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Crystallization of fractional charges in a strongly interacting quasihelical quantum dot
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The ground-state electron density of a one-dimensional spin-orbit coupled quantum dot with a Zeeman term
and strong electron interaction is studied at the fractional helical liquid points. We show that at fractional filling
factors ν = (2n + 1)−1 (with n a non-negative integer), the density oscillates with N0/ν peaks. For n � 1, a
number of peaks larger than the number of electrons N0 suggests that a crystal of fractional charges νe (with e

the electron charge) occurs. The reported effect is amenable of verification in a dot coupled to a charged atomic
force microscope tip.
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I. INTRODUCTION

Quasihelical electrons occur in spin-orbit coupled quantum
wires when a magnetic field perpendicular to the spin-orbit
field is applied [1–7]. The magnetic field opens a gap at
the degeneracy point of the spin-polarized wire subbands,
which is met when kF = kSO, with kF the Fermi wave
vector and kSO the wave vector associated with the spin-orbit
interaction. In this regime, and for not too strong magnetic
induction, the system exhibits two helical conduction chan-
nels, with counterpropagating electrons having opposite spin
polarization.

These systems, which are the subject of recent intense
theoretical investigations, possess several unusual properties
such as the occurrence of Majorana bound states at their
edges when proximized with a superconductor [8,9] or peculiar
spin oscillations in the presence of magnetic impurities [10].
The effects induced by repulsive electron interactions are
remarkable: as an example, the gap induced by the magnetic
field is strongly enhanced by interactions, and anisotropic spin
properties occur [1,11,12].

When the Fermi level of a quasihelical wire is tuned below
the degeneracy point, strong interactions can generate even
more interesting effects. A model originally introduced to
study fractional gapped phases in arrays of parallel quantum
wires [13,14] treated as Luttinger liquids [15–17] has been re-
cently applied to the four-channels Luttinger liquid describing
spin-orbit coupled quantum wires [18]. The combined effects
of the magnetic field and electron-electron scattering are
captured by a Zeeman coupling dressed by electron interaction
vertices [19]. For some critical positions of the dot Fermi
level, characterized by a fractional filling factor with odd
denominator

ν = kF

kSO
= 1

2n + 1
(n ∈ N∗),

a resonance occurs, which becomes relevant in the sense
of the renormalization group [18,19]. As a consequence,
additional gaps open and fractional phases stabilize in the
wire. They are accompanied by several signatures, such as the
occurrence of low-energy excitations with fractional charge,
which induce a noninteger quantization of the conductance
[18,19]. In addition, the shot noise becomes fractionalized

[20], and unusual properties of the chiral currents have been
reported very recently [21].

What happens to ground-state properties, such as the
electron density of a quasihelical quantum dot, when a
fractional phase occurs? This is a nontrivial question, since it
can be expected that such a peculiar state may exhibit unusual
features, which would compete with the conventional Friedel
[22,23] and Wigner [22,24–28] oscillations. Indeed, in any
finite-size one-dimensional system, such as a quantum dot
embedded into a quantum wire, electron density oscillations
occur. A competition exists between oscillations with a 2kF

wave vector (Friedel oscillations), due to reflections at the dot
edges, and oscillations with wave vector 4kF (Wigner oscilla-
tions) due to strong electron repulsion [29]. The prevalence of
either is controlled in general by the ratio between the average
electron repulsion and kinetic energy. In a dot with one charge
and one spin degree of freedom, Friedel oscillations have
N0/2 peaks (with N0 the number of electrons in the system,
assumed even for simplicity) while Wigner oscillations display
N0 peaks. In quasihelical systems, Friedel oscillations in the
main gap (an integer phase with ν = 1) are predicted to display
N0 peaks due to the locking between spin and momentum,
which halves the number of degrees of freedom [30].

In this paper, we address this point evaluating the electron
density of a quasihelical quantum dot with open boundary
conditions in a fractional phase ν = (2n + 1)−1. Along with
the standard Friedel and Wigner terms and their higher
harmonics [31], we consider also contributions originating
from the dressed Zeeman interactions. We then evaluate the
ground-state average particle density.

Our main result is that in the fractional phase ν = (2n +
1)−1, the most relevant oscillations of the electron density have
wave vector 4(2n + 1)kF and exhibit (2n + 1)N0 peaks. This
is in striking contrast with the standard situation in which
for strong interactions N0 peaks occur, namely one for each
electron. The presence of a larger number of peaks than the
number of electrons suggests that this result can be interpreted
as the manifestation, in the ground state, of a fractional crystal
of equally spaced charged lumps, each peak corresponding
to a νth of an electron. Charge-density oscillations can be
experimentally detected, for instance in a linear transport
experiment performed while scanning the dot with a charged
atomic force microscope (AFM) tip [27,28,32]. We discuss
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the conditions to observe this effect in state-of-the-art samples
[33–35] as well as possible implementations in cold-atom
systems [36,37]. A measurement of such fractional density
oscillations would then constitute a probe of the fractional
states.

The paper is organized as follows. In Sec. II we introduce
the Luttinger model of the dot with spin-orbit coupling and
magnetic field. Focusing on odd-denominator resonances, we
derive an effective Hamiltonian in the strong interactions
regime, and we discuss the electron density operator. In Sec. IV
our results are reported and discussed in detail. Section V
contains our conclusions.

II. THE MODEL

A. Zero magnetic field

We consider a one-dimensional quantum dot of length �

with open boundaries at x = 0 and x = �. The dot is subject
to a spin-orbit field acting along the negative direction of the
z axis. The single-particle Hamiltonian is [1,6]

Hsp = − 1

2m∗ ∂2
x I + igSO∂xσ z, (1)

where m∗ is the effective electron mass, gSO the strength of
the spin-orbit coupling, with associated wave vector kSO =
m∗gSO, and I and σ z are the identity and the z Pauli matrix,
respectively (here and henceforth, � = 1).

