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Building on recent solutions of the fermion sign problem for specific models we present two continuous-time
quantum Monte Carlo methods for efficient simulation of mass-imbalanced Hubbard models on bipartite lattices
at half filling. For both methods we present the solutions to the fermion sign problem and the algorithms to achieve
efficient simulations. As applications, we calculate the dependence of the spin correlation on the mass imbalance
in a one-dimensional lattice and study the thermal and quantum phase transitions to an antiferromagnetic
Ising long-range ordered state in two dimensions. These results offer unbiased predictions for experiments on
ultracold atoms and bridge known exact solutions of the Falicov-Kimball model and previous studies of the
SU(2)-symmetric Hubbard model.
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I. INTRODUCTION

Recently, progress has been made in solutions of the
sign problem for fermionic models with specific symmetries
[1–3]. Combined with the development of efficient continuous-
time quantum Monte Carlo (CT-QMC) approach for lattice
fermions [4,5] these advances enable the unbiased simulation
of low-temperature phases of several fermionic models that
were previously prohibitive, thereby quantitatively addressing
long-standing questions [6–8] such as the fermionic quantum
critical point of spinless fermions on the honeycomb lattice
[5,9,10].

In this paper we build on these conceptual breakthroughs
and present two CT-QMC methods for efficient simulation
of half filled mass-imbalanced Hubbard models on bipartite
lattices. Here, the term mass imbalance refers to unequal
hopping amplitudes for spin-up and spin-down fermions, i.e.,
we consider the Hamiltonian

Ĥ = −
∑

σ∈{↑,↓}
tσ

∑
〈i,j〉

(ĉ†iσ ĉjσ + ĉ
†
jσ ĉiσ )

+ U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
, (1)

where ĉiσ (ĉ†iσ ) is the fermion annihilation (creation) operator
for site i and spin σ , n̂iσ = ĉ

†
iσ ĉiσ is the fermion number

operator, t↑(↓) is the hopping amplitude of the spin-up (-down)
particles, U > 0 denotes the on-site repulsive interaction
between the two spin species.1 〈i,j〉 denotes two nearest-
neighbor sites belonging to different sublattices. When t↑ �= t↓
the SU(2) symmetry in the spin space and the time-reversal
symmetry are both broken. Such a Hubbard model with
unequal hopping amplitudes can be readily implemented in
an optical lattice by loading mixtures of ultracold fermionic
atoms with different masses [11–17]. Furthermore, by using
spin-dependent modulations, the group of T. Esslinger has
recently realized this model in a one-dimensional optical lattice
with a continuously tunable mass imbalance t↓/t↑ [18].

1At half filling the physics of U < 0 is simply related by a particle-
hole transformation.

In the strong-coupling limit U � t↑,t↓, the low-energy
physics of the mass-imbalanced Hubbard model is captured
by the following spin-1/2 XXZ model:

ĤXXZ =
∑
〈i,j〉

4t↑t↓
U

(Ŝx
i Ŝx

j + Ŝy
i Ŝ

y

j ) + 2(t2
↑ + t2

↓)

U
Ŝz

i Ŝ
z
j , (2)

where Ŝα
i = 1

2

∑
μν ĉ

†
iμσα

μνĉiν is the spin-1/2 operator and σα

are the Pauli matrices. Since 2(t2
↑ + t2

↓) � 4t↑t↓, the XXZ

model has Ising anisotropy, and prefers longitudinal spin
correlation 〈Ŝz

i Ŝ
z
j 〉 rather than transverse correlations 〈Ŝx

i Ŝx
j 〉

or 〈Ŝy
i Ŝ

y

j 〉. On the other hand, model (1) reduces to the
Falicov-Kimball model when t↓ = 0 [19], which describes
a mixture of localized heavy particles and itinerant light
fermions interacting through on-site repulsions. This limit
allows various exact analytical and numerical studies [20–24].
In particular, the low-temperature phase on bipartite lattices
was proven to be a staggered density-wave state of both
species for arbitrary repulsive interactions [25]. In agreement
with the strong-coupling analysis, this state possesses an
antiferromagnetic Ising long-range order.

Various aspects of the mass-imbalanced Hubbard model
for general finite hoppings t↑ �= t↓ have been the subjects of
intensive research [26–37]. Bosonic versions of the model
(1) were studied in Refs. [38,39]. However, the traditional
determinantal QMC [40] method faces a severe sign problem
even at half filling on bipartite lattices when applied to the
model (1), because the breaking of time-reversal symmetry
makes it difficult to relate the determinants of spin-up and
-down components [41]. As a consequence, despite its simple
form and fundamental importance, an unbiased study of model
(1) at half filling in more than one dimension has not yet been
performed.

In this paper we first present in detail two CT-QMC methods
that solve the model (1) by using recent advances regarding
the fermion sign problem [1–3]. One method is based on
the continuous-time interaction-expansion (CT-INT) approach
[42] whose sign problem is solved based on Ref. [1]. However,
a naive CT-INT simulation of model (1) suffers from low
acceptance rate and also difficulties in measuring two-particle
correlations. We present solutions to these problems making
use of correlated double-vertex updates and shift moves in
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FIG. 1. (Color online) Schematic plots of (a) the finite-
temperature phase diagram on the square lattice and (b) the ground-
state phase diagram on the honeycomb lattice. The solid line in (a) is
the phase boundary of a thermal phase transition while the solid line in
(b) is the phase boundary of a quantum phase transition. The red and
purple dots indicate known critical points of the SU(2) symmetric
Hubbard model (t↑ = t↓) and the Falicov-Kimball model (t↓ = 0),
respectively.

the Monte Carlo simulation. The second method is a recent
lattice continuous-time auxiliary field algorithm (LCT-AUX)
approach [4], which has O(βUN3) scaling with respect to
the inverse temperature β and the lattice size N . The sign
problem of the LCT-AUX approach is solved thanks to a recent
recognition of the Lie group and Lie algebra structures of the
determinantal QMC approaches [3].

We then report results for magnetic properties and phase
transitions of the mass-imbalanced Hubbard model on various
lattices, as summarized in Fig. 1. We provide quantitative
predictions of the nearest-neighbor spin-spin correlations in
a one-dimensional lattice and the critical temperature to the
antiferromagnetic long-range-ordered state on a square lattice.
Furthermore, we address the quantum phase transition of the
Dirac semimetal phase to an antiferromagnetic Ising phase
on the honeycomb lattice. All these predictions are closely
relevant to current efforts in ultracold fermion experiments and
can be verified through experimental observations [18,43].

