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Quantum Hall effect in supersymmetric Chern-Simons theories
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We introduce a supersymmetric Chern-Simons theory whose low energy physics is that of the fractional
quantum Hall effect. The supersymmetry allows us to solve the theory analytically. We quantize the vortices
and, by relating their dynamics to a matrix model, show that their ground state wave function is in the same
universality class as the Laughlin state. We further construct coherent state representations of the excitations of a
finite number of vortices. These are quasiholes. By an explicit computation of the Berry phase, without resorting
to a plasma analogy, we show that these excitations have fractional charge and spin.
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I. INTRODUCTION AND SUMMARY

Supersymmetry is a much beloved tool of high energy
theorists. Supersymmetric field theories are often tractable,
even at strong coupling, yet remain rich enough to exhibit a
wide range of interesting dynamics.

In contrast, supersymmetric theories are much less studied
in the condensed matter community, even in the limited role
of toy models for strongly coupled phenomena. In part this is
because supersymmetry typically provides analytic control for
relativistic theories at vanishing chemical potential. At finite
density, where most problems of interest in condensed matter
lie, supersymmetry is usually broken and any advantage it
brings is lost.1

There is, however, a class of theories in d = 2 + 1 dimen-
sions which are supersymmetric, yet nonrelativistic [7]. In
these theories, supersymmetry is retained even at finite density.
Despite the vast literature on supersymmetric field theories,
the quantum dynamics of these models remains relatively
unexplored. The purpose of this paper is to show that the
low-energy physics of these theories is that of the fractional
quantum Hall effect.

Of course the fractional quantum Hall effect is one of the
most studied topics in physics over the past three decades.
The theory rests on a beautiful and intricate web of ideas
involving microscopic wave functions [8], low-energy effec-
tive Chern-Simons theories [9–13], and boundary conformal
theories [14,15]. The supersymmetric theory that we present
here is unlikely to be of direct relevance to any material.
Instead, it should be viewed as a toy model whose role is to
highlight some of the links between these different approaches
to the quantum Hall effect.

In the rest of this Introduction we describe the supersym-
metric model in more detail and explain what it is good for. It
is an Abelian Chern-Simons theory, coupled to both bosonic
and fermionic nonrelativistic matter fields. In this manner it
is an amalgamation of effective theories of [11] and [12]. The
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1There are a number of notable exceptions, including the role

of supersymmetry in disorder [1], the possibility of emergent
supersymmetry [2–5], and the study of supersymmetry protected
phases [6].

model has vortices and these are viewed as the “electrons.”
The vortices are “BPS objects” [16]: this means that they
experience no classical static forces. It also means that they
are protected by supersymmetry in a way which we describe
in the main text. This property allows us to perform an explicit
quantization of the vortex dynamics. We show that the ground
state wave function of the vortices lies in the same universality
class as the Laughlin wave function. It has the same long range
correlations, but differs on short distance scales.

We also describe the excitations of a droplet of vortices.
There are gapless, chiral edge excitations which, we show, are
governed by the usual action for a chiral boson [17], suitably
truncated due to the presence of a finite number of vortices.
Finally, we construct the quasihole excitations in this model
and compute their Berry phase. This is, of course, a famous
computation for the Laughlin wave functions [18]. However,
the usual analysis relies on the plasma analogy [8], and the (ad-
mittedly well justified) assumption that the classical 2d plasma
exhibits a screening phase. In contrast, here we are able to per-
form the relevant overlap integrals analytically to show that the
quasiholes have the expected fractional charge and statistics.

Many of the properties of vortices described above follow
from the fact that their dynamics is governed by a quantum
mechanical matrix model, which was introduced by Poly-
chronakos to describe quantum Hall physics [19] and further
studied in a number of works [20–23]. The results of this
paper show how this matrix model is related to more familiar
effective field theories of the quantum Hall effect.

The paper is organized as follows. In Sec. II we introduce
the nonrelativistic, supersymmetric theory. After a fairly
detailed description of the symmetries of the theory, we discuss
its two different phases and its spectrum of excitations. Sec-
tion III is devoted to a study of BPS vortices and contains the
meat of the paper. We will show that the low-energy dynamics
of vortices is governed by the matrix model introduced in [19].
We review a number of results about this matrix model and
derive some new ones. Finally, in Sec. IV we offer some
ideas for the future. A number of calculations are relegated
to Appendixes.

II. NONRELATIVISTIC CHERN-SIMONS-MATTER
THEORIES

We start by introducing the d = 2 + 1 nonrelativistic,
supersymmetric Chern-Simons theory. The theory consists of
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an Abelian gauge field Aμ, coupled to complex scalar field φ

and a complex fermion ψ . The action is

S =
∫

dtd2x

{
iφ†D0φ + iψ†D0ψ − 1

2m
Dαφ† Dαφ

− 1

2m
Dαψ† Dαψ − k

4π
εμνρAμ∂νAρ − μA0

+ 1

2m
ψ†Bψ − π

mk
(|φ|4 − μ|φ|2 + 3|φ|2|ψ |2)

}
. (2.1)

Some conventions: the subscripts μ,ν,ρ = 0,1,2 run over both
space and time indices, while α = 1,2 runs over spatial indices
only. The fermion carries no spinor index. Both φ and ψ are
assigned charge 1, so the covariant derivatives read Dμφ =
∂μφ − iAμφ and similarly for ψ . The magnetic field is B =
∂1A2 − ∂2A1. Finally, |ψ |2 = ψ†ψ = −ψψ†.

