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The competition between Kondo screening and indirect magnetic exchange is studied for a system with
geometrical frustration using dynamical mean-field theory (DMFT). We systematically scan the weak- to strong-
coupling regime of the periodic Anderson model on the triangular lattice for a wide range of fillings n. The
magnetic phase diagram is derived using a site-dependent DMFT approach by self-consistent mapping onto
three independent single-impurity models corresponding to the three correlated f orbitals in the unit cell. At
half-filling, the system is a nonmagnetic Kondo insulator for all considered interaction strengths U > 0, which
immediately develops into a nonmagnetic metallic Kondo-singlet phase for fillings slightly below half-filling.
On the other hand, indirect magnetic exchange between the f moments results in antiferromagnetic order at
lower fillings. The antiferromagnetic and Kondo-singlet phases are separated in the U -n phase diagram by an
extended region of partial Kondo screening, i.e., a phase in which the magnetic moment at one site in the unit cell
is Kondo-screened while the remaining two are coupled antiferromagnetically. At even lower fillings, the system
crosses over from a local-moment to a mixed-valence regime in which the minimization of the kinetic energy in
a strongly correlated system gives rise to a metallic and partially polarized ferromagnetic state.
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I. INTRODUCTION

The periodic Anderson model is the model of choice to
describe heavy-fermion materials realized in crystals [1,2] or
in quantum simulations [3,4]. It generically describes a band of
light conduction electrons of bandwidth W hybridizing, with
matrix element V , with a narrow band of f electrons located at
energy εf . Since the f band is narrow, Coulomb correlations
are important and are taken into account by an on-site Hubbard
interaction U .

The emergent many-body scales depend very much on
the choice of bare parameters. In the absence of electronic
correlations, hybridization leads to an intrinsic f -band width
� = πV 2/W that gives an energy scale to assess the impact of
the Hubbard U . In particular, the formation of a local magnetic
moment in a metallic host has been studied in Ref. [5]. It
corresponds to a choice of bare parameters where the lower
(upper) Hubbard band is below (above) the Fermi energy μ,
namely εf + �/2 < μ < εf − �/2 + U . For strong U in the
local-moment regime, the effective low-energy physics can be
approximated by the more simple Kondo-lattice model [2,6]:
Here, charge fluctuations on the f orbitals are completely
suppressed, and a super-exchange-like mechanism [7] yields
a magnetic energy scale, namely a local antiferromagnetic
exchange J = 8V 2/U between the local and the conduction-
electron moments. The local magnetic moment corresponds
to a local Kramers doublet and is thereby—in the absence of
correlations—protected by time-reversal symmetry.

The residual entropy can be quenched by different and com-
peting mechanisms. Magnetic ordering breaks time-reversal
symmetry and is driven by the Ruderman-Kittel-Kasuya-
Yosida (RKKY) [8] interaction. The corresponding energy
scale is set by the effective coupling strength JRKKY(q) =
−J 2χs(q,ω = 0), where χs is the conduction-electron spin
susceptibility. It is an indirect interaction that is mediated
via magnetic polarization of the conduction electrons. This

energy scale competes with the Kondo scale [9,10] given by
TK ∝ e−W/J . For temperatures below TK, the local magnetic
moment is screened through the formation of a many-body
entangled spin-singlet state with the conduction-electron spin
degrees of freedom. The competition between RKKY coupling
and Kondo screening leads to the famous Doniach diagram
[11] and to corresponding quantum phase transitions [12].

Some heavy-fermion materials, such as CePdAl, are syn-
thesized on frustrated geometries [13]. This introduces another
energy scale in the problem associated with the release
of frustration via a mechanism of partial Kondo screening
(PKS) [14]. Here, a site-selective Kondo effect alleviates
the frustration, thus allowing the remnant spins to order
magnetically via the RKKY interaction. Such site-dependent
screening can occur spontaneously, or it can reflect chemically
different environments in compounds with large unit cells.

The mechanism of partial Kondo screening has attracted
considerable attention in the past [15,16]. The purpose of the
present paper is to study the effect in the Anderson lattice
beyond the static mean-field approximation [17,18]. This is
achieved by applying a variant of the dynamical mean-field
theory (DMFT) [19] for the Anderson model on the triangular
lattice, where the different correlated orbitals in the unit
cell are treated independently, similar to a real-space DMFT
approach [20]. We will show that the competition between
RKKY coupling and Kondo screening, supplemented by lattice
frustration, leads to a remarkably rich phase diagram including
a PKS phase emerging in the local-moment regime at the
border between paramagnetic heavy-fermion and magnetically
ordered phases.

The Anderson lattice has richer physics than the
Kondo-lattice model since it allows for charge fluctuations on
the f sites. In conjunction with strong spin-orbit coupling, for
example, this naturally leads to the concept of a topological
Kondo insulator [21,22], which was argued to be realized
in SmB6 [23,24]. Here, we extend our study beyond the
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local-moment regime and consider magnetic phases in the
mixed-valence regime. This is realized when the lower
(or upper) Hubbard band overlaps with the chemical
potential, i.e., if εf + �/2 � μ. In this regime, our numerical
calculations indicate a completely different physics and
predict ferromagnetic order in particular. We argue that the
latter is reminiscent of itinerant-electron ferromagnetism
caused by strong electron correlations in single-band models
on frustrated geometries [25].