II. METHODS

We start by rewriting Eq. (1) as Ĥ = Ĥ0 + ∑
i v̂i with

Ĥ0 =
∑

σ

∑
ij

ĉ†iσ Kσ
ij ĉjσ , (3)

v̂i = U

(
n̂i↑n̂i↓ − n̂i↑ + n̂i↓

2

)
− �. (4)

The hopping matrix element Kσ
ij = −tσ when the sites i, j are

nearest neighbors, and zero otherwise. A constant shift � in
the local interaction term is introduced for later convenience.
We then perform an interaction expansion for the partition
function,

Z = Tr(e−βĤ ) =
∞∑

k=0

∑
i1,...,ik

∫ β

0
dτ1 . . .

∫ β

τk−1

dτk

×Tr
[
e−(β−τk )Ĥ0

(−v̂ik

)
. . .

(−v̂i1

)
e−τ1Ĥ0

]
=

∞∑
k=0

∑
Ck

w(Ck). (5)

In the last step we denote the summations and integrations of
the first line abstractly as a sum over configurations Ck . Monte
Carlo methods sample these configurations stochastically
according to the weight w(Ck). Physical observables are
evaluated as

〈Ô〉 = 1

Z
Tr

(
e−βĤ Ô

)
= 1

Z

∞∑
k=0

∑
Ck

w(Ck) 〈Ô〉Ck ,τ
, (6)

where

〈Ô〉Ck ,τ
= Tr

[
e−(β−τk )Ĥ0

(−v̂ik

)
. . . Ô . . .

(−v̂i1

)
e−τ1Ĥ0

]
Tr

[
e−(β−τk )Ĥ0

(−v̂ik

)
. . .

(−v̂i1

)
e−τ1Ĥ0

] (7)

is the expectation value of the observable inserted at imaginary
time τ of a given configuration. In the following we denote
Eq. (7) as the estimator of the observable. The imaginary time
index τ can take any value in [0,β) because of translational
invariance along imaginary time.

Key observables to identify the magnetic properties of
model (1) are staggered spin structure factors along various
directions Sα

AF = 1
N

∑
ij ηiηj 〈Ŝα

i Ŝα
j 〉, where ηi = ±1 is the

parity of the lattice site. Related to this quantity, one can further
define

M2 =
〈(

1

N

∑
i

ηiŜ
z
i

)2〉
= Sz

AF

/
N, (8)

M4 =
〈(

1

N

∑
i

ηiŜ
z
i

)4〉
. (9)

They are the square and quartic power of the Ising order pa-
rameter respectively. Next, we present two sampling strategies
and the corresponding measurement procedures for Eq. (5).
The following two subsections can be read independently.

A. Continuous-time interaction expansion algorithm (CT-INT)

In the CT-INT approach we choose a special value
for the constant shift � = −U/4 in Eq. (4) so that v̂i =
U (n̂i↑ − 1

2 )(n̂i↓ − 1
2 ). Using Wick’s theorem in Eq. (5), all

possible contractions add up to a determinant for each spin
component [42],

Z = Z0

∞∑
k=0

∑
Ck

(−U )k
∏
σ

det (Gσ ), (10)

where Z0 = Tr(e−βĤ0 ) is the noninteracting partition function
and the set Ck = {(i1,τ1), . . . ,(ik,τk)} denotes a configuration
with k vertices. Gσ is a k × k matrix with matrix elements

Gσ
pq = Gσ

ip iq (τp − τq) − 1
2δpq, (11)

where Gσ
ij (τ ) = Z−1

0 Tr[e−βĤ0T ĉiσ (τ )ĉ†jσ ] is the noninteracting
Green’s function and T is the time-ordering operator. Because
of the particle-hole symmetry in model (1), Gσ

ii (0+) ≡ 1/2,
thus the diagonal elements of Gσ actually all vanish.

1. Absence of the sign problem

It is well understood that model (1) is free from sign
problem when t↑ = t↓ because the determinants for the two
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spin components are then identical and they are nonzero only
for even expansion orders [42]. However the absence of sign
problem for general unequal hoppings was not appreciated
until a recent discovery of Ref. [1]. Below we summarize a
simplified proof following Ref. [9]. On bipartite lattices one
has

(Gσ )T = −DGσD, (12)

where D is a diagonal matrix with Dpp = ηip consisting of
parities of the lattice sites. The Monte Carlo weight in Eq. (10)
can then be written as

w(Ck)/Z0 = (−U )k
∏
σ

det(−DGσD)

= (−U )k
∏
σ

det(DGσ ) � 0, (13)

where the second equality follows from the fact that the two
spin species have the same D matrix even though their hopping
amplitudes are not the same. Finally, since the matrix DGσ is
real and antisymmetric following Eq. (12), its determinant is
zero for odd expansion order k and non-negative for even k.
Because each individual factor of Eq. (13) is non-negative,
there is no sign problem for either repulsive or attractive
interaction U .

2. Monte Carlo updates

Usual CT-QMC updates consist of random insertion and
removal of vertices in Eq. (10) [44]. Here, because of the
vanishing of Monte Carlo weights for odd expansion orders in
Eq. (13), one needs to insert or remove at least two vertices
together [42,45,46] to ensure ergodicity of the sampling.2

However, we observe these types of updates suffer from low
acceptance rate if the two vertices are chosen independently
since the preferred configurations have correlations between
the vertices [47].

To overcome this low acceptance rate problem, we adopt a
correlated double-vertex update scheme illustrated in Fig. 2.
Only pairs of vertices, say (ip,τp) and (iq,τq), that are “close” in
space time are inserted or removed. We define “close” to mean
|ip − iq | � 
R and |τp − τq | < 
τ/2 for some predefined
cutoffs 
R and 
τ . The definitions of distances in space and
time both take into account the periodicity of the lattice and
the imaginary-time axis. In particular, the real-space distance
|ip − iq | is defined as the graph distance between the two
sites ip and iq . Our benchmark shows that the correlated
double-vertex insertion/removal updates greatly enhance the
acceptance probability. To further reduce the autocorrelation
time, we complement these moves with a shift update, where
a vertex is shifted to a nearby location in space time, as shown
in Fig. 2.