There are three parameters in the Lagrangian: the Chern-
Simons level k ∈ Z+, the mass m of both bosons and fermions,
and the chemical potential μ. As we will see later, the chemical
potential μ can be more fruitfully thought of as a background
magnetic field for vortices.

The first order kinetic terms mean that the action (2.1)
describes bosonic and fermionic particles, but no antiparticles.
The quartic potential terms correspond to delta function
contact interactions between these particles. In the condensed
matter context, the gauge field is considered to be emergent.
One of its roles is to attach flux to particles through the Gauss’
law constraint, which arises as the equation of motion for A0,

B = 2π

k
(|φ|2 + |ψ |2 − μ). (2.2)

We will learn more about the importance of this relation later.
The action (2.1) can be constructed by starting from a rela-

tivistic Chern-Simons theory with N = 2 supersymmetry and
taking a limit in which the antiparticles decouple. For the case
μ = 0, this was first done in [7] and we review the procedure
in Appendix A. To our knowledge, the supersymmetric theory
with μ �= 0 has not been previously constructed, although the
bosonic sector of our theory is similar, but not identical, to a
model studied by Manton [24] which shares the same vortices
as (2.1). We will describe these vortices in some detail in
Sec. III.

A. Symmetries

The action (2.1) is invariant under several symmetries. A
number of these play an important role in what follows and
we provide the relevant details here.

1. Bosonic symmetries

Invariance under time translations gives rise to the Hamil-
tonian. After imposing the Gauss’ law constraint (2.2), this
takes the concise form

H = 2

m

∫
d2x |Dzφ|2 + |Dz̄ψ |2 + π

k
|φ|2|ψ |2, (2.3)

where z = x1 + ix2 and z̄ = x1 − ix2. Correspondingly, ∂z =
1
2 (∂1 − i∂2) and ∂z̄ = 1

2 (∂1 + i∂2).

Invariance under spatial translations gives rise to the
complex momentum P = 1

2 (P1 − iP2), which we write as

P = P̂ − μ

2

∫
d2x z̄B

with P̂ =
∫

d2x φ†Dzφ − Dzψ
†ψ. (2.4)

The P̂ contribution is the standard Noether charge for spatial
translations. The second term, proportional to the chemical
potential μ, requires some explanation. As shown in [25], it
arises because a translation is necessarily accompanied by a
gauge transformation so that, for example, δiφ = Diφ. The
presence of the chemical potential term μA0 in the action then
means that naive Noether charge for translations is not gauge
invariant. This is remedied by the addition of a total derivative,
resulting in the improved, gauge invariant momentum above.
Note, however, that the resulting momentum P is not itself
translationally invariant. We shall comment further on this
below.

A similar subtlety occurs for rotations. The conserved
angular momentum is given by

J =
∫

d2x

(
zφ†Dzφ − z̄Dz̄φ

† φ + zψ†Dzψ

− z̄Dz̄ψ
† ψ − 1

2
ψ†ψ − μ

2
|z|2B

)
. (2.5)

Here the first terms are standard. The penultimate term |ψ |2
arises because the fermion is taken to have spin 1/2. The
final term again arises as an improvement term in the Noether
procedure which ensures that the resulting angular momentum
is gauge invariant [25].

The number of bosons and fermions in our model are
individually conserved. The corresponding Noether charges
are

NB =
∫

d2x φ†φ and NF =
∫

d2x ψ†ψ. (2.6)

The total particle number is simply the charge under the
Abelian gauge group

N = NB + NF .

We denote the axial combination as

R = NB − NF .

This will play the role of an R symmetry in the supersymmetry
algebra.

The presence of the anomalous term in the expression for
the momentum (2.4) has an interesting effect on the commu-
tation relations. (Here we describe the quantum commutation
relations rather than classical Poisson brackets.) We find

[H,P̂ ] = −2πμ

mk
P̂ and [H,P ] = 0. (2.7)

So the Noether charge P is conserved, but the translationally
invariant momenta P̂ † and P̂ act as raising and lowering oper-
ators for the spectrum. Furthermore, the conserved momenta
do not commute. We have

[P,P †] = −πμ

k
N . (2.8)
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Both (2.7) and (2.8) are similar to the commutation relations in
quantum mechanics for momenta in a magnetic field. This is
because, as we will describe in more detail below, μ acts like an
effective magnetic for vortices while the Gauss’ law constraint
ensures that all excitations carry some vortex charge.

When μ = 0 the theory also enjoys both a Galilean boost
and, more surprisingly, a (super)conformal symmetry [7]
(see also [26]). In this paper we restrict ourselves to the
nonconformal theory with chemical potential μ > 0.

2. Supersymmetries

The action (2.1) enjoys two complex supersymmetries [7].
These often go by the name of kinematical and dynamical su-
persymmetries. The kinematical supersymmetry is the simpler
of the two:

δ1φ = ε
†
1ψ, δ1ψ = −ε1φ, δ1Az = 0,

δ1A0 = π

mk
(ε1φψ† − ε

†
1ψφ†).