Including forward electron-electron interactions, the
Hamiltonian around the Fermi energy can be described as
a two-channels Luttinger liquid

H0 = 1

2π

∫ �

0
dx

∑
μ=ρ,σ

vμ

[
1

gμ

(∂xφμ)2 + gμ(∂xθμ)2

]
(2)

with μ = ρ (σ ) the charge (spin) modes and vμ their group
velocity. The parameter gμ controls interactions and vμ =
vF/gμ in the μ sector, with vF the Fermi velocity. For repulsive
interactions one has 0 < gρ < 1, while gσ = 1 when SU(2)
invariance holds. The fields φμ(x) and θμ(x) satisfy canonical
commutation rules [φμ(x),∂x ′θμ′(x ′)] = iπδμ,μ′δ(x − x ′) and
can be represented as

φμ(x) = i
√

gμ

∑
nq>0

e−πnqα/2�

√
nq

sin
(πnqx

�

)(
b†μ,nq

− bμ,nq

)
,

θμ(x) = 1√
gμ

∑
nq>0

e−πnqα/2�

√
nq

cos
(πnqx

�

)(
b†μ,nq

+ bμ,nq

)
,

where α is a short-length cutoff and bμ,nq
are canonical bosonic

operators. The fermionic operator is expressed in terms of left
and right components,

�s(x) = e−iskSOx[eikFxRs(x) + e−ikFxLs(x)], (3)

with s = ± the z direction of the electron spin. Here, kF =
πN0/(2�) is the Fermi wave vector, with N0 the reference
number of electrons in the Fermi sea, assumed even for
simplicity. The left- and right-moving fields Ls(x), Rs(x)
satisfy Ls(x) = −Rs(−x) with

Rs(x) = − iFs√
2πα

eiπNsx/�e
i


s (x)√
2 , (4)

Fs is a Klein factor, Ns is the number of excess electrons
in the s = ± spin sector with respect to the Fermi sea,
and


s(x) = θρ(x) + sθσ (x) − φρ(x) − sφσ (x). (5)

Note that [
s(x),
s ′ (−x)] = 8iδs,s ′f (x), with

f (x) = 1

2
arctan

[
sin

(
2πx
�

)
eπα/� − cos

(
2πx
�

)
]
, (6)

due to the finite size of the dot [38].

B. Magnetic field

A magnetic field along the x axis induces a Zeeman
coupling V = 1

2μBg∗Bσ x ≡ B
2 σ x with B the field intensity,

μB the Bohr magneton, and σ x the x Pauli matrix. In terms of
the fermionic operators,

V = B

2

∫ �

0
dx [�†

+(x)�−(x) + �
†
−(x)�+(x)]. (7)

When �s(x) is expressed via Ls(x) and Rs(x), eight terms
arise and Eq. (7) becomes

V = 1

2π

8∑
j=1

∫ �

0
dx Vj (x) . (8)

In the presence of electron interactions, the Zeeman coupling
induces also scattering processes in which each term Vj (x) is
dressed by backscattering interaction vertices [18,19] Un(x) =
[e2ikFxL

†
±(x)R±(x)]

n
, with n a non-negative integer. They can

be represented as [39]

Vj (x) → V
(n)
j (x) = Un(x)Vj (x)Un(x), (9)

with the corresponding Hamiltonian

V = 1

2π

∑
n�0

8∑
j=1

∫ �

0
dx V

(n)
j (x). (10)

In bosonic form,

V
(n)
j (x) = �

(n)
j cos

[
2q

(n)
j x −

√
2O

(n)
j (x)

]
, (11)

where �
(n)
j are interaction amplitudes ∝ B.

The operators O
(n)
j (x) and wave vectors q

(n)
j are presented

in Table I, where γn = 2n + 1. We have omitted zero modes
describing excess electrons beyond the Fermi sea, which
are irrelevant for the forthcoming discussions focusing on
the behavior at the Fermi surface with N0 electrons. Note
that O

(n+1)
3 (x) = O

(n)
4 (x), q

(n+1)
3 (x) = q

(n)
4 (x), so that terms

V
(n+1)

3 (x) and V
(n)

4 (x) could be regrouped, with the exception
of the term V

(0)
3 (x).

The first four terms [40], 1 � j � 4, oscillate with a
wavelength shorter than � and therefore give negligible contri-
butions to the Hamiltonian in the sense of the renormalization
group [18,19].

On the other hand, by suitably tuning kSO and kF, terms with
5 � j � 8 can become spatially nonoscillating and thus reso-
nant. In particular, if kF = kSO/(2n) (n � 1), the terms V

(n)
5 (x)

and V
(n)

6 (x) become resonant, while for kF = kSO/(2n + 1)
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TABLE I. Bosonized expression of the eight Zeeman terms
dressed by electron-electron interactions and their corresponding
wave vector. Here, γn = 2n + 1 and F

(n)
0 (x) = 2

√
2(1 − γn)f (x).

j O
(n)
j (x) q

(n)
j

1 (γn − 1)φρ(x) + θσ (x) − φσ (x) (γn − 1)kF + kSO

2 (γn − 1)φρ(x) + θσ (x) + φσ (x) (γn − 1)kF + kSO

3 (γn − 2)φρ(x) + θσ (x) (γn − 2)kF + kSO

4 γnφρ(x) + θσ (x) γnkF + kSO

5 (γn − 1)φρ(x) − θσ (x) + φσ (x) − F
(n)
0 (x) (γn − 1)kF − kSO

6 (γn − 1)φρ(x) − θσ (x) − φσ (x) − F
(n)
0 (x) (γn − 1)kF − kSO

7 γnφρ(x) − θσ (x) − F
(n)
0 (x) γnkF − kSO

8 (γn − 2)φρ(x) − θσ (x) − F
(n)
0 (x) (γn − 2)kF − kSO

(n � 0), the terms V
(n)

7 (x) and V
(n+1)

8 (x) resonate. Terms with
j = 5,6 (j = 7,8) are predicted to give rise to fractional
states in the dot [13,14,18,19] with filling factor ν = 1/(2n)
[ν = 1/(2n + 1)].