Starting from a configuration Ck , for vertex insertion, the
first vertex (ip,τp) is picked uniformly at τp ∈ [0,β) and ip ∈

2When t↑ = t↓, one could use a shift tuned slightly away from
� = −U/4 to gain finite weight for odd expansion orders [42,65],
thus avoiding the inconvenience of correlated double-vertex updates.
However, for the general asymmetric t↑ �= t↓ case this leads to a sign
problem in the CT-INT simulation.
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FIG. 2. (Color online) Schematics of correlated double-vertex
updates in CT-INT, shown for a one-dimensional lattice of length N =
8. Vertices in the current Monte Carlo configuration are represented
by solid stars (there are k = 6 in the figure), while the candidates for
the new configuration are marked as empty stars. We use red color to
denote the first chosen vertex in the correlated double-vertex updates,
and blue the second. The green box around each red vertex includes
all nearby vertices. For insertion, the green box, when projected to the
lattice-site axis, includes n = 3 candidate sites for the second vertex;
for removal, the green box encloses additional m = 2 vertices other
than the first chosen (red) one; for shift, a random position in the
green box is proposed.

[0,N ). For the second vertex (iq,τq), τq is picked uniformly
randomly within a window of width 
τ centered at τp, and iq
randomly from sites within distance 
R from site ip (including
ip itself). The number of possible sites for iq is denoted as
n.3 For the reverse move, one picks the first vertex randomly
from the existing k + 2 vertices, and selects the second one
randomly from all the other existing vertices that are close to
the first one, with m possible candidates; see Fig. 2. Taking into
account these proposal probabilities, the acceptance rate for
insertion p(Ck → Ck+2) = min (1,r) and removal p(Ck+2 →
Ck) = min (1,r−1), with the ratio

r = U 2βN
τn

(k + 2)m

∏
σ

det Gσ (Ck+2)

det Gσ (Ck)
, (14)

where Ck+2 = Ck ∪ (ip,τp) ∪ (iq,τq) and Gσ (Ck+2) is different
from Gσ (Ck) by adding two rows and two columns. We keep
track of the inverse of the matrix Gσ in the simulation, thus the
calculation of the determinant ratio and the update can be done
with O(k2) operations using the standard fast-update approach
[42,44].

For the shift update one randomly selects an existing vertex
(i,τ ) from a configuration Ck and proposes to shift it to a new
position (i′,τ ′).4 The proposal probabilities for forward and

3n is a constant that only depends on the lattice geometry and the
value of 
R .

4Long-distance shift will be rejected with high probability. We
therefore also impose the “closeness” condition and only shift the
vertices within the cutoffs 
τ and 
R .
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backward shifts are equal and the acceptance probability is
simply the ratio of the Monte Carlo weights

p(Ck → C ′
k) = min

(
1,

∏
σ

det[Gσ (C ′
k)]

det [Gσ (Ck)]

)
, (15)

where C ′
k = Ck \ (i,τ ) ∪ (i′,τ ′) and Gσ (C ′

k) is different from
Gσ (Ck) by changing one row and one column. As the notation
suggests, one way to calculate the ratio in Eq. (15) is to first
remove the vertex (i,τ ) and then insert back (i′,τ ′), in which
an intermediate configuration with k − 1 vertices is reached,
i.e.,

det[Gσ (C ′
k)]

det [Gσ (Ck)]
= det[Gσ (C ′

k)]

det{Gσ [Ck \ (i,τ )]}
det{Gσ [Ck \ (i,τ )]}

det [Gσ (Ck)]
.

(16)

However, the intermediate configuration has zero weight
because k − 1 is odd, therefore the two determinant ratios
in Eq. (16) are infinity and zero. To eliminate the explicit
dependence on the intermediate state with zero weight, we
denote

Gσ (Ck) =
(

P̃ Q̃

R̃ S̃

)−1

,Gσ [Ck \ (i,τ )] = M−1,

Gσ (C ′
k) =

(
M−1 Gσ

ip i′ (τp − τ ′)
Gσ

i′iq (τ ′ − τq) Gσ
i′i′(0

+) − 1
2

)
(17)

=
(

M−1 Q

R S

)
=

(
P̃ ′ Q̃′

R̃′ S̃ ′

)−1

,

where P̃ ,M,P̃ ′ are (k − 1) × (k − 1) matrices, while S̃,S,S̃ ′
are numbers. All Green’s function matrices (and their inverses)
in Eq. (17) satisfy the symmetry property Eq. (12), thus we
know that their diagonal elements are all zero, in particular
(S̃,S,S̃ ′) = (0,0,0). We have direct access to P̃ ,Q̃,R̃ because
they are stored for the current configuration, while Q,R can be
readily calculated since they are related to the noninteracting
Green’s function of the to-be-added vertex (i′,τ ′). We shall
derive a well-defined ratio for Eq. (16) by eliminating the
intermediate state and taking the limit (S̃,S,S̃ ′) → (0,0,0) in
the final step. The matrix M is obtained from a removal update
[44]

M = P̃ − Q̃S̃−1R̃. (18)

The matrices P̃ ′,Q̃′,R̃′,S̃ ′ are then obtained from a subsequent
insertion update [44]

S̃ ′ = (S − RMQ)−1, (19)

Q̃′ = −MQS̃ ′, (20)

R̃′ = −S̃ ′RM, (21)

P̃ ′ = M + MQS̃ ′RM. (22)

Equation (16) can then be calculated as the ratio

det[Gσ (C ′
k)]

det [Gσ (Ck)]
= S̃/S̃ ′ = S̃(S − RMQ)

= S̃(S − R(P̃ − Q̃S̃−1R̃)Q)

→ (RQ̃)(R̃Q). (23)

In the last step we have taken the limit S̃ → 0. If the shift move
is accepted, we calculate the matrices Eqs. (20)–(22) and store
them for the inverse of Gσ (C ′

k),

Q̃′ = −MQ(S − RMQ)−1 → Q̃/(RQ̃), (24)

R̃′ = −(S − RMQ)−1RM → R̃/(R̃Q), (25)

P̃ ′ = M + MQRM

S − RMQ

→ P̃ − Q̃′(RP̃ ) − (P̃Q)R̃′ + Q̃′(RP̃Q)R̃′. (26)

All equations in the above involve only matrix-vector or
vector outer-product operations, which have the same com-
putation complexity O(k2) compared to the fast update for
insertion/removal updates [42,44].