This is reminiscent of the Green-Schwarz spacetime super-
symmetry on the string worldsheet. The transformation on φ

and ψ is generated by

Q1 =
∫

d2x φ†ψ. (2.9)

This does not specify a transformation for A0 which does no
harm as long as we allow ourselves to impose Gauss’ law. We
will see the implications of this below.

Under the dynamical supersymmetry, the fields transform
as

δ2φ = ε
†
2Dz̄ψ, δ2ψ = ε2Dzφ, δ2Az = − iπ

k
ε
†
2ψφ†,

δ2A0 = iπ

mk
(ε†2φ

†Dz̄ψ − ε2φDzψ
†),

with supercharge

Q2 =
∫

d2x φ†Dz̄ψ. (2.10)

The supersymmetry algebra is

{Q1,Q
†
1} = N , {Q2,Q

†
2} = m

2
H, {Q1,Q

†
2} = P̂ . (2.11)

Note that the two supercharges generate the translationally
invariant momentum P̂ , rather than the conserved momentum
P . There is also a mild surprise in the commutators of bosonic
and fermionic charges,2 in particular

[H,Q1] = −2πμ

mk
Q1. (2.12)

This means that although the kinematic supersymmetries leave
the action invariant, when μ �= 0 they do not result in a
symmetry of the spectrum. This can be traced to the fact
that Gauss’ law was required, both in the construction of
the Hamiltonian (2.3) and in the derivation of the commuta-
tors (2.12). (To our knowledge, the possibility of nonrelativistic

2We thank Nima Doroud for very useful discussions regarding this
algebra.

supersymmetry generator Q1 was first raised in [27] who
also pointed out that this generator is spontaneously broken
in any vacuum with nonvanishing particle number.) Other
commutators follow from Jacobi identities and give [Q2,H ] =
[Q1,P̂ ] = [Q†

1,P̂ ] = 0, while [Q2,P̂ ] = (2/m)[H,Q1].
Finally, the commutators of the angular momentum will

also be important for our story. There is nothing unusual about
them. We have

[J ,Q1] = − 1
2Q1 and [J ,Q2] = 1

2Q2, (2.13)

which is the statement that the supercharges have spin ∓1/2.
The total particle number commutes with all supersymmetries,
[N ,Qα] = 0, but only because of cancellations between boson
and fermion numbers. Individually we have

[NB,Qα] = −Qα and [NF ,Qα] = +Qα.

This justifies our previous claim that R is an “R symmetry”
since [R,Qα] = 2Qα . From these we deduce that[

J − 1
2NF ,Q2

] = 0. (2.14)

This fact will be important in Sec. III C.

B. The vacuum, the Hall phase, and excitations

We now describe some basic features of the dynamics
of our model. Because nonrelativistic field theories have no
antiparticles, the theory decomposes into sectors labeled by
the conserved particle numbers which, in our case, are NB

and NF . To solve the theory, we need to determine the energy
spectrum in each of these sectors.

One way to organize these sectors is to start with the N = 0
Hilbert space and build up by adding successive particles.
Instead, we will take a dual perspective. Our theory enjoys a
topological current

Jμ = 1

2π
εμνρ∂νAρ. (2.15)

The associated particles are vortices. We will view these
vortices as the “electrons” of our theory.

Our theory has two translationally invariant ground states
consistent with Gauss’ law (2.2), both of which have H = 0.
We call these the vacuum and the Hall phase. They are given
by

the vacuum: |φ|2 = μ and B = 0, (2.16)

the Hall phase: |φ|2 = 0 and B = −2πμ

k
. (2.17)

The vacuum state contains no vortices,
∫

d2x J 0 = 0. How-
ever, the bosons have condensed which means that the particle
number is N = ∞. In contrast, the Hall phase has vanishing
particle number but infinite vortex number

∫
d2x J 0 = ∞.

The purpose of this paper is to understand what happens
as we inject vortices into the vacuum. For any finite number
of vortices, the system breaks translational invariance. But,
as we fill the plane with vortices, the Hall phase emerges. In
Sec. III we tell both the classical and quantum versions of this
story in some detail. First, however, we describe some simple
properties of excitations above each of these ground states.

235125-3



DAVID TONG AND CARL TURNER PHYSICAL REVIEW B 92, 235125 (2015)

1. The vacuum

The key feature of the vacuum state is that U (1) gauge
symmetry is broken. This ensures that the theory admits
topological, localized vortex solutions. These vortices will be
the main focus of this paper and we postpone a more detailed
discussion until Sec. III. Here we summarize their three main
properties:

(1) Vortices are gapless. States with an arbitrary number
of vortices exist with H = 0.

(2) Vortices have statistical phase πk. This means that the
vortices are bosons when k is even and fermions when k is
odd.

(3) Vortices are singlets under supersymmetry.
There are further excitations above the vacuum arising from

the fundamental fields φ and ψ . These excitations are both
gapped, with an excitation energy 2πμ/mk. These excitations
can be generated from the vacuum by using the raising
operators P̂ † and Q

†
1, together with the supercharges Q2 and

Q
†
2.

2. The Hall phase

The Hall phase has an unbroken U (1) gauge symmetry and
the long-distance physics is dominated by the Chern-Simons
term. It is well known that such theories capture the essential
properties of the fractional quantum Hall effect. We now
take the opportunity to review this standard material (see, for
example, [28,29] for reviews).