The above resonance conditions can be rewritten in terms
of the average density n0 = N0/� as

n0 = 2m∗gSO

π�2
ν, (12)

where we have reinserted � for clarity. For a resonance with a
given ν, the right-hand side of Eq. (12) is fixed by the material
parameters. By tuning the average particle density via N0 and
�, the dot can be brought into resonance. Note that, due to
the finite dot length, kF is quantized so that for a given n and
number of electrons N0 only certain values of kSO satisfy the
resonance condition—see also Sec. IV B.

In the following, we will consider only odd denominator
resonances [41], i.e., those at kF = kSO/(2n + 1). Once res-
onating, the terms V

(n)
7 (x) and V

(n+1)
8 (x) become relevant in the

spirit of the renormalization group [18,19] when gρ 	 gc with
gc = 3/(2n + 1)2. Thus, for sufficiently strong interactions
one can retain only the dominant terms of Eq. (10):

V ≈ 1

2π

∫ �

0
dx

[
V

(n)
7 (x) + V

(n+1)
8 (x)

]

= �

2π

∫ �

0
dx cos [4f (x)] cos [2η+(x)], (13)

where �
(n)
7 = �

(n+1)
8 = �/2, and we have performed the

canonical transformation

η+(x) = 1√
2
[γnφρ(x) − θσ (x)] + 2γnf (x), (14a)

η−(x) = 1√
2
[γnφρ(x) + θσ (x)], (14b)

χ±(x) = 1√
2

[
γ −1

n θρ(x) ∓ φσ (x)
]
, (14c)

with η±(x) and χ±(x) canonically conjugated fields.
The Hamiltonian H = H0 + V can then be decou-

pled into a massless and a massive term, H ≈ h0 + hM ,

where

h0 = vη

2π

∫ �

0
dx

[
1

gη

(∂xη−)2 + gη(∂xχ−)2

]
, (15)

hM = vη

2π

∫ �

0
dx

[
1

gη

(∂xη+)2 + gη(∂xχ+)2

]

+ �

2π

∫ �

0
dx cos [4f (x)] cos [2η+(x)], (16)

with

vη = 1 + γ 2
n

2

vF

gη

, gη = γn

√
1 + γ 2

n

1 + γ 2
n g2

ρ

gρ. (17)

The massless sector is a standard Luttinger liquid [15–17]
with renormalized parameters vη and gη, while the massive
term is a sine-Gordon model. Note that identifying H ≈
h0 + hM neglects corrections Uη ∝ (∂xη+)(∂xη−) and Uχ ∝
(∂xχ+)(∂xχ−). A mean-field analysis of these terms [1] reveals
that the term Uη is subleading since the field η+(x) is
essentially pinned to one of the minima of the sine-Gordon
term in the regime treated in this paper (see below). The term
Uχ is more easily treated in the action formalism, where a
similar analysis shows that it leads to corrections leading to a
renormalization [1] of v∗

η and g∗
η .

The dynamics of the massless sector is standard. Concern-
ing the massive sector with a sine-Gordon term, the equation
of motion for η+(x) is

vη

gη

∂2
xη+(x) + � cos [4f (x)] sin [2η+(x)] = 0. (18)

In the scaling limit gρ 	 gc that we consider, � diverges
under renormalization-group transformations [18,19], and the
semiclassical solutions for the equation of motion “pin” the
field η+(x) to the minima of the cosine term, i.e.,

η+(x) = π

2
+ kπ (k ∈ Z), (19)

with the conjugated field χ+(x) becoming a strongly fluctuat-
ing one: 〈χ2

+(x)〉 → ∞, where 〈· · · 〉 represents the quantum
average over the ground state. This is the infinite mass limit of
the model [18,19].

When the field η+(x) is pinned as in Eq. (19), a gap in
the spectrum opens. For n = 0 (ν = 1), Eq. (13) is relevant
for gρ � 3 and corresponds to the opening of a gap near the
degeneracy point of the spin-polarized wire subbands. This
constitutes the main gap of the theory, which requires no
repulsive interaction among electrons to be formed, where
a quasihelical electron liquid develops [1–6].

More intriguing are the properties of the fractional gaps
occurring for n � 1 at fractional fillings,

ν = 1

2n + 1
.

These gaps do not appear in a noninteracting theory and will
be the ones addressed in the rest of the paper.

C. Electron density operator

To study the properties of the ground-state particle density,
we start by observing that the density operator ρ(x) is
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composed of several terms [22,23,31,38,42–44],

ρ(x) = ρLW(x) + λFρF(x) + λWρW(x) + λZρZ(x), (20)

with the weights λi (i ∈ {F,W,Z}) free parameters to be
determined imposing suitable constraints on ρ(x), namely
open boundary conditions and the conservation of the number
of electrons.