3. Measurements

Because of the vanishing of Monte Carlo weights for
odd expansion orders, the configuration space sampled in
the CT-INT simulation does not necessarily suffice to mea-
sure all physical observables. In particular, measurements
of two-particle correlation functions (such as density-density
correlations) need special attention. In this section we present
a detailed derivation of the Monte Carlo estimators for them in
the correlated double-vertex update scheme. Measurement of
single-particle quantities such as Green’s function follow the
standard procedure [42,44].

We write the longitudinal spin correlation as Ŝz
i Ŝ

z
j =

1
4

∑
σσ ′ σσ ′(n̂iσ − 1

2 )(n̂jσ ′ − 1
2 ), which consists of equal-spin

(σ = σ ′) and unequal-spin (σ �= σ ′) density-density correla-
tions. The equal-spin correlation for i = j is just 1/4, while for
i �= j it could be measured in the usual way by inserting two
additional vertices, leading to the estimator [42,44]〈(

n̂iσ − 1

2

)(
n̂jσ − 1

2

)〉
Ck ,τ

= det [Gσ (Ck+2)]

det [Gσ (Ck)]
, (27)

where Gσ (Ck) is the Green’s function matrix for the current
configuration Ck , and Ck+2 = Ck ∪ (i,τ ) ∪ (j,τ ) has two more
vertices at the same imaginary time τ ∈ [0,β) which we sample
randomly. Because the dimensions of both Green’s function
matrices are even, their determinants are generally nonzero
and the ratio is well defined.

On the other hand, it is not so straightforward to measure the
unequal-spin correlations. The usual approach would suggest
the following estimator:〈(

n̂i↑ − 1

2

)(
n̂j↓ − 1

2

)〉
Ck ,τ

?= det G↑[Ck ∪ (i,τ )]

det G↑(Ck)

× det G↓[Ck ∪ (j,τ )]

det G↓(Ck)
,

where the configuration Ck ∪ (i,τ ) has one more vertex than
the current configuration Ck . However, the determinant ratio
is zero for even expansion orders because the dimension of
Gσ [Ck ∪ (i,τ )] is odd, while for odd expansion orders the
determinant ratio is infinite, but these configurations are never
sampled because they have zero weight. The correct estimator
is the latter zero times infinity contribution.

235129-4



QUANTUM MONTE CARLO STUDY OF MASS-IMBALANCED . . . PHYSICAL REVIEW B 92, 235129 (2015)

To resolve the problem of measuring the unequal spin
correlations, we use the “shift” rather than the “insertion”
measurement [45]. The idea is to view (n̂i↑ − 1

2 )(n̂j↓ − 1
2 ) as an

existing interaction vertex with a shifted site from i to j for the
spin-down component. To this end, we expand the observable
of unequal-spin density correlation similarly to Eq. (10) and
use the translational symmetry in space and imaginary time,

〈(
n̂i↑ − 1

2

)(
n̂j↓ − 1

2

)〉
= Z0

Z

∞∑
k=1

(−U )k−1
∑
Ck−1

det G↑[Ck−1 ∪ (i,τ )] det G↓[Ck−1 ∪ (j,τ )]

= −1

UβN

Z0

Z

∞∑
k=1

(−U )k
∑
Ck−1

∑
ik

∫ β

0
dτk det G↑[Ck−1 ∪ (ik,τk)] det G↓[Ck−1 ∪ (ik + j − i,τk)]. (28)

The contribution to the above sum is nonzero only for even
k. Considering Ck ≡ Ck−1 ∪ (ik,τk) as a Monte Carlo configu-
ration sampled with a nonvanishing Monte Carlo weight, the
configuration Ck−1 ∪ (ik + j − i,τk) can be reached by shifting
a spin down vertex in space. Combining the integration over
τk with the other k − 1 time-ordered integrations over the
imaginary times, we arrive at the following estimator for the
unequal-spin density correlation [45]:

〈(
n̂i↑ − 1

2

)(
n̂j↓ − 1

2

)〉
Ck ,τp

= −k

UβN

det G↓(C ′
k)

det G↓(Ck)
, (29)

where the configuration C ′
k = Ck \ (ip,τp) ∪ (ip + j − i,τp) is

obtained from Ck by randomly selecting an existing vertex
(ip,τp) and shifting the site index ip (of spin down only)
to ip + j − i. The determinant ratio is calculated by the
fast-update formula Eq. (23). The estimator (29) is zero when
there is no vertex. It also automatically covers the case i = j,
where the determinant ratio is 1 and Eq. (29) reduces to
the estimator for the interaction energy [42]. A similar but
inequivalent estimator can be obtained by shifting the spin-up
vertex while fixing the spin-down vertex. The transverse spin
correlation 〈Ŝx

i Ŝx
j 〉 can be measured in a similar sprit and will

be discussed in Appendix A.

B. Lattice continuous-time auxiliary field algorithm
(LCT-AUX)

The LCT-AUX approach [4,48] treats the expansion in
Eq. (5) as a weighted sum of partition functions of imaginary-
time-dependent free fermions. To achieve this goal, we
first perform an auxiliary field decomposition for the local
interaction term Eq. (4) [3],

−v̂i = �

2

∑
s=±1

exp[sλ(ĉ†i↑ĉi↓ + ĉ
†
i↓ĉi↑)], (30)

where λ = acosh(1 + U
2�

). This unconventional decomposi-
tion, which introduces an auxiliary field that couples to the
local spin flip rather than the density or magnetization, is
necessary to avoid the sign problem [3]. Since the auxiliary
field couples the two spin species, we introduce a combined
spin-orbital index i = (iσ ) and write the free Hamiltonian
Eq. (3) as Ĥ0 = ∑

ij ĉ
†
i Kij ĉj , where K is a 2N × 2N matrix.

Substituting this and Eq. (30) into Eq. (5) and tracing out the

free fermions, one obtains

Z =
∞∑

k=0

(
�

2

)k ∑
i1,...,ik

∑
s1,...,sk

∫ β

0
dτ1 . . .