Our study should be understood as only a first contributing
step toward a deeper understanding of the competition between
magnetic order and Kondo screening on frustrated lattice
geometries: While dynamical mean-field theory treats local,
temporal correlations exactly and correctly accounts for the
Kondo effect, it also suffers from the simple mean-field-type
description of spatial correlations. With regard to the effective
RKKY interaction, the DMFT does capture its full spatial
structure and therewith the corresponding tendencies toward
magnetic ordering, but the feedback of nonlocal magnetic
correlations on the one-particle Green’s function is neglected.
We expect that this missing feedback will result in a somewhat
biased description that probably overestimates the instabilities
against magnetic ordering. Despite this and other possible
deficiencies that are characteristic of any mean-field approach,
we believe that the nonperturbative and internally consistent
physical picture that is provided by the DMFT will serve
as an important starting point for future studies, such as
cluster and other extensions of the DMFT concept [26],
where the effects of short- and long-range correlations are
progressively included. Even this route cannot be expected to
provide a final answer, given the complexity of the problem
posed by strong correlations in fermionic models on two-
dimensional frustrated lattices, and it must be supplemented by
complementary approaches, such as variational wave functions
(see Ref. [27] for an example). However, the phase diagram
derived from the site-dependent DMFT approach presented
here will in any case provide a useful starting point and a
valuable point of orientation in this general context.

The article is organized as follows. The next section
introduces the model, the site-dependent DMFT approach, and
the solver employed here. Section III presents the numerical
results. We discuss the DMFT phase diagram and analyze the
different phases and mechanisms in detail. Conclusions are
given in Sec. IV.

II. MODEL AND METHOD

The periodic Anderson model describes correlated “f ” or-
bitals with a repulsive on-site interaction that locally hybridize
with the “c” orbitals of a noninteracting system of itinerant
conduction electrons. We study the Anderson model on the
two-dimensional triangular lattice and consider a partitioning
of the lattice into nonprimitive unit cells containing three sites
each, as shown in Fig. 1. Within the variant of the standard
DMFT approach employed here, these sites will be treated
as inequivalent (see below). Using standard notations, the
Hamiltonian reads

H =
∑
rr′

∑
αα′

∑
σ

c†rασ tαα′ (r − r′)cr′α′σ

+V
∑
rασ

(c†rασ frασ + f †
rασ crασ )

U

U

U

t

ttV V

V
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FIG. 1. (Color online) Periodic Anderson model on the triangular
lattice. Right: primitive unit cell (light gray, dashed lines) and unit
cell (gray, solid lines), spanned by the vectors a1 and a2, considered
here. The latter contains three sites (A,B,C) treated independently
within site-dependent dynamical mean-field theory. Left: for each
site, a correlated (f ) orbital with local interaction U couples to an
uncorrelated conduction-electron (c) orbital via the hybridization of
strength V . The nearest-neighbor hopping t = 1 between conduction-
electron orbitals sets the energy scale.

+ εf

∑
rασ

f †
rασ frασ

+ U

2

∑
rασ

f †
rασ frασ f

†
rα−σ frα−σ . (1)

Here, r runs over the position vectors to the different unit
cells, α ∈ {A,B,C} refers to the sites within a unit cell, and
σ ∈ {↑,↓} is the spin projection. c†rασ (f †

rασ ) creates an electron
in the c (f ) orbital with quantum numbers r,α,σ . Conduction
electrons are assumed to hop between nearest-neighboring
sites, i.e., the hopping amplitude tαα′ (r − r′) = t �= 0 if r,α
and r ′,α′ are nearest neighbors. Furthermore, V is the local
hybridization strength, and U is the strength of the Hubbard-
type local interaction on the f orbitals. The one-particle
energy of the f orbitals is εf and for the c orbitals it
is εc ≡ tαα(0).

Dynamical mean-field theory (DMFT) [19] assumes that
the self-energy on the f orbitals is local, 	rασ,r ′α′σ ′(ω) =
δr,r ′δαα′	σσ ′(ω), and it maps the lattice problem onto an effec-
tive single-impurity Anderson model with one-particle param-
eters or, equivalently, with a hybridization function �σσ ′(ω)
that is determined from the local element of the lattice Green’s
function Gloc,σσ ′ (ω) via the DMFT self-consistency condition.
This implicitly assumes that the dynamical mean-field �σσ ′ (ω)
is homogeneous. Consequently, only homogeneous phases of
the DMFT equations can be found in this way. In the real-space
DMFT approach [20] the self-energy is still assumed to be
completely local, but inhomogeneous solutions of arbitrary
complexity are allowed by keeping the full spatial dependence
of the local self-energy: 	rασ,r ′α′σ ′(ω) = δr,r ′δαα′	rα;σσ ′(ω).
Here, we employ a “site-dependent DMFT” by assuming
that the local self-energy may have different elements on the
different sites in a unit cell that is larger than a primitive
cell. Otherwise, the self-energy is taken to be homogeneous:
	rασ,r ′α′σ ′(ω) = δr,r ′δαα′δσσ ′	ασ (ω). Restricting ourselves to
collinear magnetic phases for simplicity, we consider a
possibly spin-dependent but spin-diagonal self-energy.
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For the above-mentioned partitioning of the triangular
lattice, this ansatz for the self-energy means that the periodic
Anderson model is self-consistently mapped onto three in-
dependent impurity models with possibly spin-dependent but
spin-diagonal one-particle parameters. The impurity models
can be solved independently, but they are coupled indirectly via
the DMFT self-consistency equation. In particular, we do not
impose any further condition on the spatial or spin dependence
of 	ασ (ω). Thereby, we can account for different phases,
in particular for collinear magnetic phases, characterized by
inhomogeneous order parameters within a unit cell.

Below, we briefly list the main equations of the site-
dependent DMFT approach: Exploiting the remaining trans-
lational symmetry, Fourier transformation of the one-particle
term of the Hamiltonian (1) provides us with a 6 × 6 hopping
matrix,

ε(k) =

⎛
⎜⎜⎜⎜⎜⎝

εf 0 0 V 0 0
0 εf 0 0 V 0
0 0 εf 0 0 V

V ∗ 0 0 εc εAB(k) εAC(k)
0 V ∗ 0 ε∗

AB(k) εc εBC(k)
0 0 V ∗ ε∗

AC(k) ε∗
BC(k) εc

⎞
⎟⎟⎟⎟⎟⎠

(2)
for each wave vector k in the reduced Brillouin zone. We have

εAB(k) = t
[
1 + 2 cos(ky/2)e−i

√
3

2 kx
]
,

εAC(k) = t
[
1 + e−i

√
3

2 kx e−i 1
2 ky + e−iky

]
, (3)

εBC(k) = t
[
1 + e−iky + ei

√
3

2 kx e−i 1
2 ky

]
.