Here,

ρLW(x) = N0

�
+ 1

π
∂xφρ(x) (21)

is the long-wave part of the density.
The contribution of the Friedel oscillations [22,23,45] is

ρF(x) =
∞∑

m=1

ρ
(m)
F (x) (22)

with

ρ
(m)
F (x) = cos{2m[kFx − f (x)] −

√
2mφρ(x)}

× cos[
√

2mφσ (x)] (23)

the Friedel harmonics at wave vector 2mkF (m � 1).
Interactions and umklapp scattering induce Wigner oscilla-

tions [31,38,42–44]

ρW(x) =
∞∑

m=1

ρ
(m)
W (x), (24)

with harmonics

ρ
(m)
W (x) = cos{4m[kFx − f (x)] − 2

√
2mφρ(x)} (25)

at wave vector 4mkFx.
Finally, a contribution induced by all terms in Eq. (10) that

do not become resonant,

ρZ(x) =
∞∑

m=1

8∑
j=1

[1 − (δm,nδj,7 + δm,n+1δj,8)]ρ(m)
Z,j , (26)

with

ρ
(m)
Z,j (x) = cos

[
2q

(m)
j x −

√
2O

(m)
j (x)

]
, (27)

is considered.
The terms in Eqs. (24) and (26)—and the higher harmonics

of the Friedel oscillations—are introduced here as corrections
to the usual density operator in a Luttinger liquid quantum dot.
They are introduced to capture the effects of nonresonant terms
that are not directly included in the Hamiltonian h0 + hM—see
Eqs. (15) and (16). To motivate them, we consider explicitly
the case of terms V

(m)
j (x)—a similar argument holds for the

Wigner terms. To the lowest perturbative order, such terms
induce a perturbation 〈δρ(m)

LW,j (x)〉 to the long-wave term [44],

〈
δρ

(m)
LW,j (x)

〉 ∝
∫ �

0
dy

∑
E

〈E|V (m)
j (y)|0〉〈0|∂xφρ(x)|E〉

E0 − EE
,

where |E〉 represents a many-body excitation of the unper-
turbed dot with ground state |0〉, and EE is the corresponding
unperturbed energy. Note that terms with j = 7, m = n and
j = 8, m = n + 1 must not be considered here, since they are

explicitly included in the Hamiltonian. As shown in detail in
Appendix A, this correction has the form

〈
δρ

(m)
LW,j (x)

〉 ∝ cos
[
2q

(m)
j x + C

(m)
j f (x)

]
q

(m)
j

, (28)

with C
(m)
j a scalar coefficient, and thus it oscillates with wave

vector q
(m)
j . These oscillating corrections are enveloped by

slowly varying terms that scale as a power law with the
Luttinger parameters of the massless sector. On the other hand,
as shown in Sec. III, the quantum average of the terms ρ

(m)
Z,j (x)

produces in the particle density the same kind of oscillations
of Eq. (28), with the same slowly varying envelope function.

One can therefore capture the effects of interactions not
considered by the effective Hamiltonian h0 + hM by including
the extra terms ρ

(m)
Z,j (x) in the particle density operator. A

similar argument motivates the inclusion of ρ
(m)
W (x) [44].

III. QUANTUM AVERAGE OF THE ELECTRON DENSITY

Let us now turn to the evaluation of the quantum average of
the electron density ρ(x)—see Eq. (20)—on the ground state
in the fractional gapped phase.

The long-wave term ρLW(x) in Eq. (21) simply evaluates
N0/�. Each of the other terms—see Eqs. (22), (24), and (26)—
can be cast into the form

O = cos

[
Q(x) +

∑
p=±

[αpηp(x) + βpχp(x)]

]
, (29)

where Q(x) = qx + cQf (x), with q the wave vector of the
oscillating term and cQ a scalar coefficient. Note that for the
dressed Zeeman terms, the wave vector is q = 2q

(m)
j —see

Eq. (27)—while for the Wigner terms the wave vector is q =
4mkF —see Eq. (25). To evaluate the averages, we convert in
the product form

O = eiQ′(x)
∏
p=±

eiαpηp(x)
∏
p=±

eiβpχp(x) + H.c., (30)

where

Q′(x) = Q(x) − α−β+f (x) (31)

also includes the effects of commutations between fields.
Let us first consider the massive sector p = +. In the

scaling limit of very large mass, η+(x) is pinned to the
minima of the sine-Gordon potential; see Eq. (19). All these
minima are degenerate, with the j th minimum having energy
εj = −|ε0| ∀ j , with

ε0 = − �

2π

∫ �

0
dx cos [4f (x)]. (32)

The average of exp [iα+η+(x)] is then

〈eiα+η+(x)〉 = eiϕ0 lim
J→∞

J∑
j=−J

e−βεj eiπα+j

ZJ

, (33)

where ϕ0 = πα+/2 and ZJ = ∑J
j=−J e−βεj with a fictitious

small temperature ∝β−1, which can be set to zero in the end of
the calculation. If α+ = 2l, with l ∈ Z, the above expression
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reduces to (−1)l . If α+ �= 2l, however, the partial summations
cancel out and the average is zero. Thus we conclude that

〈eiα+η+(x)〉 = (−1)lδα+,2l (l ∈ Z). (34)

Note that this sharp condition is due to the degeneracy of the
minima of the potential (see Sec. IV B).

Furthermore, we have

〈eiβ+χ+(x)〉 = [E(x)]
β2+
2 , (35)

where

E(x) = e−〈χ2
+(x)〉 → 0 (36)

due to the large fluctuations of the field χ+(x). Thus, every
operator that contains the field χ+(x) will be vanishing in the
infinite mass limit.