∫ β

τk−1

dτk

× det
[
I + e−(β−τk )KXsk

ik . . . Xs1
i1 e−τ1K

]
=

∞∑
k=0

(
�

2

)k ∑
Ck

det [I + M(Ck)]. (31)

Compared to the CT-INT approach Eq. (10), here the Monte
Carlo configuration Ck = {(i1,τ1,s1), . . . ,(ik,τk,sk)} contains
an additional Ising auxiliary field variable s� at each vertex.
Moreover, the Monte Carlo weight is given by a single
determinant with a fixed matrix size 2N × 2N instead of two
matrices of size k × k for the two spin components. The vertex
matrix Xs

i has a form following directly from Eq. (30),

Xs
i =

⎛
⎜⎜⎜⎝

I

cosh(sλ) sinh(sλ)

sinh(sλ) cosh(sλ)

I

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

I

1 + U
2�

s

√
U
�

(1 + U
4�

)

s

√
U
�

(1 + U
4�

) 1 + U
2�

I

⎞
⎟⎟⎟⎟⎟⎠. (32)

It differs from the identity matrix only in the 2 × 2 block that
involves i ↑ and i ↓.

1. Absence of the sign problem

The absence of sign problem in Eq. (31) is due to
a remarkable Lie group property of the evolution matrix
M(Ck) = e−(β−τk )KXsk

ik . . . Xs1
i1 e−τ1K in the Monte Carlo weight

[3]. To reveal it we define a diagonal matrix D whose nonzero
elements read Diσ,iσ = ηiσ . These diagonal elements contain
N of 1’s and N of −1’s, and thus provide an indefinite metric.
One can readily see that for the choice � ∈ [−U/4,0) ∪ (0,∞)
the evolution matrix M is real valued and MT DM = D, since
each factor of M satisfies the same condition. M thus belongs
to the split orthogonal group which contains four disconnected
components. Remarkably, the determinant det(I + M) has a
definite sign (or vanishes) for each component and there is
no sign problem for any shift � ∈ [−U/4,0) ∪ (0,∞) [3]. In
particular, for the special choice of � = −U/4, the vertex
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matrix Eq. (32) becomes diagonal and the weight in Eq. (31)
is proportional to Eq. (10). Hence all odd expansion orders
have vanishing weight and the above formalism reduces to
the LCT-INT approach [4,5]. The choice of � will affect the
efficiency of the simulation because the average expansion
order 〈k〉 = −β

∑
i 〈v̂i〉 increases linearly with �. In the

following simulation we choose � = −U/4 + 0.05 to leave
finite Monte Carlo weights for odd expansion orders, such
that the complications in the Monte Carlo updates and
measurements as in the CT-INT method are avoided.

2. Monte Carlo updates

The Monte Carlo simulation consists of random insertion
or removal of vertex matrices in Eq. (31). We refer the
reader to Refs. [4,5] for the general procedure of efficient
and stable QMC simulation. In the following we highlight the
key steps. The central quantity of the LCT-AUX simulation
is the equal-time Green’s function calculated for a given
configuration 〈ĉi ĉ

†
j 〉Ck ,τ

= Gij . To express it in terms of the
evolution matrices, we split the matrix product at the imaginary
time τ and write M(Ck) = LR such that R denotes the matrix
product from 0 to τ and L from τ to β respectively. The Green’s
function is G = (I + RL)−1 [49].

To calculate the acceptance rate of a vertex insertion (i,τ,s),
one needs to calculate the determinant ratio

det
(
I + LXs

i R
)

det(I + LR)
= det

[
I + (

Xs
i − I

)
(I − G)

]
. (33)

Since Xs
i − I are nonzero only in the entries involving i ↑ and

i ↓, the determinant ratio calculation only involves a 2 × 2
block of the matrix G. If the insertion is accepted, the matrix
G is updated according to the Woodbury matrix identity [50]

G′ = (
I + Xs

i RL
)−1 = L−1 1

(I + LR) + L
(
Xs

i − I
)
R

L

= G−GP
[

1

PT
[
(Xs

i − I )−1+(I − G)
]
P

]
PT (I − G),

(34)

which again only depends on G but not on the detailed
information of L and R. In particular, the projector P is
a 2N × 2 matrix that projects to the nonzero block of the
matrix Xs

i − I . The update can thus be evaluated with O(N2)
operations. To remove a vertex (i,τ,s), we use the same
formulas Eqs. (33) and (34) except now the matrix (Xs

i )−1 =
X−s

i is inserted at time τ to cancel the existing vertex matrix.

3. Measurements

Measurements in LCT-AUX can be performed based on
Wick contractions of equal-time Green’s functions G.5 Since
the auxiliary field couples the two spin components, one needs
to take into account additional Wick contractions between
different spins components. For example, the estimator for
density-density correlation is

〈n̂i n̂j 〉Ck ,τ
= (Gii − 1)(Gjj − 1) − Gij (Gji − δji), (35)

5They are calculated at a random imaginary time during the sweep.

where we are still using the combined indices i = (iσ ) and
j = (jσ ′). While a general two-body correlations follow

〈ĉi ĉ
†
j ĉk ĉ

†
l 〉Ck ,τ

= GijGkl − Gil(Gkj − δkj ). (36)

For the calculation of the Binder ratio we need to calculate M4

in Eq. (9), which involves four density correlations

〈n̂i n̂j n̂kn̂l〉Ck ,τ

= det

⎛
⎜⎜⎜⎝

Gii − 1 Gij Gik Gil

Gji − δji Gjj − 1 Gjk Gjl

Gki − δki Gkj − δkj Gkk − 1 Gkl

Gli − δli Glj − δlj Glk − δlk Gll − 1

⎞
⎟⎟⎟⎠. (37)

Compared to CT-INT, measuring these equal-time correlation
functions is much easier in LCT-AUX because there is no
subtle zero times infinity problem caused by the vanishing of
Monte Carlo weights of odd expansion orders.

III. RESULTS

We first present benchmark results in Sec. III A to demon-
strate the correctness of the implementations, then present
results on spin correlations on a one-dimensional chain in
Sec. III B, and the thermal phase transition on the square lattice
in Sec. III C. Finally, we report results on the quantum phase
transition on the honeycomb lattice in Sec. III D.

A. Benchmarks

Figure 3(a) compares the QMC results on the spin structure
factor with the exact diagonalization for a four-site Hubbard
chain with the periodic boundary condition. The results
obtained by the two CT-QMC methods fully agree with
the exact results. Furthermore, as expected, the longitudinal
antiferromagnetic structure factor is larger than the transverse
one for general asymmetric cases.