To describe quantum Hall physics, it is not enough to spec-
ify the Lagrangian; we need to know how electromagnetism
couples to the theory.3 [Recall that the Abelian gauge field Aμ

in the Lagrangian (2.1) should be thought of as an emergent,
statistical gauge field, not the electromagnetic field.] Since
we wish to treat the vortices as the electrons of the theory,
the background electromagnetic field Aext

μ must couple to the
topological current (2.15),

LHall = k

4π
εμνρAμ∂νAρ + eAext

μ Jμ + · · · .

Here e denotes the electron charge, while · · · includes the rest
of the Lagrangian (2.1), as well as the d = 3 + 1 dimensional
Maxwell term for Aext

μ .
We momentarily ignore the fundamental fields φ and

ψ . Integrating out Aμ, the quadratic Lagrangian for the
background field is given by

LHall = − e2

4πk
εμνρAext

μ ∂νA
ext
ρ + · · · .

The effective action Seff[Aext] = ∫
d3x LHall is now a func-

tional of the nondynamical, background electromagnetic field.
Its role is to tell us how the system responds to an applied

3There are two, dual, descriptions of the long-wavelength quantum
Hall physics in terms of Chern-Simons theories. In one description,
the Chern-Simons level is equal to ν, the filling fraction [9,10],
the electrons are the fundamental excitations and the vortices the
fractionally charged quasiparticles. Here we are interested in the dual
description, related by a particle-vortex duality transformation, where
the Chern-Simons coefficient is 1/ν and the electrons are vortices.

4

3

2

1

Bosons Fermions
Energy

FIG. 1. (Color online) Fundamental excitations.

electromagnetic field through the relation 〈Jμ〉 = ∂Seff/∂Aext
μ .

The result is a Hall conductivity,

σH = e2

2πk
. (2.18)

This is the response of a fractional quantum Hall fluid at filling
fraction ν = 1/k.

Let us now return to the fundamental fields φ and ψ . Each
of these experiences a magnetic field B = −2πμ/k and forms
Landau levels. The usual Landau level quantization results in
a spectrum

ELL = |B|
m

(l + 1/2),

with l = 0,1, . . .. However, the Lagrangian (2.1) also includes
extra terms which shift the overall energy of these states. The
shift is down for bosons and up for fermions, as shown Fig. 1.
The net result is that the energies of the Landau levels, at
leading order, are given by

E = 2πμl

mk

{
l = 0,1,2, . . . for φ,

l = 1,2, . . . for ψ.

The gapped states, with l � 1, arising from φ have spin 1/2k;
those arising from ψ have spin (1 + k)/2k. The Gauss law
constraint (2.2) ensures that, when coupled to a background
electromagnetic field, each of these carries charge −e/k.
These are the quasiparticle excitations of our supersymmetric
quantum Hall fluid. The supercharges Q2 and Q

†
2 map between

the fermionic and bosonic gapped Landau levels.
The system also has an a gapless band of quasiparticles,

arising from the lowest Landau level of φ. These modes
are not free: they interact through the φ4 potential in (2.1).
Nonetheless, supersymmetry ensures that these states have
vanishing energy at all orders of perturbation theory. This is
because the commutation relations for Q2 require that any
excitation with H > 0 must be paired with an excitation that
differs by spin 1/2. Yet the states in lowest Landau level have
no partners and must, therefore, remain at zero energy. In
essence, the theory has an infinite Witten index Tr(−1)F . If
we start from the lowest Landau level, we can build up to
higher levels by acting with P̂ † and Q

†
1.

The presence of a gapless Landau level may appear to
contradict our claim that this system describes quantum
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FIG. 2. (Color online) Two points in the moduli space of n = 7 vortices.

Hall physics. After all, one of the defining features of a
quantum Hall state is that it is gapped and incompressible.
We will resolve this in Sec. III by studying how the Hall
phase emerges from vortices when placed in a confining
potential. We will show that, for any finite number of vortices,
there is a unique incompressible droplet of lowest angular
momentum. However, in the absence of a confining potential,
this droplet has zero-energy edge modes and zero-energy
quasihole excitations. The gapless Landau level describes
these degrees of freedom for an infinite number of BPS
vortices, an interpretation recently suggested in a different
context in [30]. We will revisit this in Sec. III G in the context
of the noncommutative approach to quantum Hall physics.

It is worth mentioning that this situation is not unusual
in quantum Hall systems. The special, ultralocal Hamiltonians
(such as Haldane pseudopotentials) used as models of quantum
Hall physics also have zero-energy edge modes and zero-
energy quasihole excitations for finite droplets. See, for
example, [31,32] for related discussions.

III. A QUANTUM HALL FLUID OF VORTICES

We would like to understand how to interpolate from the
vacuum to the Hall phase. We do this by injecting vortices.
These vortices are BPS which, in this context, means that they
have H = 0 and lie in a protected sector of the theory. From
the form of the Hamiltonian (2.3) and Gauss’ law (2.2), it
is clear that solutions with vanishing energy H = 0 can be
constructed by solving the equations

Dzφ = 0 and B = 2π

k
(|φ|2 − μ), (3.1)

with the fermions set to zero: ψ = 0.
The vortex equations (3.1) are well studied. Solutions

are labeled by the integer winding of the scalar field φ or,
equivalently, by the magnetic flux

n = − 1

2π

∫
d2x B ∈ Z+. (3.2)

In the sector with winding n, the most general solution to (3.1)
has 2n real parameters [33,34]. These parameters are referred
to as collective coordinates or, in the string theory literature,
moduli. When vortices are well separated, these correspond
to n positions on the complex plane. The existence of these
moduli reflects the fact that the coefficient of the quartic
interaction in (2.1) has been tuned to the critical value, ensuring
that there are neither attractive nor repulsive forces between
the vortices.