In the massless sector, the (zero-temperature) averages
〈η2

−(x)〉 and 〈χ2
−(x)〉 can be evaluated from the correlators

[46]

G(x,x ′; τ ) = 〈Tτη−(x,τ )η−(x ′,0)〉, (37)

Ḡ(x,x ′; τ ) = 〈Tτχ−(x,τ )χ−(x ′,0)〉, (38)

where τ is the imaginary time, as

〈η2
−(x)〉 = lim

τ→α/πvη

G(x,x; τ ), (39)

〈χ2
−(x)〉 = lim

τ→α/πvη

Ḡ(x,x; τ ), (40)

with α(πvη)−1 a short imaginary-time cutoff. Let us focus
on G(x,x ′; τ ), as the procedure is analogous for Ḡ(x,x ′; τ ).
Introducing the Fourier transform

Gω(x,x ′) =
∫ β

0

dτ

2π
G(x,x ′; τ )e−iωτ (41)

from the Hamiltonian in Eq. (15), one has[
−2vη

gη

∂2
x + 2ω2

vηgη

]
Gω(x,x ′) = δ(x − x ′). (42)

Imposing η−(−x) = −η−(x) and η−(x + 2�) = η−(x) as ap-
propriate for open-boundary conditions, one finds

Gω(x,x ′) = vηgη

�

∞∑
j=1

sin(kjx) sin(kjx
′)

ω2 + v2
ηk

2
j

, (43)

with kj = (π/�)j . Thus, we get

〈η2
−(x)〉 = −gη

2
log [K(x)], (44)

where

K(x) = sinh
(

πα
2�

)
√

sinh2
(

πα
2�

) + sin2
(

πx
�

) . (45)

Similarly, one finds

〈χ2
−(x)〉 = − 1

2gη

log [G(x)], (46)

TABLE II. Coefficients for the different contributions to the
electron density.

Term α+ α− β+ β− Wave vector

ρ
(m)
F (x) − m

γn
− m

γn
1 −1 2mkF

ρ
(m)
W (x) −2 m

γn
−2 m

γn
0 0 4mkF

ρ
(m)
Z,1 (x) γn−γm+1

γn

1−γm−γn

γn
−1 1 2(γm + γn − 1)kF

ρ
(m)
Z,2 (x) γn−γm+1

γn

1−γm−γn

γn
1 −1 2(γm + γn − 1)kF

ρ
(m)
Z,3 (x) γn−γm−1

γn
− γn+γm−1

γn
0 0 2(γm−1 + γn)kF

ρ
(m)
Z,4 (x) γn−γm

γn
− γn+γm

γn
0 0 2(γm + γn)kF

ρ
(m)
Z,5 (x) 1−γn−γm

γn

1−γm+γn

γn
−1 1 2(γm − γn − 1)kF

ρ
(m)
Z,6 (x) 1−γn−γm

γn

1−γm+γn

γn
1 −1 2(γm − γn − 1)kF

ρ
(m)
Z,7 (x) − γn+γm

γn

γn−γm

γn
0 0 2(γm − γn)kF

ρ
(m)
Z,8 (x) − γn+γm−1

γn

γn−γm−1
γn

0 0 2(γm−1 − γn)kF

with

G(x) = 4e− πα
� sinh2

(πα

2�

)
cosh

(πα

2�

)
K−1(x). (47)

Thus in the massless sector one has

exp

[
−α2

−
2

〈η2
−(x)〉

]
= [K(x)]α

2
−gη/4, (48)

exp

[
−β2

−
2

〈χ2
−(x)〉

]
= [G(x)]β

2
−/(4gη). (49)

Summarizing, one obtains for the operator in Eq. (30)

〈O〉 =
∑

l

(−1)lδα+,2l[K(x)]
α2−gη

4 [G(x)]
β2−
4gη

× [E(x)]
β2+
2 cos[Q′(x)]. (50)

The scaling limit imposes severe restrictions to Eq. (50),
due to the simultaneous requirements α+ = 2l and β+ = 0,
with l an integer.

Table II shows the coefficients and the wave vector for
the different oscillating components of the electron density in
Eq. (20). It can be seen that ρ

(m)
F (x) = ρ

(m)
Z,1 (x) = ρ

(m)
Z,2 (x) =

ρ
(m)
Z,5 (x) = ρ

(m)
Z,6 (x) = 0 due to the exponential suppression

induced by the large fluctuations of χ+(x).
The Wigner harmonics only survive if m = lγn (with

l ∈ Z∗), see Table II and Eq. (34), and they have wave
vector l4γnkF. They scale as [K(x)]l

2gη . Among them, the
most relevant term corresponds to l = 1, with wave vector
Q0 = 4γnkF.

Going through Table II, one verifies that similar arguments
apply for every nonvanishing oscillating term ρ

(m)
Z,j (x): they

all have the wave vector of the form l4γnkF (with l ∈ Z∗)
and scale as [K(x)]l

2gη . Thus, we can conclude that the
only contributions to the electron density oscillate with wave
vectors l4γnkF.

Among these terms, the most relevant ones have wave
vector Q0 = 4γnkF and scale as [K(x)]gη . When all the most
relevant terms are collected and physical constraints (open
boundary conditions and normalization) are imposed on 〈ρ(x)〉
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to determine λW and λZ, we obtain

〈ρ(x)〉= N0

�

{
1 − [K(x)]gη

5

5∑
i=1

cos [Q0x − Fi(x)]

}
, (51)

where F1(x) = F2(x) = F3(x) = 0, F4(x) = 4(γn − 1)f (x),
and F5(x) = 4(γn + 1)f (x). The terms F4,5(x) ∝ f (x) are a
direct consequence of the dot finite size [38] and stem from
the terms ρ

(m)
Z,7 (x) and ρ

(m)
Z,8 (x), respectively.