FIG. 3. (Color online) Benchmark of CT-QMC (markers) with
exact diagonalization (black lines) for (a) spin structure factors and
(b) quasiparticle weights. Calculations are performed on a four-site
periodic Hubbard chain and at temperature βt↑ = 10 and mass
imbalance t↓/t↑ = 0.15.
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We then calculate the quasiparticle weight at the Fermi
surface for each spin, which measures the enhancement
of the quasiparticle mass due to correlation effects. It is
approximately obtained by an analytical continuation on the
imaginary-frequency axis as

Zσ ≈ [
1 − Imσ (kF ,iω0)/ω0

]−1
, (38)

where σ is the self-energy, kF is the Fermi wave vector
(on a chain |kF | = π/2), and ω0 = π/β is the first fermionic
Matsubara frequency. From Fig. 3(b), the quasiparticle weights
are indeed suppressed at larger interaction strengths, while
the spin-down component with smaller Fermi velocity has
larger weight. A similar phenomenon has been observed in
dynamical mean-field theory calculations on the Bethe lattice
[28,31]. Here the Fourier transform of the interacting Green’s
function (needed to calculate the self-energy) is obtained using
the CT-INT estimator derived in Ref. [42], which also applies
to rank-2 updates.

The LCT-AUX method scales asO(βUN3) compared to the
O(β3U 3N3) scaling of the CT-INT methods. Thus LCT-AUX
is asymptotically better for reaching low temperature (or the
ground state) and dealing with strong interactions. Whenever
both methods are applicable, we find that they give the same
results within statistical errors.

We next present further technical results of the two methods.
Figure 4 shows the effects of correlated double-vertex update
parameters 
R and 
τ in CT-INT simulations. To this end, we
simulate an N = 16 chain lattice with periodic boundary con-
ditions, setting the ratios 
R/Rm and 
τ/β equal, and varying
them from 1/8 to 1, where Rm = 8 is the maximal distance on

FIG. 4. (Color online) Effects of correlated double-vertex update
in CT-INT. Dependence of (a) the physical observables and (b) the
acceptance probabilities on the cutoffs 
R and 
τ . Calculations are
performed on the chain lattice: L = 16, βt↑ = 6, U/t↑ = 6, and
t↓/t↑ = 0.5. We have set 
R/Rm = 
τ/β. As shown in (a), the
spin structure factors and double occupancy do not depend on these
ratios; while shown in (b), the acceptance probabilities are greatly
enhanced by the correlations between the inserted/removed vertices.
The initial thermalization processes for 
R/Rm = 
τ/β = 1/8 (red)
and 
R/Rm = 
τ/β = 1 (blue) are shown in the inset, which
indicate that correlated double-vertex update indeed accelerates the
Monte Carlo thermalization significantly.

FIG. 5. (Color online) Effects of the constant shift � in LCT-
AUX. The histograms of the expansion order with various choices
of �. Results are obtained on a four-site chain with t↓/t↑ = 0.5,
U/t↑ = 4, and βt↑ = 8. Inset demonstrates that physical observables
such as the total energy [of the Hamiltonian Eq. (1)] is independent
of �. The black solid line shows the exact value of total energy.

the chain lattice of the length N = 16. As expected, all physical
results are independent of the parameters 
R and 
τ . However
the correlated double-vertex update increases the acceptance
probabilities by almost an order of magnitude. The effect is
more dramatic in larger systems at lower temperatures where
the simple double-vertex updates have an even lower accep-
tance rate. Note that the acceptance probabilities for insertion
and removal are the same in equilibrium. The inset of Fig. 4(b)
shows the expansion order in the equilibration phase of the sim-
ulation. One clearly observes that the correlated double-vertex
update increases the efficiency of the CT-INT simulation.

Figure 5 shows the histogram of the expansion order in
LCT-AUX for various choices of �. One clearly sees that the
weights of odd expansion orders get suppressed for � close to
−U/4. Increasing � enhances their weights but also increases
the average expansion order. The inset shows that physical
observables, such as the total energy, do not depend on the
value of the shift. We choose � = −U/4 + 0.05 throughout
this paper for LCT-AUX calculations.

B. Spin correlations of a one-dimensional chain

Figure 6 shows the nearest-neighbor spin-spin correlations
calculated in a periodic chain of length L = 32 and U = 8t↑ at
various temperatures. Both the longitudinal and the transverse
spin correlations are negative, indicating antiferromagnetic
correlations between nearest neighbors. However, they are
equal only at t↑ = t↓. The transverse spin correlation de-
creases and vanishes as t↓ → 0, which again agrees with the
large-U understanding, because Jxy = 4t↑t↓/U vanishes. The
longitudinal spin correlation, on the other hand, saturates to a
value in the limit of t↓ → 0 since Jz = 2(t2

↑ + t2
↓)/U �= 0 in

this limit. Overall, all spin correlations are enhanced at lower
temperatures due to the suppression of thermal fluctuations.

These predictions can be verified in a recently experimental
realization of the one-dimensional mass-imbalanced Hubbard
model [18].
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FIG. 6. (Color online) Nearest-neighbor spin-spin correlations
on a L = 32 periodic chain at U = 8t↑. Solid lines represent 〈Ŝx

i Ŝx
i+x̂〉

and dashed ones 〈Ŝz
i Ŝ

z
i+x̂〉. When t↑ = t↓, the spin correlations in both

directions are equal. When t↓ = 0, the longitudinal spin correlation
saturates to a finite value while the transverse spin correlation
vanishes. This agrees with the large-U analysis based on the XXZ

model Eq. (2).

C. Thermal phase transition on square lattice

In Fig. 1(a) we sketch the finite-temperature phase diagram
for model (1) (for a fixed U ) on the square lattice. A crucial
consequence of the reduced symmetry of model (1) is that
the system can develop the long-range antiferromagnetic Ising
order at finite temperatures because a discrete Z2 symmetry
is broken. The transition temperature drops to zero (red dot)
in the symmetric hopping case t↑ = t↓, as required by the
Mermin-Wagner theorem for the spontaneous breaking of the
continuous SU(2) symmetry [51].

The exact value of the transition temperature also depends
on the interaction strength U/t↑. In the Falicov-Kimball limit,
it attains a maximal value T/t↑ ≈ 0.15 at U/t↑ = 4 (purple
dot) [23]. As a representative for general mass-imbalanced
cases, we consider t↓/t↑ = 0.15 corresponding to the mass
ratio of 6Li and 40K atoms and U/t↑ = 4. Figure 7(a) shows
the Binder ratio as a function of temperature which has a
crossing at the critical temperature. The value of the Binder
ratio at the crossing point approaches the universal value
1.1679 of the two-dimensional (2D) Ising model on a torus
with isotropic couplings [52]. Figure 7(b) shows the scaled
spin structure factor according to the 2D Ising critical exponent
η = 0.25, which also gives consistent transition temperature
Tc/t↑ ≈ 0.142. These numerical data are consistent with the
expected 2D Ising universality class of the thermal phase
transition of model (1) on the square lattice.