As vortices coalesce, they lose their individual identities
and the interpretation of these moduli changes. It is tempting to
label the vortex by the point at which the Higgs field vanishes,
but this does not provide an accurate description of what the
vortex profile looks like. Instead, as we show in Sec. III G, in

this regime it is better to think of the 2n moduli as describing
the edge modes of a large, incompressible fluid.

A. Why do vortices form a fractional quantum Hall state?

The rest of this section is devoted to a detailed analysis of
the quantum dynamics of vortices. We will ultimately show
that their ground state is given by the Laughlin wave function.
But here we first provide a hand-waving argument for why we
expect the vortices to form a quantum Hall fluid.

We first note that the chemical potential term μA0, present
in the Lagrangian (2.1), can be viewed as a background
magnetic field for vortices. It can be written as

−
∫

d3x μA0 =
∫

d3x eJμAext
μ ,

where Jμ is the topological current (2.15) and

Aext
α = −Bext

2
εαβxβ with Bext = 2πμ

e
. (3.3)

This means that we expect the dynamics of vortices to
correspond to particles moving in a background magnetic field.
Nonetheless, it may be rather surprising that the vortices form
a Hall state because, as we have seen, there is no force between
the vortices. Yet the key physics underlying the fractional
quantum Hall effect is the repulsive interactions between
electrons, opening up a gap in the partially filled Landau level.

Although there is no force between vortices, they are not
point particles. Instead, they are solitons obeying nonlinear
equations and, as they approach, the solutions deform. Indeed,
when the vortices are as closely packed as they can be, they
form a classically incompressible fluid as shown in the right-
hand side of Fig. 2. The scalar field φ has an nth order zero
in the center of the disk and numerical studies show that the
solution is well approximated as a disk of magnetic flux in
which φ = 0 and B = −2πμ/k. This has motivated the “bag
model” of vortices in [35,36]. For us, it means that the vortex
is a droplet of what we have called the “Hall phase.”

When n vortices coalesce, the radius R of the resulting
droplet can be estimated using the flux quantization (3.2) to be

R ≈
√

kn

πμ
. (3.4)

Now we can do a back-of-the-envelope calculation. In a
magnetic field Bext, the number of states per unit area in the
lowest Landau level is eBext/2π = μ. In an area A = πR2 =
nk/μ, the lowest Landau level therefore admits BextA = nk

states. We have placed n vortices in this region, so the filling
fraction is

ν = 1

k
.
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This, of course, is the expected filling fraction in the Hall phase
with conductivity (2.18):

eBext

2π
= μ, πR2 = nk

μ
.

B. The dynamics of vortices

We now turn to a more detailed description of the dynamics
of vortices. We first introduce the vortex moduli space Mn.
This is space of solutions to the vortex equations (3.1) with
winding number n. As we have already mentioned,

dim(Mn) = 2n.

The coordinates Xa , a = 1, . . . ,2n, parametrizing Mn are
the collective coordinates of vortex solutions: φ(x; X) and
Aα(x; X). The standard approach to soliton dynamics is to
assume that, at low energies, motion can be modeled by
restricting to the moduli space [37]. This is usually applied
in relativistic theories where the action is second order in time
derivatives and typically provides an accurate approximation
to the real dynamics. Here we have a nonrelativistic theory,
first order in time derivatives, and this results in a number of
differences which we now explain. One ultimate surprise—
which we will get to in Sec. III C—is that there is no
approximation involved in the moduli space dynamics in this
system; instead it is exact.

The first, and most important difference, is associated with
the meaning of the spaceMn. In relativistic theories,Mn is the
configuration space of vortices and the dynamics is captured
by geodesic motion on Mn with respect to a metric gab(X).
It is known that Mn is a complex manifold, with complex
structure J , and the metric gab(X) is Kähler. For completeness,
we explain how to construct this metric in Appendix B.

In our nonrelativistic context, it is no longer true that Mn

is the configuration space of vortices. Instead, it is the phase
space. The dynamics of the vortices is described by a quantum
mechanics action of the form

Svortex =
∫

dt Fa(X)Ẋa, (3.5)

where F(X) is a one form over Mn. Our goal is determine
this one form.

In fact, this problem has already been solved in the
literature. A model which shares its vortex dynamics with
ours was previously studied by Manton [24] and subsequently,
in more geometric form, in [38,39]. The main result of these
papers is that F is an object known as the symplectic potential.
It has the property that

dF = 
, (3.6)

where 
 is the Kähler form onMn, compatible with the metric
gab and the complex structure J .

For a single vortex, the moduli space is simply the plane C
and the Kähler form is


 = πμ

2
dz ∧ dz̄.

For n � 2 vortices the Kähler form is more complicated.
We describe the construction of 
 in Appendix B. Explicit
expressions are only known for well-separated vortices [39].