With this, and with a guess for the local but site-dependent
f self-energy 	ασ (ω) (for α ∈ {A,B,C}), we can start the
DMFT self-consistency cycle by calculating the elements of
the local lattice Green’s function via

Gloc,γ δ,σ (ω) = 1

L

∑
k∈BZ

[
1

ω + μ − ε(k) − �σ (ω)

]
γ δ

, (4)

where γ,δ run over the six orbitals in the unit cell and where
the 6 × 6 matrix �σ (ω) is diagonal and nonzero on the f

orbitals only. μ is the chemical potential that is used to fix
the total particle density. The local Green’s function is used
to determine the hybridization functions of the three single-
impurity Anderson models (α ∈ {A,B,C}) as

�ασ (ω) = ω + μ − εf − 	ασ (ω) − 1

Gloc,αα,σ (ω)
. (5)

Having defined the impurity models, the self-consistency cycle
is closed by calculating the self-energy 	ασ (ω) for each
impurity model independently.

The computational bottleneck of the DMFT cycle consists
in the solution of the effective impurity problems. Here, we
use the continuous-time quantum Monte Carlo method [28,29]
based on the hybridization expansion of the action of the
respective impurity model [30] at finite but low temperatures
T . Since the interaction term is a density-density Hubbard-type
interaction only, it is advantageous to employ the segment-
picture variant [30,31]. Following Ref. [32], this allows us
to directly measure the impurity self-energy 	ασ (iωn) on the
fermionic Matsubara frequencies iωn.

FIG. 2. (Color online) f - and conduction-electron densities of
states ρ(f )(ω) and ρ(c)(ω), respectively, for the noninteracting (U = 0)
Anderson model on the triangular lattice. Energy units are fixed by the
nearest-neighbor hopping t = 1. Additional parameters: V = 1, εc =
εf = 0. Centers of gravity are located at ω = 0.

III. RESULTS

DMFT calculations have been performed for the model,
Eq. (1), with different chemical potentials μ to scan the
interesting regime at and off half-filling n = 1, where n is
given by

n = 1

6

∑
α=A,B,C

∑
σ=↑,↓

(
n(f )

ασ + n(c)
ασ

)
(6)

with n
(f )
ασ = 〈f †

rασ frασ 〉 and n(c)
ασ = 〈c†rασ crασ 〉. The Hubbard

interaction is scanned in the weak- to intermediate-coupling
range 0 � U � 4 where the nearest-neighbor hopping t = 1
fixes the energy scale throughout the paper. Note that choosing
t > 0 is convenient as this implies that the center of gravity
of the total density of states (see Fig. 2) is located close to
the lower band edge. Symmetry-broken magnetic phases are
therefore expected to occur for fillings below half-filling. We
furthermore fix the hybridization strength at V = 1 and choose
εf = −U/2 for the on-site energy of the f orbitals. For strong
U , this ensures that the occupancy of the f orbital at any site α

in the unit cell is close to unity, i.e., n(f )
α ≡ 〈n(f )

α↑ 〉 + 〈n(f )
α↓ 〉 ≈ 1.

The on-site energy of conduction-electron orbitals fixes the
energy zero: εc = 0.

Our main result is the phase diagram for the Anderson
model on the triangular lattice as obtained by site-dependent
DMFT. This is displayed in Fig. 3. To cover the relevant
parameter region, we have performed ∼500 independent
DMFT calculations on the SuperMUC supercomputer cluster
of the LRZ Munich for different U and μ in several massively
parallel runs with step sizes �U = 0.5 and �μ = 0.05. We
have considered the model, Eq. (1), on a lattice with 25 × 25
unit cells and periodic boundary conditions to perform the k
sum in Eq. (4) explicitly. This is sufficient to ensure that the
results do not depend significantly on the system size, as has
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FIG. 3. (Color online) U -vs-n phase diagram of the Anderson
model on the triangular lattice as obtained by site-dependent dynam-
ical mean-field theory. Each point corresponds to a converged DMFT
calculation using CT-QMC (hybridization expansion, segment code)
as a solver at β = 100. At half-filling n = 1 (solid line), the system is a
Kondo insulator (KI) for all U � 0. Off half-filling, we find a metallic
Kondo singlet state (KS, dots) as well as three different collinear
magnetic phases: a partial Kondo-singlet phase (PKS, circles), an
antiferromagnetic phase (AFM, squares), as well as a ferromagnetic
phase (FM, triangles).

been checked carefully. Self-consistent results are indicated
as dots and symbols in Fig. 3 in the U -n plane. About 200
iterations of the DMFT self-consistency cycle usually turned
out to be sufficient for convergence. To allow for spontaneous
breaking of the SU(2) spin-rotation symmetry, we explicitly
treat the σ = ↑ and the σ = ↓ channels as independent
of each other within the CT-QMC solver. Furthermore, the
DMFT cycle is started with a spin-asymmetric Hartree-Fock-
type initial self-energy. It turns out that magnetic phases, if
present, are easily found and stabilized in this way. Within
the present study, we focus on magnetic phases with collinear
moments for simplicity even though noncollinear magnetic
phases may be expected in the case of the triangular lattice
due to geometrical frustration. In fact, previous Hartree-Fock
(HF) calculations at and off half-filling [17,18] suggest that
a “classical” noncollinear 120◦ antiferromagnetic phase is
realized in a certain range of the phase diagram. We expect
that, by enforcing collinearity, the 120◦ phase is replaced by
a collinear “↑,↑,↓” antiferromagnetic phase, which has also
been found within HF theory [17,18].