D. Quantum phase transition on honeycomb lattice

As a more challenging application, we finally study the
quantum phase transition of the mass-imbalanced Hubbard
model (1) on the honeycomb lattice. As illustrated in Fig. 1(b)
the single-particle band structure features two sets of Dirac
cones in the Brillouin zone. Each set consists of two Dirac
cones with unequal Fermi velocities due to the hopping
asymmetry. In the SU(2) case t↑ = t↓ [53,54], it is known
that there is a continuous quantum phase transition from the

FIG. 7. (Color online) (a) Binder ratio and (b) scaled staggered
spin structure factor vs temperature on the square lattice with
t↓/t↑ = 0.15 and U/t↑ = 4. The crossing point indicates the critical
temperature to an antiferromagnetic Ising state.

Dirac semimetal to an antiferromagnetic Heisenberg insulator
at U ≈ 3.8t↑ (red dot), which is well described by the
Gross-Neveu model [55–57]. On the other hand, at the Falicov-
Kimball limit where t↓ = 0, the system shows antiferromag-
netic Ising order at arbitrarily small repulsion (purple dot) [25].
The exact phase boundary for general asymmetric hoppings
remains open. One nevertheless anticipates a finite critical
interaction strength, since the density of states at the Fermi
level is still zero. Furthermore, because of the reduced sym-
metry compared to the SU(2) Hubbard model, we anticipate
the critical behavior of the transition, from a spin-splitted Dirac
semimetal to the antiferromagnetic Ising insulator, is different
from the Gross-Neveu model with the SU(2) symmetry.

To directly address these questions at zero temperature,
we employ a projector version of the LCT-AUX algorithm.
We sample the configurations not from the partition function
but from the wave-function overlap 〈�T |e−βĤ |�T 〉, where
|�T 〉 = ∏N

n=1 (
∑2N

i=1 Pinĉ
†
i )|vac〉 is a trial wave function which

we choose to be the ground state of the free Hamiltonian (3),
i.e., P contains the occupied eigenvectors of the single-particle
hopping matrix K . The Monte Carlo weight in Eq. (31) thus
becomes w(Ck) = det (P †e−(β−τk )KXsk

ik . . . Xs1
i1 e−τ1KP ). Phys-

ical observables are measured at the center of the projection
τ = β/2. Since the acceptance rate and updates follow the
same equations as described in Eqs. (33) and (34), there is
no sign problem in the zero-temperature simulation either.
Below we report results for hopping asymmetry t↓/t↑ = 0.15,
system size N = 2L2 with L = 6,9,12,15, and projection time
βt↑ = 40.

Figure 8 shows the Binder ratio for various system sizes.
The crossing point suggests a critical value between U/t↑ =
1.45 ∼ 1.5, substantially smaller than the critical point of
the SU(2) case U/t↑ ≈ 3.8 [56,57]. This value also differs
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FIG. 8. (Color online) Binder ratios calculated at ground state
for the honeycomb lattice with t↓/t↑ = 0.15. Inset shows the same
data plotted vs inverse system length. The quantum critical point is
estimated at U/t↑ = 1.45 ∼ 1.5.

from a simple renormalization-group estimate described in
Appendix B. The inset of Fig. 8 shows the Binder ratio versus
the inverse system lengths, where a size independent value
between U/t↑ = 1.45 ∼ 1.5 is clearly visible. Besides, the
value of the Binder ratio crossing is quite far from the universal
value of the Ising phase transition, suggesting a different
universal class.

We proceed to estimate the critical exponents of this
quantum phase transition. Close to the quantum critical point
the spin structure factor follows the scaling ansatz,

M2 = L−z−ηF[L1/ν(U − Uc)], (39)

where F is a universal function, ν is the correlation length
critical exponent, z is the dynamical critical exponent, η is the
anomalous dimension. Fitting to Eq. (39) gives estimates for
the critical point Uc/t↑ = 1.481(2), and critical exponents ν =
0.84(4) and z + η = 1.395(7). Figure 9 shows an excellent
collapse of the scaled M2 data using these values. As expected,
the critical exponents are different from the ones of the
SU(2) symmetric Hubbard model ν = 0.88 and z + η = 1.8
[57,58] because of the reduced symmetry of the model (1).6

The inset of Fig. 9 shows the structure factor versus inverse
system length, which should converge to the square of the
antiferromagnetic order parameter as the system size grows. As
is emphasized in Ref. [59], determining the critical point solely
from the 1/L extrapolation of structure factors calculated for
limited system sizes is difficult [54,56]. Our experience also
suggests that it is more reliable to extract the critical points
from the dimensionless ratios [60] such as the Binder ratio in
Fig. 8 and the finite-size scaling analysis of Fig. 9.

6The critical exponents are also different from the ones obtained for
spinless fermions on honeycomb and π flux lattices [5,9,10] possibly
due to a different number of fermion flavors.

FIG. 9. (Color online) Staggered spin structure factor Eq. (8) on
the honeycomb lattice, scaled according to Eq. (39) with Uc/t↑ =
1.481, ν = 0.84, and z + η = 1.395. Inset shows the same data
(unscaled) plotted against the inverse system length.

IV. SUMMARY

We have presented two sign-problem free CT-QMC meth-
ods for efficient simulation of mass-imbalanced Hubbard
models (1) on bipartite lattices at half filling. Using them we
obtained unbiased results for spin-spin correlations on a one-
dimensional chain in Sec. III B and the transition temperature
to the antiferromagnetic Ising state on the square lattice in
Sec. III C. These predictions are relevant to the ongoing
experimental efforts of observing magnetic long-range orders
in ultracold fermion systems [43,61]. We also determine the
location and critical exponents of the quantum phase transition
of model (1) on the honeycomb lattice in Sec. III D, which is
relevant for studies of novel fermionic quantum criticality of
Dirac fermions [55–57,60].

