
Hamiltonians with a two-site basis and nearest-neighbor inter-
actions in d = 2 and d = 3 spatial dimensions. This is straight-
forward as the orthogonal group O(2;F2) = {12×2, σ

x} so that
the space of local unitary transformations between these ideal
Majorana Hamiltonians is trivial. In d = 2 spatial dimensions,
the only such Hamiltonian is the Majorana plaquette model
with

f (x,y) = 1 + x + y. (29)

In d = 3 dimensions, however, we find 7 distinct Majorana
models with a two-site basis and nearest-neighbor interactions.
The first model has the polynomial representation f0(x,y,z) =
1 + y + z and is a trivial stack of two-dimensional Majorana
plaquette models. The polynomial representations of the
remaining models, along with their ground-state degeneracies
on a torus of side length L, are shown in Table IV. For
simplicity, we have imposed periodic boundary conditions by
requiring that tL

x = tL
y = tL

z = 1 for the translation vectors
{tx,ty,tz} shown in the representation of the Majorana cubic
model f1(x,y,z) = 1 + x + y + z in Table IV. Each of the
models shown exhibits extensive topological degeneracy and
admits at least one topological excitation that is free to move
in a submanifold of the full lattice.

IV. FRACTON EXCITATIONS
AND DIMENSION-n ANYONS

A remarkable feature of these Majorana models is the
presence of fundamental excitations that are either perfectly
immobile or only free to move in a submanifold of the lattice;
attempting to move these excitations by acting with any local
operator will necessarily create additional excitations. A bound
state of these immobile excitations, however, forms a particle
that can freely move along a higher-dimensional submanifold.

The existence of a fracton fundamental excitation may
be shown rigorously in the polynomial representation of the
Majorana models. An element p ∈ I (S) of the ideal defined
by the stabilizer map corresponds to a set of excitations that
may be created by acting on the ground state. The fundamental
excitation is mobile if and only if it is possible to create an
isolated pair of such excitations. Therefore, an ideal Majorana
model admits fracton excitations if the stabilizer ideal contains
no binomial terms; i.e.,

1 + x
n1
1 x

n2
2 · · · xnd

d /∈ I (S) (30)

for any ni ∈ Z.
We now apply the polynomial criterion for fracton ex-

citations to the Majorana cubic model and to the model
f5(x,y,z) = 1 + x + y + z + xy + yz + xz, both shown in
Table IV.

A. Fractons in the Majorana cubic model

We consider the Majorana cubic model, specified by
the single polynomial f (x,y,z) = 1 + x + y + z, so that the
stabilizer map is given by S = (f (x,y,z), f (x,y,z))T . We
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TABLE IV. (Color online) We find 7 distinct, topologically ordered ideal Majorana Hamiltonians with nearest-neighbor interactions
on a lattice with a two-site unit cell in d = 3 spatial dimensions. The first model f0(x,y,z) = 1 + y + z (not shown) is a trivial stack of
two-dimensional Majorana plaquette models, considered in Ref. [12]. For the remaining 6 models, the action of the elementary operator O
appearing in the ideal Majorana Hamiltonian is shown above as the product of the Majorana fermions on the indicated red dots. In the depiction
of the Majorana cubic model f1(x,y,z), we have also shown the choice of translation vectors {tx,ty,tz} on the lattice, originating from one of the
sites within the unit cell; to compute the ground-state degeneracy on an L × L × L torus, we impose periodic boundary conditions by requiring
that tL

x = tL
y = tL

z = 1. For the Majorana cubic model, the more natural boundary conditions (t−1
x ty tz)L/2 = (tx t−1

y tz)L/2 = (tx ty t−1
z )L/2 = 1

yield the ground-state degeneracy log2 D = 3L − 3 as described in Sec. I. The topological ground state degeneracy (D) of each of these models
is extensive. For models f3(x,y,z),f5(x,y,z), and f6(x,y,z), the ground-state degeneracy on the three-torus is a highly sensitive function of
system size, and only the maximum value of the degeneracy is shown for the indicated choices of L.