A. Phase diagram

Figure 3 shows five different phases. At half-filling, the
system is a nonmagnetic Kondo insulator (KI) in the entire U

range considered here. For fillings sightly off half-filling, the
system stays nonmagnetic but immediately becomes metallic.
Above half-filling, this nonmagnetic “Kondo singlet” (KS)
phase is the only phase that has been found, at least up to
n = 1.1–1.2. Below half-filling and for a sufficiently strong
interaction, U > Uc ≈ 2, there are two different magnetic
phases, namely an antiferromagnetic phase (AFM) and a phase

with partial Kondo screening (PKS). The AFM phase is a
collinear “↑,↑,↓” phase in which the magnetic moments at
two sites (say, A and B) in the unit cell are ferromagnetically
aligned and of equal magnitude while the third moment is
antiferromagnetically oriented to the former two with a mag-
nitude such that the total magnetic moment in the unit cell is
zero: m(f )

A + m
(c)
A = m

(f )
B + m

(c)
B ≡ m0 > 0 and m

(f )
C + m

(c)
C =

−2m0 < 0. Here, m
(f )
α ≡ n

(f )
α↑ − n

(f )
α↓ and m(c)

α ≡ n
(c)
α↑ − n

(c)
α↓.

The PKS phase is characterized by one site (say, A) with
vanishing ordered magnetic moment, or almost vanishing
moment (see the discussion below), while the moments on
the two remaining sites are of equal magnitude but antiferro-
magnetically aligned: m

(f )
B + m

(c)
B ≡ m0 = −(m(f )

C + m
(c)
C ) >

0. The total moment in a unit cell is again zero. The AFM
and the PKS phases appear in a certain filling range nc1(U ) <

nc2(U ), which increases in width with increasing U and which
is roughly centered around n ≈ 0.9. The PKS phase appears
at weaker U as compared to the AFM phase, and it separates
the latter from the nonmagnetic KS phase for n → nc1(U ).
At much lower fillings, there is also a ferromagnetic phase
(FM) with a nonzero total magnetic moment per unit cell. This
requires a significantly weaker critical interaction Uc ≈ 1.25
as compared to AFM and PKS magnetic phases. The FM phase
is realized in a rather narrow filling range, roughly centered
around n ≈ 0.75 for weak U and n ≈ 0.67 for U = 4.

We expect that the phase diagram obtained for inverse
temperature β = 100 and shown in Fig. 3 is close to the zero-
temperature phase diagram. To estimate the remaining effects
that are due to a finite β, we have studied the parameter region
close to the PKS phase for a somewhat higher temperature
(β = 70). The results are shown in Fig. 4. Comparing the
phase diagrams for the different temperatures, there are no
qualitative differences. Merely the extension of the AFM and
the PKS phases in the U -n plane is somewhat reduced for

FIG. 4. (Color online) U -vs.-n phase diagram as in Fig. 3 but for
β = 70 and in a smaller filling range including the AFM and PKS
phases.
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FIG. 5. (Color online) Upper panel: The difference between the
occupancy of the f (c) orbitals and the average filling, n(f )

α − n (n(c)
α −

n), as a function of n. Results for different sites in the unit cell: A

(green), B (blue), and C (red). Lower panel: Chemical potential μ

as a function of n. Calculations for U = 2.5. Additional parameters:
V = 1,β = 100.

β = 70, and the critical interaction increases a bit from Uc ≈ 2
(β = 100) to Uc ≈ 2.5 (β = 70).

B. Kondo insulator at half-filling

We start the discussion with the KI phase at half-filling.
The insulating nature of this phase is easily verified by means
of the charge susceptibility κ = ∂n/∂μ, which is found to
vanish at half-filling for any U � 0. For U = 0 and half-filling,
the system is actually a simple band insulator: The chemical
potential is located in the hybridization band gap, which opens
for any V > 0; see Fig. 2. For the correlated system at U = 2.5,
the charge gap �c at half-filling can be read off from the μ

range in which the charge susceptibility κ vanishes; see the
lower panel of Fig. 5, where μ is plotted as a function of n. The
gap persists for all U > 0 and decreases with increasing U , as
is obvious when comparing with the charge gap for U = 3.5,
for example, which can be read off from the lower panel in
Fig. 6 (note the different scales for μ in the two figures).

It is tempting to relate this decrease of the energy scale
with increasing U to the decrease of the coupling constant
J = 8V 2/U in the effective low-energy Kondo lattice that is
formally obtained by the Schrieffer-Wolf transformation [7]
in the local-moment regime of the Anderson lattice model.
Local magnetic moments, required for magnetic long-range
order, are formed on the f orbitals due to a strongly repulsive
Hubbard U . One must be aware, however, that even for
U = 4 there are still substantial charge fluctuations on the f

orbitals. This is indicated, for example, by an ∼5% deviation
of the average f occupancy from unity at half-filling (see
the upper panels of Figs. 5 and 6). Hence, the system is
not fully in the local-moment limit. Nevertheless, we find an
antiferromagnetic linear response of the conduction-electron

FIG. 6. (Color online) The same as Fig. 5 but for U = 3.5.
Results for different sites in the unit cell: A (green), B (blue), and C

(red), as indicated.

magnetic moments when applying a homogeneous static
magnetic field to the f electron spins. This indicates an
antiferromagnetic (J > 0) coupling between the local f and
c spins consistent with the local-moment picture provided by
an effective Kondo lattice.

Deep in the local-moment regime for U → ∞ at fixed V ,
the physics would be governed by a small energy scale, set
by J , or even by TK ∝ e−W/J , which makes calculations at
stronger U extremely difficult: In fact, we have not been able
to stabilize a self-consistent solution of the DMFT equations
at interaction strengths substantially stronger than U = 4.

Interestingly, there is no magnetic phase found at half-filling
n = 1. This is contrary to static mean-field (HF) theory for
the same model [17], which generates a rather complex phase
diagram that comprises different magnetic as well as insulating
and metallic phases at half-filling. Using the Hartree-Fock
approximation for the self-energy,

	(f )
ασ (ω) = U

〈
n

(f )
α−σ

〉
, (7)

we have reproduced the HF results of Ref. [17] for V = 1
as a check of our numerical implementation. As the DMFT
correctly accounts for local fluctuations beyond the static
mean-field theory, we conclude that those local fluctuations
are sufficient to destroy any magnetic order at n = 1 (and in
the U range considered here).