These developments open the door to answering several
open problems. Reference [29] reported on the advantage
of achieving magnetic long-range orders in mass-imbalanced
fermion systems based on approximate DMFT calculations.
Now, using the methods developed in this paper, it is possible
to unbiasedly examine the magnetic and thermodynamic
properties of the mass-imbalanced Hubbard model on a
three-dimensional cubic lattice to provide quantitative guides
for experimental efforts. On the other hand, the observed
fermionic quantum critical point next to an Ising symmetry
broken phase in the honeycomb lattice provides yet another
opportunity to crosscheck the field theory predictions based
on the Gross-Neveu model [55]. It is also interesting to
examine the phase diagrams and crossovers sketched in
Fig. 1 for general hopping asymmetries. Furthermore, our
methods can be readily applied to Hubbard models with
arbitrary spin-dependent anisotropic hoppings, which are rel-
evant for multiorbital systems [62]. The method of correlated
double-vertex updates and the corresponding measurement
scheme can be used in CT-INT simulations of cluster
models in the context of dynamical cluster approximation
calculations [63].
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APPENDIX A: MEASUREMENT OF THE TRANSVERSE
SPIN CORRELATION IN CT-INT

In terms of fermion operators, the spin correlation in the x

direction is

〈
Ŝx

i Ŝx
j

〉 =
{

− 1
4 〈ĉi↑ĉ

†
j↑ĉj↓ĉ

†
i↓ + H.c.〉 if i �= j,

− 1
2

〈
n̂i↑n̂i↓

〉 + 1
4 〈n̂i↑ + n̂i↓〉 if i = j,

(A1)

where the two terms in the first line are equal because the
Hamiltonian is real.

Similarly to the longitudinal case, we expand the observable
as follows:

〈ĉi↑ĉ
†
j↑ĉj↓ĉ

†
i↓〉 = Z0

Z

∞∑
k=0

(−U )k
∑
Ck

× det G↑[Ck ∪ (i,j,τ )]

× det G↓[Ck ∪ (j,i,τ )], (A2)

where Gσ [Ck ∪ (i,j,τ )] is obtained by inserting one row and
one column to Gσ (Ck),

Gσ [Ck ∪ (i,j,τ )] =
(

Gσ (Ck) Gσ
ipj(τp − τ )

Gσ
iiq (τ − τq) Gσ

ij (0+)

)
. (A3)

The contribution to Eq. (A2) is nonzero for both even and odd
expansion orders. The estimator for even k reads

〈ĉi↑ĉ
†
j↑ĉj↓ĉ

†
i↓〉(1)

Ck ,τ
= det G↑[Ck ∪ (i,j,τ )]

det G↑(Ck)

det G↓[Ck ∪ (j,i,τ )]

det G↓(Ck)
. (A4)

For odd k, there is again the zero times infinity contribution to the observable, which is obtained by the shift measurement. The
corresponding estimator is

〈ĉi↑ĉ
†
j↑ĉj↓ĉ

†
i↓〉(2)

Ck ,τp

= −k

UβN

det G↑[Ck \ (ip,τp) ∪ (ip,ip + j − i,τp)]

det G↑(Ck)

det G↓[Ck \ (ip,τp) ∪ (ip + j − i,ip,τp)]

det G↓(Ck)
, (A5)

where Gσ [Ck \ (ip,τp) ∪ (ip,ip + j − i,τp)] is obtained from
Gσ (Ck) by changing the pth row and column. Here the shifted
matrix has a nonzero diagonal element Gσ

pp, however we could
still use Eq. (23) to calculate the determinant ratio because
the derivation does not rely on S = 0. The correct result is
obtained by summing the two contributions Eq. (A4) and
Eq. (A5).

APPENDIX B: RENORMALIZATION-GROUP ANALYSIS
OF THE QUANTUM PHASE TRANSITION ON

HONEYCOMB LATTICE

Analytically, the quantum phase transition in the symmetric
case was studied by the one-loop Wilson renormalization
group (RG) using a large-N expansion [55]. Here N means
the number of fermion species, and physically N = 2 for the
two spins. In the field-theoretical treatment, the Hubbard U

is mapped to a four-fermion coupling constant g, which is
proportional to U . The β function for g is β(g) = β1g +
β2g

2 + O(g3,g2/N ) [55]. The first coefficient β1 = −1 is
derived by power counting, and thus not affected by the
hopping asymmetry. The second coefficient β2 is a one-loop
correction. In the large-N limit, only Feynman diagrams
with the largest number of fermion loops contribute. For the
four-fermion interaction it is one single particle-hole bubble.

Thus β2 is proportional to

β2 ∝
∑

σ

∫ ∞

−∞

dω

2π

∫ �

|k|=�/b

d2k

(2π )2

1

ω2 + v2
σ k2

. (B1)

Here b > 1 is the scaling factor, � is the physical cutoff (or
inverse lattice spacing), vσ ∝ tσ is the Fermi velocity for spin
σ at the Dirac cone. Making the substitution ω → vσω, one
finds β2 ∝ ∑

σ t−1
σ . The quantum critical point, which is the

solution of β(gc) = 0, depends on the hopping asymmetry as
follows:

gc ∝ β−1
2 ∝ Uc ∝ 1

1/t↑ + 1/t↓
, (B2)

Uc ≈ 7.6t↑
1 + t↑/t↓

, (B3)

where in the last step we used the known result for the
symmetric case Uc(t↑,t↑) ≈ 3.8t↑ [56,57]. Note that RG
correctly reproduces the exact result Uc(t↑,0) = 0 in the
Falicov-Kimball limit. For the case t↓/t↑ = 0.15, it predicts
Uc(t↑,0.15t↑)/t↑ ≈ 7.6/(1 + 1/0.15) = 0.99, which is signif-
icantly smaller than the CT-QMC result Uc(t↑,0.15t↑)/t↑ =
1.45 ∼ 1.5. The approximations made in the RG analysis
might break down in the general mass-imbalanced case. This
calls for further developments in RG analysis.
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(1995).
[27] T.-L. Dao, A. Georges, and M. Capone, Phys. Rev. B 76, 104517

(2007).
[28] T.-L. Dao, M. Ferrero, P. S. Cornaglia, and M. Capone, Phys.

Rev. A 85, 013606 (2012).

[29] A. Sotnikov, D. Cocks, and W. Hofstetter, Phys. Rev. Lett. 109,
065301 (2012).

[30] E. Fratini and S. Pilati, Phys. Rev. A 90, 023605 (2014).
[31] E. A. Winograd, R. Chitra, and M. J. Rozenberg, Phys. Rev. B

84, 233102 (2011).
[32] E. A. Winograd, R. Chitra, and M. J. Rozenberg, Phys. Rev. B

86, 195118 (2012).
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