IV. RESULTS

A. Density oscillations and fractional charges

Let us now turn to a discussion of the results. In the main gap
n = 0 (with γn = 1), the only nonvanishing contributions to
ρ(x) are the lowest Wigner harmonic ρ

(1)
W (x)—see Eq. (25)—

and four terms stemming from ρZ(x). They all have wave
vector 4kF. The density displays N0 oscillations corresponding
to the expected Wigner oscillations of N0 electrons in a box
[22,24,30]. For n � 1, however, the density exhibits (2n +
1)N0 peaks. This is due to the contribution of the relevant
nonzero terms in ρZ(x) and of the (2n + 1)th Wigner harmonic.

Figures 1 and 2 show 〈ρ(x)〉 for N0 = 6 and 10 particles,
respectively, in the case of the lowest resonances n = 0,
1, and 2. As can be seen, the density shows the expected
number of peaks, Np = (2n + 1)N0. For n � 1, a density
displaying Np > N0 peaks is a fascinating situation in which
the many-body wave function of the N0 electrons splits
up. This splitting can be suggestively interpreted as the
crystallization of (2n + 1)N0 “agglomerates,” each with a
charge νe = e/(2n + 1), which distribute evenly in space
minimizing the strong repulsive interactions among them. This
would give rise to Np distinct peaks in the density.

It is very interesting to observe that, although several
predictions have already been made concerning fractional
excitations in strongly interacting spin-orbit coupled wires
in the presence of a magnetic field [18–21], in this work
we predict that a bulk ground-state property—the density
ρ(x)—exhibits signatures very similar to such entities.

In this context, very recently a similar phenomenon was
reported in which the density of strongly interacting edge states
of a two-dimensional topological insulator with two-particle
backscattering exhibits 2N0 peaks for N0 electrons, and it was
attributed to the formation of a “fractional Wigner crystal”
[47].

Signatures of fractional charged lumps also show up in
higher-order functions, such as the density-density correlation
functions [30]. Indeed, preliminary results (not shown) confirm
that these correlators display Np − 1 oscillations, seeming to
imply a degree of correlations among the fractional density
peaks. This would point toward their description in terms of
fractional quasiparticles. Work to confirm this interpretation is
currently underway.

From Figs. 1 and 2 it is possible to notice the appearance of a
slowly varying modulation superimposed to the peaks, induced
by the terms f (x) present in F4,5(x) of Eq. (51) arising from the
open-boundary conditions. Such terms are responsible, in the
case of a standard Wigner molecule, of a weak distortion that
tends to “squeeze” the outermost electrons toward the center
[38]. In the present case, the slowly varying modulation of the

FIG. 1. (Color online) Plot of the ρ(x) (units �−1) for a dot with
N0 = 6 electrons and gρ = 0.05 at the resonance (a) n = 0, (b) n = 1,
and (c) n = 2. In all panels, α = k−1

F .

density is induced by the superposition of slightly distorted
oscillations, ultimately producing a weak beatinglike pattern.
Finally, one should also note that an envelope due to [K(x)]gη

is present, but its effect is negligible in the strong interaction
regime presented here.

In deriving Eq. (51), all the nonzero dressed Zeeman terms
ρ

(m)
Z,j (x) have been weighted with the same factor λZ. However,

since all the relevant terms have the same wave vector, we
expect that the number of oscillations of the density is robust,
with only a possibly different modulation pattern of the peaks
due to different weights of terms with F4(x) and F5(x). It may
also be speculated that within the fractional phase, Wigner
oscillations have a weaker amplitude than the term ρZ(x). In
this case we also conclude, in analogy to what was discussed
previously, that our results are robust.
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FIG. 2. (Color online) Same as in Fig. 1 but for N0 = 10. All
other parameters as in Fig. 1.

We close this section observing that the mechanism produc-
ing oscillations at wave vector 4(2n + 1)kF is intrinsic to the
fractional helical liquid phase and independent of the boundary
conditions. Therefore, a similar effect could be observed,
for instance, in an infinite quantum wire in the presence of
an impurity. The latter, breaking the translational invariance,
would pin the density and allows for the predicted oscillations
to be observed around the location of the impurity. Still,
in actual implementations, quantum wires not adiabatically
connected to external leads can behave as quantum dots, so
that the setup chosen in the paper is of actual relevance in
condensed matter.

B. Discussion

We comment here on the observability and stability of the
predicted effect. Assuming InAs as a host material [33–35],

tuning the resonance at ν = 1/3 for a dot with N0 = 10
electrons, one requires a length [48] � ≈ 7.5 μm, while
� ≈ 4.5 μm is required for N0 = 6—see Eq. (12). As put
forward by several authors, density oscillations in a quantum
dot can be probed by scanning a charged AFM tip along
the wire while performing a linear transport experiment with
lateral source and drain contacts [27,28,32,49,50]. The tip
induces a chemical potential shift proportional to the dot
density and a modulation of the conductance that is connected
to the density oscillations [27,28,49,50]. The lateral resolution
can be approximately estimated in the range of [28,50] ≈50 nm
while the average wavelength of the density oscillations is
≈250 nm. Thus, such an experiment may detect the Np peaks
of the density oscillations.

The terms V
(n)

Z,7(x) and V
(n+1)

Z,8 (x) can become relevant as

long as their wavelength λ = 2πq
(n)
7 = 2πq

(n+1)
8 is larger than

the dot length �, or equivalently

|γnkF − kSO| � 2π

�
. (52)

Thus, the number of electrons in the dot and its length must
be calibrated in order to satisfy the above condition. Note that
Eq. (52) may allow for some flexibility for the resonance with
ν = 1/3: supposing, for instance, that γ1kF − kSO = 0 for N0

dot electrons, one finds that the condition in Eq. (52) is still
satisfied for N0 ± 1 electrons in the dot. This fact does not hold,
however, for resonances with n � 2, for which the tuning of
dot parameters is more critical.