f1(x,y,z) f2(x,y,z) f3(x,y,z) f4(x,y,z) f5(x,y,z) f6(x,y,z)

f 1 + x + y + z
1 + z + xy

+yz + xz

1 + x + y

+yz + xz

1 + y + z

+xy + yz + xz

1 + x + y + z

+xy + yz + xz

1 + x + y

+z + yz

O

log2 D 3L − 2
6L − 6 (L = 3n)

0 (L �= 3n)

4L/3 (L = 6 · 2n)
8L/5 (L = 5 · 2n)

...

4L − 4 (L = 2n)
2L − 1 (L = 2n + 1)

2L − 2 (L = 22n+1 − 1)
2L − 4 (L = 22n − 1)

...

4L/3 (L = 6 · 2n)
8L/5 (L = 5 · 2n)

...

wish to prove that the ideal generated by the stabilizer map
I (S) contains no binomial terms, so that the fundamental cube
excitation is a fracton. This may be shown by considering the
zero locus of the ideal, i.e., the solutions to the zeros of the
generators of the ideal:

1 + x + y + z = 0, (31)

xyz + xy + yz + xz = 0. (32)

A polynomial p belongs to I (S) only if p vanishes on the
zero locus of the ideal. Note that solutions to (31) take the
form (x,y,z) = (1,α,α),(α,1,α), or (α,α,1), where α is an
arbitrary element in the extension of F2. However, we see that
the binomial 1 + xnymz� vanishes on this space of solutions
only if n = m = � = 0, in which case the binomial is zero.
Therefore, we conclude that

1 + xnymz� /∈ I (S). (33)

As a result, there is no way to create the fundamental cube
excitation in the Majorana cubic model in pairs. Therefore, the
cube excitation is an immobile fracton; a single cube excitation
cannot be moved without creating additional excitations.

B. Dimension-1 fundamental excitations in f5(x, y,z)

Now, we consider the isotropic model f5(x,y,z) = 1 +
x + y + z + xy + yz + xz, with stabilizer map defined by
S(x,y,z) = (f5(x,y,z), xyz · f5(x,y,z)). From the excitation
map E(x,y,z) ≡ S(x,y,z), we find that the Majorana bilinear
along the (1,1,1) direction creates a pair of fundamental
excitations:

E(x,y,z) ·
(

1
1

)
= 1 + xyz. (34)

Therefore, the fundamental excitation in this model is clearly
not a fracton. We now demonstrate that the fundamental exci-
tation may only hop freely along the (1,1,1) direction, without
creating additional excitations. Consider the variety V (I )
defined by the stabilizer ideal I (S) = 〈1 + x + y + z + xy +
yz + xz, xyz + x + y + z + xy + yz + xz〉, i.e., the zero lo-
cus of the generators of the ideal over an extension of F2. The
following is a point on the variety:

(x,y,z) =
(

t,
1

1 + t
,
t + 1

t

)
(35)

with t in an extension of F2. As a result, if 1 + xnym ∈ I (S),
we must have from (35) that tn = (1 + t)m for infinitely
many t . This can only be true if n = m = 0. As a result, the
fundamental excitation cannot hop freely in the xy plane. As
the generators of the ideal are symmetric under exchanging
any pair of variables (e.g., x ←→ y), we conclude that
1 + ynzm,1 + xnzm ∈ I (S) only if n = m = 0, so that the
fundamental excitation cannot freely hop in the yz or xz planes.
From these results, we are led to the conclusion that

1 + xnymz� /∈ I (S) (36)

when n,m, and � are distinct. Therefore, we have shown that
the fundamental excitation in the model defined by f5(x,y,z)
is restricted to hop along the (1,1,1) direction of the cubic
lattice without creating additional excitations.
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