The derivation of (3.6) given in [24,38,39] relies on a
parametrization of the vortex moduli space introduced earlier
in [41]. The use of these coordinates means that the calculation
is not entirely straightforward. For this reason, in Appendix B
we present a simpler derivation of (3.6) which does not rely on
any choice of coordinates. (For a different approach to particle
dynamics appropriate for vortices, see [40].)

The vortices are BPS states: they are annihilated by the
supercharge Q2. In the context of first order dynamics, this
means that the collective coordinates X do not transform
under Q2. In particular, there are no accompanying Grassmann
collective coordinates. Indeed, it is simple to check explicitly
that there are no fermionic zero modes in the background of
the vortex.

The upshot is that the vortices themselves are supersym-
metric singlets. The role of supersymmetry in the vortex
dynamics (3.5) is restricted to ensuring the vortices have
strictly vanishing energy H = 0 in the full quantum theory.

The fact that the BPS solitons have no fermion zero modes
may come as something of a surprise. Indeed, it is rather
different from what happens for BPS solitons in relativistic
field theories or in string theory. It is worth pausing to explain
this difference. In more familiar relativistic theories, if a soliton
is invariant under a given supercharge Q then that supercharge
will descend to the worldvolume theory, relating bosonic and
fermionic zero modes on the worldvolume. However, when
we say that a soliton is invariant under Q, we mean that the
static configuration is invariant: when the soliton moves, the
supercharge Q typically acts and generates a fermionic zero
mode. This means that while Q does not act on the bosonic
configuration space of the soliton, it does act on the phase
space.

In our nonrelativistic theory, the statement that Q2 annihi-
lates the soliton is stronger: it means that Q2 does not act on
the soliton phase space. This is the reason that there are no
associated fermionic zero modes.

C. Introducing a harmonic trap

We have derived a low-energy effective action (3.5) for
the vortex dynamics. However, this dynamics is boring. The
equation of motion arising from (3.5) is


abẊ
b = 0 ⇒ Ẋa = 0.

The vortices do not move. They are pinned in place.
The lack of dynamics follows because there is no force

between vortices and, in a first order system, we do not have
the luxury of giving the vortices an initial velocity. To get
something more interesting, we impose an external force on
the vortices. We will do so by introducing a harmonic trap. We
want this trap to be compatible with supersymmetry. We can
do this by choosing the new Hamiltonian

Hnew = H + ω
(
J − 1

2NF

)
,

where J is the angular momentum (2.5), NF is the fermion
number operator (2.6), and ω dictates the strength of the trap.
From (2.14) we see that this Hamiltonian remains invariant
under Q2, although not Q1. When evaluated on BPS vortices,
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the Hamiltonian is simply

Hnew = −μω

2

∫
d2x |z|2B. (3.7)

This new Hamiltonian is the angular momentum of a given
BPS vortex configuration: it preserves the BPS nature of
vortices while shifting their energy. Evaluating (3.7) on
a vortex configuration provides a function J (X) over the
vortex moduli space Mn which governs the their low-energy
dynamics,

Svortex =
∫

dt[Fa(X)Ẋa − ωJ (X)]. (3.8)

We will now look at some examples of the classical dynamics
described by this action.

The harmonic trap (3.7) favors those vortex solutions
that are clustered towards the origin. The lowest energy
configuration now has all vortices coincident at the origin,
as in the right-hand picture in Fig. 2. As we have seen, the size
of this vortex is given by (3.4), so the angular momentum of
this state is

J0 ≈ −μ

2

∫ R

0
dr 2πr3B = kn2

2
. (3.9)

This is the only static configuration. All other solutions evolve
through the equation of motion


abẊ
b = ω

∂J
∂Xa

. (3.10)

In particular, a single vortex displaced a distance r � √
1/μ

from the origin will have angular momentum J ≈ πμr2. This
vortex orbits around the origin with frequency ω.

There is something rather surprising about the moduli space
approximation for this first order dynamics: it is exact! The
solutions to the equation of motion in the presence of the trap
are simply time-dependent rotations of the static solutions so,
for example, φ = φ(x; X(t)), with X(t) obeying (3.10). This
a property of any first order system with a Hamiltonian, such
as H = J , which acts as a symmetry generator on the moduli
space.

D. The quantum Hall matrix model

The description of the vortex dynamics (3.8) is, unfortu-
nately, rather abstract. For n � 2 vortices we have only implicit
definitions of the Kähler form 
 and the angular momentumJ
on the vortex moduli space. It seems plausible that one could
make progress using the parametrization of the vortex moduli
space introduced in [41]. Here, however, we take a different
approach.

An alternative description of the vortex moduli space is
provided by D-branes in string theory [42]. This is analogous
to the ADHM construction of the instanton moduli space. The
vortex moduli space Mn is parametrized by:

(1) An n × n complex matrix Z.
(2) A n-component complex vector ϕ.
These provide n(n + 1) complex degrees of freedom. We

will identify configurations related by the U (n) action

Z → UZU † and ϕ → Uϕ with U ∈ U (n). (3.11)

We further require that Z and ϕ satisfy the matrix constraint4

πμ [Z,Z†] + ϕϕ† = k 1n. (3.12)

This constraint is the moment map for the action (3.11) with
level k. We define the moduli spaceM̃n through the symplectic
quotient,

M̃n = {Z,ϕ such that πμ[Z,Z†] + ϕϕ = k}/U (n).