The arguments developed in this paper rely on the infinite
mass approximation for the sine-Gordon model, when the
gap becomes the largest energy scale. Finite-size effects limit
the flow of the renormalization-group equations. Therefore,
the relevance of the terms V

(n)
Z,7(x) and V

(n+1)
Z,8 (x) will depend

strongly on the bare values of their coupling [18]. The latter,
being proportional to the applied magnetic field, should be
controllable in experiments [51].

In particular, increasing the magnetic field results in an
increase of the coupling �. Clearly, a large magnetic field
would also break the helicity of the system, creating a
spin-polarized electron liquid. However, a lower bound for
the magnetic field exists. This stems from the requirement
that the Fermi energy of the given resonance lies between the
bottom of the lower subband and the bottom of the main gap.
This is satisfied for

B <
�

2k2
SO

g∗μBm∗
2n

2n + 1
. (53)

Renormalization-group arguments provide an upper threshold
value on the Luttinger parameter gc = 3/γ 2

n in order for a
given resonance to be relevant. Estimating the actual strength
of electron interactions is, however, beyond the scope of
the model. More insight may be drawn from microscopical
approaches such as the Hubbard model. This would not only
allow us to confirm the predictions made here concerning the
fixed point of the theory, but also in principle to observe the
transition toward crystallization. In a recent paper [21], it was
shown that for V

(n)
Z,7/8 to be relevant at n � 1, on-site repulsion

(however strong) is not sufficient in the Hubbard model
[42]. This seems to imply that a nonzero range interaction
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is needed to observe the predicted effects. Indeed, although
the bare Hamiltonian of the dot in Eq. (2) includes only
zero-range interactions, the correction terms ρW(x) and ρZ(x)
essentially capture the effects of such long-range interactions.
So far, no clear experimental observation of a fractional helical
liquid exists. One possible way to obtain strong interac-
tions in condensed matter could be to minimize screening
by suspending the nanowire acting as a dot—a technique
that has been proven successful, e.g., for obtaining Wigner
molecules in a carbon nanotube [52,53]. Also, a possible
implementation could be speculated in cold-atoms systems.
A one-dimensional Rashba wire subject to a perpendicular
magnetic field could be simulated taking advantage of neutral
cold atoms trapped in optical lattices. As discussed by Mancini
et al. in Ref. [36] for alkaline-earth-like atoms, the joint action
of the magnetic field with the Rashba spin-orbit coupling can
be simulated using proper Raman transitions between different
nuclear spin states. Cold-atoms realizations of our model
may allow the observation of the fractional phase if one uses
Rydberg atoms where longer-range interaction terms can be
obtained [37].

When interactions are not strong enough, the mass of the
sine-Gordon sector does not flow to very large values, and
additional contributions to the density, which are negligible
in the regime treated here, may compete or indeed become
relevant. In particular, we can expect that with lowering
interactions, a “shallower” oscillation with (2n + 1)N0/2
peaks, analogous to the conventional Friedel oscillations, may
appear in the density. For even lower interactions, the standard
Wigner and Friedel oscillations, with N0 and N0/2 peaks,
respectively, are expected to set in.

V. CONCLUSIONS

We have studied the density oscillations of a quantum dot
created in a spin-orbit coupled quantum wire in the presence
of a magnetic field and strong repulsive electron interactions.
When the density is tuned at fractional fillings ν = kF/kSO =
1/(2n + 1), for sufficiently strong interactions a fractional
gapped phase develops, for which we have shown that the
density oscillates at the peculiar wave vector 4(2n + 1)kF and
exhibits (2n + 1)N0 peaks for N0 electrons in the dot. We
believe that such peculiar density oscillations can be detected
in linear transport experiments on state-of-the-art samples,
probing the dot with a charged AFM tip [27,32].
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APPENDIX: CORRECTIONS TO THE DENSITY

In this Appendix, we will evaluate the corrections to the
long-wave density induced by nonresonating interaction terms
V

(m)
j (x)—see Eq. (11). As we will show, such corrections

oscillate with the same wave vector and are enveloped by
the same slowly varying terms as the quantum average of the

density correction terms ρ
(m)
Z,j (x)—see Eq. (27)—evaluated in

Sec. III. A similar argument holds for umklapp terms [44],
which generate the Wigner correction terms in Eq. (25). This
identification motivates the approach proposed in the main
text, namely to capture the leading corrections induced by
nonresonating interaction terms by introducing corrections to
the particle density operators within the framework of the sole
Hamiltonian H = h0 + hM .

The starting point is the decoupled Hamiltonian H ≈ h0 +
hM—see Eqs. (15) and (16)—in the large mass limit when the
field η+(x) is pinned to the minima of the cosine term in hM .
Due to open boundary conditions, the field η−(x) must satisfy
the relations η−(−x) = −η−(x) and η−(x + 2�) = η−(x). The
massless sector is diagonalized by the bosonic fields

η−(x) = i
√

gη

∑
n>0

e−α πn
2�√
n

sin
(πnx

�

)
(b†n − bn), (A1)

χ−(x) = 1√
gη

∑
n>0

e−α πn
2�√
n

cos
(πnx

�

)
(b†n + bn), (A2)

satisfying [η−(x),∂x ′χ−(x ′)] = iπδ(x − x ′).
We will develop our argument for the terms

∝ ∫ �

0 dy V
(m)
j (y), the procedure for the umklapp term originat-

ing in the Wigner oscillations being the same. The perturbation
we consider is

δh
(m)
j = 1

2π

∫ �

0
dy V

(m)
j (y)

= �
(m)
j

2π

∫ �

0
dy cos

[
2q

(m)
j (y) −

√
2O

(m)
j (y)