C. Metallic Kondo singlet phase

For fillings slightly off half-filling, the system becomes
immediately metallic and has a finite charge compressibility
κ > 0 (see the lower panels of Figs. 5 and 6). Actually κ turns
out to be nonzero for any filling. In contrast with previous HF
calculations [18], this implies that there is no instability toward
phase separation.

The local correlations between f and c spins are
strongly antiferromagnetic, as indicated by a corresponding
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FIG. 7. (Color online) Top panel: Filling dependence of the
f -orbital double occupancy d (f )

α = 〈f †
α↑fα↑f

†
α↓fα↓〉 (relative to its

noninteracting value n
(f )
α↑ n

(f )
α↓ ) for U = 2.5. Results for different sites

A (green), B (blue), and C (red) in the unit cell as indicated. Middle
and bottom panels: f and c ordered magnetic moments, m(f )

α and
m(c)

α , at the different sites in the unit cell for U = 2.5 as functions
of n.

antiferromagnetic linear response. Still, there is no magnetic
order for fillings n � 1. We refer to this paramagnetic metallic
state with local antiferromagnetic correlations as a heavy-
fermion or Kondo-singlet state (KS) even if the local spin on
the f orbitals, S(f )

α = 1
2

∑
σσ ′ f †

ασ σ σσ ′fασ ′ , cannot be seen as
a rigid spin-S = 1/2 since the local f moment (S(f )

α )2 deviates
somewhat from S(S + 1) = 3/4.

The respective top panels of Figs. 7 and 8 show the
f orbital double occupancy relative to its noninteracting
value, i.e., Dα ≡ 〈f †

α↑fα↑f
†
α↓fα↓〉/(n(f )

α↑ n
(f )
α↓ ). While the dou-

ble occupancy is suppressed considerably for fillings close to
half-filling, it is still far from zero even at U = 3.5 (Fig. 8),
for example, where Dα ≈ 0.45. At U = 2.5 (Fig. 7) we find
Dα at a minimum for n ≈ 0.65.

D. Antiferromagnetism

Magnetic phases first appear at fillings centered around
n ≈ 0.92 for U = 2.5 and 3.5 (Figs. 7 and 8) This is the
filling range where the f occupancy is at or very close
to unity, and where, despite substantial charge fluctuations,
the local-moment picture is most adequate. The magnetic
coupling between the local moments must be provided by
the a priori uncorrelated c orbitals, similar to the standard
RKKY mechanism [8] that can be derived perturbatively in
the Kondo-lattice model.

On the triangular lattice, however, magnetic order induced
by indirect antiferromagnetic exchange is frustrated. Except
for a nonmagnetic state, there are two obvious possible

FIG. 8. (Color online) The same as Fig. 7 but for U = 3.5 and
for a smaller filling range.

compromises to form a state with vanishing total magnetic
moment in the unit cell, namely a state with 120◦ orientations
between pairs of magnetic moments as well as a collinear
“↑,↑,↓” phase. Apart from the PKS phase to be discussed
below, the latter is the only plausible antiferromagnetic state if
collinearity between the moments is enforced, as is done here.

For U = 3.5 and with decreasing filling n, the system
undergoes a phase transition to the AFM phase at n ≈ 0.97.
Figure 8 demonstrates that this phase transition is continuous
with the staggered magnetization m0 (see the definition above)
as an order parameter that evolves from m0 = 0 and increases
with decreasing n in a continuous way. The magnetism is
predominantly carried by the f moments with a maximum
of |m(f )

B | ≈ 0.6 while the c orbitals are about one order of
magnitude less polarized (note the different scales in Fig. 8).
Note that the site-dependent moments are oriented antiparallel
to the respective f moments.

Across the transition to the AFM phase there is hardly
any change of the double occupancy 〈f †

α↑fα↑f
†
α↓fα↓〉, i.e.,

the increase of Dα seen in Fig. 8 (top panel) is mainly due
to the polarization of the f orbital only. For the “↓′′ site in
the “↑,↑,↓” state this effect is a bit stronger as its magnetic
moment has the higher absolute value. The fact that the
double occupancy and thus the size of the local f moment is
basically unaffected favors a picture of magnetic ordering of
preformed local moments and is consistent with an RKKY-like
indirect exchange mechanism in the local-moment regime of
the Anderson lattice.

E. Partial Kondo screening

With further decreasing n at U = 3.5 there is another
second-order phase transition from the AFM state to a phase
with partial Kondo screening (PKS) (see Fig. 8). For U = 2.5,
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the PKS phase directly evolves from the KS through a second-
order transition (see Fig. 7). In both cases, a Kondo-singlet
formed at one site in the unit cell, say A, coexists with a
nonlocal pair of antiferromagnetically coupled moments at
the B and C sites. The total ordered moment in a unit cell
is zero. Eventually, for fillings n < nc1 ≈ 0.88 at U = 2.5
and for n < nc1 ≈ 0.82 at U = 3.5, the system returns to a
paramagnetic KS state in another continuous phase transition.

As compared to the AFM and also, at even lower fillings, to
the FM phase, the numerical stabilization of a self-consistent
PKS solution is most difficult, i.e., a large number of iterations
(up to 200) is required. This also reflects itself in the remaining
(unphysical) noise on the PKS data seen in Figs. 7 and 8.
As a technical remark, let us mention that each DMFT run
is completely independent from the preceding one and starts
from the same initial guess for the self-energy, which is taken
as frequency-independent and homogeneously spin-polarized.
Due to this independency, the self-consistent values for the
magnetic moments typically do not always form continuous
functions of μ, because arbitrary permutations of the A, B, and
C sites in a unit cell and also a global sign change σ → −σ

yield physically equivalent solutions of the DMFT equations.
We have employed those symmetry operations a posteriori
in scans with extremely small steps in the chemical potential
(�μ = 0.007) to generate functions as continuous as possible
by means of least-squares fits minimizing the parametric dis-
tance between pairs of consecutive self-consistent solutions.