This space has real dimension dim(M̃n) = 2n. The string
theory construction of [42] shows that this space is related
to the vortex moduli space

M̃n
∼= Mn.

These spaces are conjectured to be isomorphic as complex
manifolds, and have the same Kähler class. To our knowledge,
there is no direct proof of this conjecture beyond the string
theory construction provided in [42].

The matrix description provides a different parametrization
of the vortex moduli space. When the vortices are well
separated, Z is approximately diagonal. The positions of the
vortices are described by these n diagonal elements. [The
normalization of πμ in (3.12) is associated with the vortex
size.] However, as the vortices approach, Z is no longer
approximately diagonal, reflecting the fact it is better to think
of the locations of the vortices as fuzzy, spread out over a
disk of radius (3.4). This feature is captured by the matrix
description of the vortex moduli space.

The moduli space M̃n inherits a natural metric through the
quotient construction described above. This does not coincide
with the metric on the vortex moduli space Mn described
in Appendix B. Nonetheless, there are now a number of
examples in which computations of BPS quantities using
M̃n coincide with those of computed from the vortex moduli
space Mn because they are insensitive to the details of the
metric (see, for example, [43–46]). Here we will ultimately
be interested in holomorphic wave functions over the vortex
moduli space. Assuming the conjectured equivalence of the
spaces as complex manifolds, it will suffice to work with the
matrix model description of the vortex moduli space.

1. The matrix model action

It is now a simple matter to write the vortex dynamics in
terms of these new fields. We introduce a U (n) gauge field a0

on the worldline of the vortices. In the absence of a harmonic
trap, the low-energy vortex dynamics is governed by the U (n)
gauged quantum mechanics,

Svortex =
∫

dt iπμ Tr
(
Z†D0Z

) + iϕ†D0ϕ − k Tr a0,

(3.13)

4As an aside: for relativistic vortices, the right-hand side of (3.12)
is 2π/e2, where e2 is the gauge coupling constant. Comparing the
vortex equations (3.1) to their relativistic counterparts shows that this
becomes k in the nonrelativistic context. The fact that this is integer
valued for vortices in the Chern-Simons theory will prove important
below.
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where D0Z = ∂0Z − i[a0,Z] and D0ϕ = ∂0ϕ − ia0ϕ. The
quantum mechanical Chern-Simons term ensures that Gauss’
law for the matrix model coincides with (3.12). This means
that this action describes the same physics as (3.5).

The action (3.13) is the quantum Hall matrix model,
previously proposed as a description of the fractional quantum
Hall effect by Polychronakos [19] and further explored
in [20,21,47–50]. The connection to first order vortex dynam-
ics was noted earlier in [23].

We note in passing that we have used the D-brane construc-
tion of [42] in a fairly indirect way to derive the quantum Hall
matrix model. A more direct D-brane derivation of the matrix
model was provided previously in [51]. It would be interesting
to see how this work, or the string theory construction of [52],
is related to the present setup.

We would also like to add the harmonic trap to the matrix
model. This too was explained in [19]. Spatial rotation within
the matrix model acts as Z → eiθZ, with the associated
charge J = πμTr Z†Z. Adding this to the action, we get the
matrix model generalization of (3.8),

Svortex =
∫

dt iπμ Tr (Z†D0Z) + iϕ†D0ϕ

− k Tr a0 − ωπμ Tr(Z†Z). (3.14)

In the rest of this section, we describe the properties of this
matrix model. Much of this is review of earlier work, in
particular [19–21]. However, we also make a number of new
observations about the matrix model, most notably the com-
putation of the charge and statistics of quasihole excitations.

2. The classical ground state

In the presence of the harmonic trap, the classical equation
of motion for Z reads

iDtZ = ωZ. (3.15)

There is a unique time-independent solution, with Ż = 0,
obeying [a0,Z] = ωZ. This can also be viewed as the
statement that rotating the phase of Z is equivalent to a gauge
transformation. There is a unique solution to this equation and
the constraint (3.12) given by [19]

Z0 =
√

k

πμ

⎛
⎜⎜⎜⎜⎜⎝

0 1
0

√
2

. . .
0

√
n − 1
0

⎞
⎟⎟⎟⎟⎟⎠

and ϕ0 =
√

k

⎛
⎜⎜⎜⎜⎝

0
0
...
0√
n

⎞
⎟⎟⎟⎟⎠, (3.16)

with a0 = ω diag(n − 1,n − 2, . . . ,2,1,0).
As promised, Z0 is not approximately diagonal. This

reflects the fact that individual vortices do not have well-
defined positions. Nonetheless, we can reconstruct a number of
simple properties of the vortex solution from this matrix. The
radius squared of the disk can be thought of as the maximum

eigenvalue of Z
†
0Z0 [19]. To leading order in the vortex number

n, this gives

R2 ≈ kn

πμ
,

which agrees with our the radius of the classical vortex
solution (3.4). Meanwhile, the angular momentum of a given
solution isJ = Tr Z†Z. The angular momentum of the ground
state is

J0 = πμ Tr (Z†
0Z0) = kn(n − 1)

2
, (3.17)

which, to leading order in 1/n, agrees with the angular
momentum of the classical vortex solution (3.9).