]
, (A3)

with q
(m)
j and O

(m)
j (y) given in Table I. We consider the

lowest-order correction to the long-wave density of the system
ρLW(x),

ρLW(x) = N0

�
+ 1

π
∂xφρ(x)

≡ N0

�
+ 1

π
√

2
∂x

[
1√
γn

η−(x) − f (x)

]
. (A4)

If we denote the ground state of the unperturbed system by |0〉
and a generic unperturbed excited state by |E〉, with energy E0
and EE , respectively, to lowest order in λ the new ground state
is

∣∣Ξ (m)
j

〉 = |0〉 +
∑
E

〈E|δh(m)
j |0〉

E0 − EE
|E〉. (A5)

The first-order correction to the average of the long-wave
density on the ground state is thus given by

〈
δρ

(m)
LW,j (x)

〉 =
∑
E

〈E|δh(m)
j |0〉

E0 − EE
〈0|ρLW(x)|E〉 + c.c. (A6)

We have |E〉 = |ω,�p〉 and |0〉 = |0,�q〉, where ω labels the
excited states of h0, and �q denotes the eigenstate of hM with
η+(x) pinned in the qth minima of the cosine term. Since we
consider the very large mass limit, the lowest-lying excitations
are due to the massless sector only, while the massive
mode remains fully gapped: E0 − EE = E0 − Eω, where the
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energies on the right-hand side refer to the unperturbed ground
state and excited states of h0. To evaluate the correction to the
average of the long-wave density in Eq. (A6), it is necessary
to express the operator O

(m)
j (y) in Eq. (A3) in terms of the

fields η±(y) and χ±(y) through the canonical transformation
introduced in Eq. (14). Then, Eq. (A6) becomes

〈
δρ

(m)
LW,j (x)

〉 = �
(m)
j

2π2
√

2γn

∫ �

0
dy

∑
ξ=±

C
(m)
ξ,j (x,y)

×D
(m)
ξ,j (y)eiξQ

′(m)
j (y) + c.c., (A7)

where

Q
′(m)
j (y) = 2q

(m)
j y + [

c
(m)
j − α

(m)
−,j β

(m)
+,j

]
f (y) (A8)

and

C
(m)
ξ,j (x,y) =

∑
ω

1

E0 − Eω

〈ω|eiξα
(m)
−,j η−(y)+iξβ

(m)
−,j χ−(y)|0〉

× 〈0|∂xη−(x)|ω〉, (A9)

D
(m)
ξ,j (y) = 〈

eiξα
(m)
+,j η+(y)+iξβ

(m)
+,j χ+(y)〉

�
. (A10)

Here, we have introduced the scalar coefficients c
(m)
j , α(m)

±,j , and

β
(m)
±,j , which stem from the canonical transformation. Note that

Eq. (A8) also includes the effects of commutators between
fields. Finally, the notation 〈· · · 〉� in Eq. (A10) represents the
average over the equivalent states |�q〉—see Eqs. (33) and
(34) for details. To evaluate C

(m)
ξ,j (x,y), one can use the explicit

form of the fields given in Eqs. (A1) and (A2). We obtain

C
(m)
ξ,j (x,y) = ξ

√
gη

vη

[K(y)]
gη

[
α

(m)
−,j

]2

4 [G(y)]

[
β

(m)
−,j

]2

4gη

×
∑
k>0

A
(m)
k,j (y) cos

(
πkx

�

)
, (A11)

where K(y) and G(y) are given in Eqs. (45) and (47), and

A
(m)
k,j (y) = e−α πk

�

k

[
β

(m)
−,j√
gη

cos

(
πky

�

)
+ iα

(m)
−,j

√
gη sin

(
πky

�

)]
.

The evaluation of D
(m)
ξ,j (y) can be performed following the

same procedure outlined in Sec. III—see Eqs. (33) and (34)—
so we quote here the result only:

D
(m)
±,j (y) = (−1)lδ

α
(m)
+,j ,2l

[E(y)]

[
β

(m)
+,j

]2

2 ≡ D
(m)
j (y), (A12)

with l ∈ Z and E(y) a vanishing function in the infinite mass
limit—see Eq. (36). Coming back to Eq. (A7), we have

〈
δρ

(m)
LW,j (x)

〉 = gηα
(m)
−,j�

(m)
j

πvη

√
2γn

∫ �

0
dy D

(m)
j (y)[K(y)]

gη

[
α

(m)
−,j

]2

4

× [G(y)]

[
β

(m)
−,j

]2

4gη sin
[
Q

′(m)
j (y)

][
�(y − x)− y

L

]
,

(A13)

where �(y−x) is the Heaviside function and we have used
the approximation

∑
k>0 e−α πk

� sin (πky/�) cos (πkx/�)/k ≈
π/2[�(y − x) − y/L]. At this point, it is helpful to note that
the functions D

(m)
j (y), K(y), G(y), and f (y) are slowly varying

on the scale of �. Thus, using integration by parts, one arrives
at the final result,

〈
δρ

(m)
LW,j (x)

〉 = gηα
(m)
−,j�

(m)
j

πvη

√
2γn

D
(m)
j (x)[K(y)]

gη

[
α

(m)
−,j

]2

4

× [G(y)]

[
β

(m)
−,j

]2

4gη

cos
[
Q

′(m)
j (x)

]
q

(m)
j

. (A14)

Therefore, to lowest order, the perturbation V
(m)
j generates a

correction to the average long-wave density of the system oscil-
lating with wave vector q

(m)
j and enveloped by slowly varying

functions. The result coincides with the average of the density
correction terms introduced in Eq. (20)—see Eq. (50)—and
motivates the approach followed in the main text.
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Schäpers, JETP 116, 138 (2013).

[51] Note that, for the case of InAs, a large effective Landé g-factor
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