The Kondo effect requires a locally antiferromagnetic
effective coupling between the local f and c spins. This is
clearly present: As mentioned above, the linear response of the
c moments to a static magnetic field applied to the f electron
spins is found to be antiferromagnetic in the paramagnetic
phase close to the AFM and PKS phase. Furthermore, within
the symmetry-broken PKS phase, the ordered moments m

(f )
α

and m(c)
α are antiferromagnetically aligned on the B and C

sites. On the other hand, the robustness of the PKS phase,
i.e., its extension in the U -n plane, and also the presence of
strong charge fluctuations (see the sizable double occupancy in
Figs. 7 and 8), suggest that the physics is nonuniversal and by
no means ruled by a single Kondo scale TK.

It is interesting to note that our data unambiguously show
that there is no “perfect” partial Kondo screening. That is,
a slight polarization m

(f )
A < 0 and m

(c)
A > 0 of the local f

and c spins on the A, i.e., on the Kondo site is clearly
visible in Figs. 7 and 8. The proximity to the pair of
RKKY-like antiferromagnetically coupled moments, which
explicitly breaks time-reversal symmetry, implies that there
are admixtures of states with nonzero spin quantum number to
the Kondo “singlet.” Assuming this admixture to be given by
a single spin-triplet state for simplicity, the antiferromagnetic
environment explains a coupling to the M = 0 component of
the triplet. A finite polarization of the Kondo singlet, however,
requires instead a coupling to the M = ±1 components and
thus implies the additional breaking of the Z2 symmetry of the
antiferromagnetic state. This spontaneous symmetry breaking
in the PKS phase is also visible in the magnitudes of the B-
and C-site moments, namely |m(f )

C | > |m(f )
B |, and it is present

in the “↑,↑,↓” AFM state anyway.
Accompanying the ordering of the spin degrees of freedom,

there is also a (weak) charge ordering in the AFM and the

PKS phase (see the upper panels of Figs. 5 and 6): There
are two interesting observations: First, the deviation of the
charge density from the average density is much stronger on
the c orbitals, as must be expected in the local-moment regime
where charge fluctuations on the correlated f orbitals are very
effectively suppressed. This effect is stronger for U = 3.5
compared to U = 2.5. Second, within the PKS phase, there is
a charge transfer from the “Kondo site” (A) to the “magnetic
sites” (B and C): n

(c)
A < n

(c)
B,C and n

(f )
A < n

(f )
B,C . Due to the

Kondo effect, the local conduction-electron density of states
at the A site will develop a dip, and spectral weight must be
shifted above or below the Fermi energy. In the absence of
particle-hole symmetry, this shift is asymmetric and changes
the occupancy. The sign and the size of the resulting charge
transfer, however, depend on the details of the band structure.
Charge disproportionation was also found within the PKS
(“partial disorder”) state that is obtained by means of the
HF approach [17,18]. In contrast with our DMFT results, the
charge transfer seen in the HF studies is much larger for the f

as compared to the c orbitals. This must be seen as an artifact
of the static mean-field approach, which cannot account for
local-moment formation.

As a function of U , the PKS phase is located between
the KS and the AFM phase in the phase diagram. This can
be understood by referring to the famous Doniach diagram
[11]: In the KS phase at weaker U (stronger J ) the Kondo
effect dominates, while for strong U (weak J ) the RKKY
interaction is dominant and results in magnetic order. The
PKS state can be seen as a possible way to avoid geometrical
frustration in the antiferromagnetically ordered state, which is
preferred if the formation of a Kondo singlet is less expensive
than breaking up two frustrated magnetic bonds and forming
a nonfrustrated third one. As a compromise between indirect
exchange, frustration, and the Kondo effect, it appears between
the KS and the AFM phase.

F. Ferromagnetism

At lower fillings around n = 0.7, depending slightly on U ,
the system develops homogeneous ferromagnetic order (see
Fig. 3). As can be seen from Fig. 7 for U = 2.5, the transition
to this state is continuous at the lower as well as at the upper
critical density. The ferromagnetic state is metallic with a
finite compressibility (see Fig. 5) and partially polarized with a
maximum ordered f moment of m(f ) ≈ 0.52 at n ≈ 0.71. The
moment on the conduction-electron orbitals (m(c) ≈ 0.02) is
more than an order of magnitude smaller and ferromagnetically
aligned to the moment on the f orbitals.

Generally, there are several mechanisms that may cause
metallic ferromagnetism [33–35]: The main idea of the RKKY
concept [8] consists in a magnetic coupling of well-formed
local f moments in an effective Kondo-lattice model [7],
which is mediated by the conduction electrons and fea-
tures ferromagnetic order if the effective RKKY coupling
JRKKY(q) = −J 2χs(q,ω = 0) is peaked at q = 0. While the
RKKY theory is a perturbative approach (J → 0), the double-
exchange mechanism [36–38] applies to the strong-J regime
of a Kondo lattice and predicts that a ferromagnetic ordering of
the f moments minimizes the kinetic energy of the conduction
electrons.
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It is questionable, however, whether those concepts apply
here as there are strong charge fluctuations preventing the
formation of well-defined f moments in our case. This is
obvious from the sizable deviation of the f occupancy from
unity (see Fig. 5, n(f ) ≈ 0.8 in the relevant filling range).
Another clear indication that the system is no longer in a local-
moment regime is the ferro- rather than antiferromagnetic
coupling between f and c moments (see the middle and lower
panels of Fig. 7 around n = 0.7). This is incompatible with an
effective low-energy Kondo model.

It is interesting to note that this implies a filling-dependent
crossover from the local-moment regime with a locally
antiferromagnetic coupling between f and c moments (see
m

(f )
α and m(c)

α in Fig. 7 in the PKS and AFM phases) to
a mixed-valence regime. This can also be verified easily
by studying the linear response in the paramagnetic phase
separating the FM and the PKS phase in Fig. 3: By applying a
weak magnetic field to the f moments, one finds that the local
coupling between f and c moments changes from antiferro-
to ferromagnetic with decreasing filling.

At U = 0 the static off-diagonal f -c magnetic spin
susceptibility can be computed easily in the entire filling
range. Except for low fillings around and below n ≈ 0.25,
corresponding to the van Hove singularity of the density
of states close to the lower band edge (see Fig. 2), the
local response is found to be antiferromagnetic for n < 1.
Above half-filling, the response becomes ferromagnetic and is
at a maximum for n ≈ 1.2 corresponding to the van Hove
singularity at ω ≈ 0.4 (see Fig. 2). We conclude that the
ferromagnetic phase cannot be understood as an instability
of the Fermi sea in the weak-U regime. Just the opposite,
the paramagnetic state from which the ferromagnetic phase
evolves should be considered strongly correlated. Already for
U = 2.5, the double occupancy is strongly suppressed and Dα

is in fact at a minimum for n ≈ 0.65 (see Fig. 7).
The importance of a strong asymmetry of the density of

states for metallic ferromagnetism at strong and intermediate
interaction strengths has been emphasized by DMFT studies
of the single-band Hubbard model [25,39–41]. The key
idea is that in a situation in which double occupancies
are effectively suppressed, the system does not gain much
interaction energy from ferromagnetic ordering. Therefore,
the appearance of ferromagnetism must be understood by
referring to the (complicated) kinetic energy of the correlated
paramagnetic state from which it derives. Within DMFT this
suggests that the shape of the noninteracting density of states
becomes important. In fact, studying the impact of a shape-
controlling parameter [42], ferromagnetism was demonstrated
to be favored in cases with a highly asymmetric density of
states, in a parameter range where the density of states is high,
and at strong to intermediate interaction strengths.

We propose that a similar line of reasoning applies to the
periodic Anderson model in the considered parameter region:
Even at U = 2.5 and all the more for stronger U , double occu-
pancies are strongly suppressed, and the gain in kinetic energy
obtained by ferromagnetic ordering is dictated by a strongly
asymmetric partial f density of states. The filling range where
ferromagnetism is likely to occur is then indicated by a
corresponding high density of states. Note that n = 0.7 corre-
sponds to a noninteracting chemical potential of μ ≈ −0.62,

which is already close to the van Hove singularity (at ω =
−0.18). Substantially higher fillings would be even more
favorable for ferromagnetism, but here the crossover to the
local-moment regime and the developing antiferromagnetic
correlations overwrite the ferromagnetic tendencies.

This picture also explains why the FM phase shifts to lower
fillings with increasing U in Fig. 3: Stronger interactions favor
ferromagnetism and extend the FM phase to a larger filling
range, as is again well known from the single-band case [42].
This explains the decrease of the lower critical filling for the
FM phase with increasing U . At the same time, however, an
increasing U favors local-moment formation, and therefore the
KS phase with antiferromagnetic correlations extends at the
cost of the mixed-valence regime. This explains the decrease
of the upper critical filling with increasing U .

Previous work [43–48] on ferromagnetism in the periodic
Anderson model has been done using different theoretical
approaches and in largely different parameter regimes. Never-
theless, ferromagnetic order away from half-filling appears to
be a robust result. As basically all studies have exclusively been
performed for bipartite lattices, a direct comparison with our
results is not possible. There are, however, close similarities
with the results of a DMFT study by Meyer and Nolting
[47], which, for a Bethe lattice with infinite connectivity,
demonstrates that ferromagnetism appears in the mixed-
valence regime for a finite filling range. This study also points
out a crossover from antiferro- to ferromagnetic coupling
between f and c magnetic moments with decreasing filling,
consistent with our findings, and it suggests a mechanism based
on an effective single-band model with strongly correlated
and itinerant electrons—an idea that was later formalized by
Batista et al. [48].

IV. CONCLUSIONS

Our site-dependent DMFT study of the magnetic phase
diagram of the periodic Anderson model on the triangular
lattice has uncovered a surprisingly complex phenomenology
that can be traced back to a competition between several
physical mechanisms at work. In particular, the phase diagram
is governed by the following:

(i) The formation of local magnetic moments on the f

orbitals. Due to the nonbipartite structure of the triangular
lattice, half-filling of the f orbitals is found for total fillings
below half-filling, around n ≈ 0.9, weakly depending on U .
Here, the low-energy physics is well captured by an effective
Kondo lattice, although there are sizable f charge fluctuations
for the weak- to intermediate-coupling regime considered
here (U � 4). At somewhat lower fillings, there are still
well-developed local f moments, but the charge fluctuations
increase since the f electrons become itinerant.

(ii) Mixed-valence physics with strong charge fluctuations
on the f orbitals, even at stronger U , replaces the local-
moment regime for lower fillings (roughly below n ≈ 0.75,
depending on U ). The filling-dependent crossover from the
local-moment to the mixed-valence regime is accompanied by
a reversal of the effective local exchange between the local f

and c spins from antiferromagnetic to ferromagnetic.
(iii) An RKKY-like indirect magnetic exchange between

the f magnetic moments induces antiferromagnetic order for
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sufficiently strong U within the local-moment regime. As we
have enforced spin structures to be collinear, this results in an
“↑,↑,↓” AFM phase on the triangular lattice that may mimic
“classical” 120◦ AFM order.

(iv) The Kondo effect competes with the indirect exchange
in the spirit of the Doniach diagram. At low temperatures, in
addition to magnetic ordering, the large entropy carried by
the local-moment system can be removed by screening the f

moment in a Kondo singlet with the conduction-electron spin
degrees of freedom. With decreasing U , and prior to charge
fluctuations becoming dominant, this Kondo-singlet (KS)
phase replaces the antiferromagnetic order. Kondo physics is
also dominating for lower fillings around n ≈ 0.8, depending
slightly on U , as well as for fillings very close to and at
half-filling. The hybridization band gap in the noninteracting
density of states results in a band insulator at half-filling for
U = 0 and develops into a correlated Kondo insulator with
increasing U .

(v) Geometrical frustration affects the competition between
Kondo screening and RKKY coupling. At the border between
the AFM and KS phase, it becomes favorable to avoid
frustration by partial Kondo screening of one f moment
per unit cell. This allows the remnant moments to form an
unfrustrated RKKY-coupled collinear antiferromagnet. The
PKS phase is metallic, and it supports a (weak) charge-density-
wave ordering in addition, mainly on the c orbitals. Although it
results from a compromise between Kondo screening, RKKY
coupling, and frustration, the PKS state has turned out to be
surprisingly robust. It appears in an extended parameter range
and does not need any anisotropic terms in the Hamiltonian
[14]. Due to its proximity to the time-reversal-symmetry-
breaking RKKY-coupled remnant moments, partial Kondo
screening is imperfect and results in a tiny magnetic moment
on the f and, antiferromagnetically aligned, on the c orbital at
the “Kondo site.”

(vi) Strong correlations among itinerant electrons give
rise to a metallic and partially polarized ferromagnetic phase
in the mixed-valence regime. In this case, the nonbipartite
lattice structure favors magnetic order as it produces a
highly asymmetric noninteracting density of states that is
known to crucially affect the kinetic-energy balance favoring
ferromagnetism in a range of fillings with a high density
of states at the Fermi level and where antiferromagnetic
correlations are subdominant. As a nonperturbative effect,
this itinerant-electron ferromagnetism lacks a clear (simple)
mechanism—even in a single-band Hubbard model.

Two main results of our study might be relevant for the
understanding of PKS in real materials, such as CePdAl [13],
UNi4B [49], or even artificial geometries of magnetic atoms
on metallic surfaces [50], and for corresponding electronic-

structure models: (i) The PKS state appears at noninteger
fillings. One might thus speculate that the gain in kinetic energy
is essential to stabilize the state, and that spin-only models
may be questionable. (ii) The PKS state exclusively shows
up at the border between the paramagnetic heavy-fermion
and the magnetically ordered phase. This could be tested
experimentally by steering the system through this border,
either by controlling the temperature or by means of chemical
substitution [51].

There are several lines along which our study could be
continued in the future: First, noncollinear phases are in
principle accessible by an SU(2)-symmetric formulation of the
site-dependent DMFT. This may lead to a certain refinement
of the magnetic phase diagram, with noncollinear (or even
incommensurate) AFM phases partially replacing the “↑,↑,↓”
phase, but we do not expect a further qualitative change
as the relevant energy scale is still set by the effective
RKKY-exchange coupling constant.

Second, it would be interesting to make contact with the
corresponding phase diagram of the Kondo model on the
triangular lattice, either by applying DMFT to the Kondo
model directly [52] or by using a solver that allows us to resolve
the Kondo scale, such as the numerical renormalization group
[53].

Finally, one may address the effect of nonlocal correlations
beyond the single-site DMFT. The Kondo effect results from
correlations between a single correlated f orbital and the
conduction-band system, and therefore it is captured correctly
by a dynamical mean-field theory that treats those correlations
exactly. DMFT also provides an accurate description of the
nonlocal indirect exchange, but the feedback of nonlocal mag-
netic correlations on the self-energy is missing. Those missing
fluctuations must result in mean-field artifacts. Typically, the
(site-dependent) DMFT approach is therefore, to some extent,
biased toward the formation of magnetic order and tends
to favor a symmetry-broken state |↑〉|↓〉 at the expense of
a nonlocal singlet (|↑〉|↓〉 − |↓〉|↑〉)/√2 [54,55]. One might
speculate that, compared to the PKS state, the AFM phase is
overestimated, and that both the PKS and the AFM phases are
overestimated as compared to the KS state.
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[3] M. Neumann, J. Nyéki, B. Cowan, and J. Saunders, Science 317,
1356 (2007).

[4] J. Werner and F. F. Assaad, Phys. Rev. B 90, 205122 (2014).
[5] P. W. Anderson, Phys. Rev. 124, 41 (1961).
[6] S. Capponi and F. F. Assaad, Phys. Rev. B 63, 155114

(2001).
[7] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966);

P. Sinjukow and W. Nolting, Phys. Rev. B 65, 212303 (2002).

235131-9

http://dx.doi.org/10.1038/320124a0
http://dx.doi.org/10.1038/320124a0
http://dx.doi.org/10.1038/320124a0
http://dx.doi.org/10.1038/320124a0
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1126/science.1143607
http://dx.doi.org/10.1126/science.1143607
http://dx.doi.org/10.1126/science.1143607
http://dx.doi.org/10.1126/science.1143607
http://dx.doi.org/10.1103/PhysRevB.90.205122
http://dx.doi.org/10.1103/PhysRevB.90.205122
http://dx.doi.org/10.1103/PhysRevB.90.205122
http://dx.doi.org/10.1103/PhysRevB.90.205122
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRevB.63.155114
http://dx.doi.org/10.1103/PhysRevB.63.155114
http://dx.doi.org/10.1103/PhysRevB.63.155114
http://dx.doi.org/10.1103/PhysRevB.63.155114
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRevB.65.212303
http://dx.doi.org/10.1103/PhysRevB.65.212303
http://dx.doi.org/10.1103/PhysRevB.65.212303
http://dx.doi.org/10.1103/PhysRevB.65.212303


AULBACH, ASSAAD, AND POTTHOFF PHYSICAL REVIEW B 92, 235131 (2015)

[8] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
T. Kasuya, Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Phys.
Rev. 106, 893 (1957).

[9] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[10] A. C. Hewson, The Kondo Problem to Heavy Fermions,

Cambridge Studies in Magnetism (Cambridge University Press,
Cambridge, 1997).

[11] S. Doniach, Physica B 91, 231 (1977).
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