3. The quantum ground state

The quantization of the matrix model (3.14) was initiated
in [19] and explored in some detail in [20,21]. The individual
components of the matrix Z and vector ϕ are promoted to
quantum operators, with commutation relations

πμ [Zab,Z
†
cd ] = δadδbc and [ϕa,ϕ

†
b] = δab.

We choose the vacuum state |0〉 such that Zab|0〉 = ϕ|0〉 = 0.
However this does not, in general, correspond to the ground
state of the theory because the physical Hilbert space must
obey the quantum version of the Gauss’ law constraint (3.12).
It is useful to view the trace and traceless part of this constraint
separately. The trace constraint reads

n∑
a=1

ϕaϕ
†
a = kn ⇒

n∑
a=1

ϕ†
aϕa = (k − 1)n. (3.18)

This means that physical states must have (k − 1)n ϕ exci-
tations. Note that the ordering of the original constraint has
resulted in a shift k → k − 1. This will prove important below.

Meanwhile, the traceless part of the constraint (3.12) tells
us that physical states must be SU (n) ⊂ U (n) singlets. We
can form such singlet operators out of Z† and ϕ† either from
baryons or from traces. The baryonic operators are

εa1,...,an (ϕ†Z†p1 )a1 · · · (ϕ†Z†pn )an
,

where p1, . . . ,pn are, necessarily distinct, integers. The trace
operators are

Tr(Z†p).

There can be complicated relations between the baryonic
and trace operators; explicit descriptions for low numbers of
vortices were recently presented in [53].

The trace constraint (3.18) means that physical states
contain exactly k − 1 baryonic operators. The harmonic trap
endows these with an energy proportional to the number of Z†

excitations,

H = ωJ = ωπμ

n∑
a,b=1

Z
†
abZba.

To minimize this energy, we must act with k − 1 baryonic
operators, each with pi = i − 1. This results in the ground
state

|ground〉k = [εa1,...,anϕ†
a1

(ϕ†Z†)a2 · · · (ϕ†Z† n−1)an
]k−1|0〉.

(3.19)
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The angular momentum of this ground state coincides with
that of the classical ground state (3.17).

There is a close resemblance between these ground states
and the Laughlin states [8] for n electrons at filling fraction
ν = 1/k,

|Laughlin〉k =
∏
a<b

(za − zb)k e− Bext

4

∑ |za |2

= [
εa1,...,anz0

a1
za2 · · · zn−1

an

]k
e− Bext

4

∑ |za |2 . (3.20)

A formal map between the states was suggested in [20]. A more
rigorous study, which we now review, was provided in [21] (see
also [48]). The first step is to identify appropriate coordinates
on the phase space of the matrix model. There are a number
of different choices, none of which have preferred status. Here
we use the coherent state representation suggested in [21]. We
diagonalize Z and use its eigenvalues as coordinates on the
phase space. (Nondiagonalizable matrices have zero measure.)

The first result of [21] is that the k = 1 ground state
|ground〉1 = |0〉 is precisely the ν = 1 Laughlin state describ-
ing a filled Landau level,

|0〉 = |Laughlin〉1.

For k > 1, the map to the Laughlin wave function is not exact.
Instead, the wave functions agree only at large separation

|ground〉k → |Laughlin〉k for |za − zb| � 1/πμ.

However, the matrix model states |ground〉k differ from the
Laughlin states as the particle approach: the wave functions
still vanish as za → zb, but not with the same power.

As we mentioned, there is nothing privileged about the
choice of coordinates used above. One may try a different set of
coordinates and see if there is better short-distance agreement
with the Laughlin wave function. Indeed, other coordinates
were suggested in [21,48], although none of them provide an
exact match to the Laughlin wave functions.

The connection to vortices sheds some light on this. Be-
cause vortices are extended objects, there is no “correct” way
to specify their positions as they approach. Correspondingly,
it is not obvious that their physics is captured by a wave
function describing point particles. Instead, the important
questions are those which are independent of the choice of
coordinates. The fact that the long-distance correlations in the
matrix model ground states (3.19) coincide with those of the
Laughlin wave function suggests that these states describe the
same universality class of quantum Hall fluids. In the rest of
this paper we show that this is indeed correct. We show that
excitations of the matrix model describe chiral edge modes
and quasiholes. In particular, the latter have charge 1/k and
fractional statistics, in agreement with the excitations of the
Laughlin wave function.

E. Edge modes

The classical excitations of the matrix model were de-
scribed in [19]. There are edge excitations of the droplet and
there quasihole excitations although, for finite n, there is no
clear distinction between these. There are no quasiparticle
excitations which, given the spacetime picture in terms of

vortices, is to be expected. We first study the edge modes and
show that they form a chiral boson.

The linear perturbations of the solution (3.16), consistent
with the constraint (3.12), were given in [19]: they are
remarkably simple,

δlZ = (Z†
0)l−1 and δlϕ = 0 with l = 1, . . . ,n. (3.21)

These were interpreted in [19] as area-preserving deformations
of the disk, restricted to the first n Fourier modes.

We now show that the dynamics is that of a chiral,
relativistic boson. To do this we write

Z(t) = Z0 +
n∑

l=1

cl(t)Z
† l−1
0 ,

with complex coefficients cl . Plugging this ansatz into the
action (3.14), we have the following expression for the
effective dynamics of cl :

S = πμ

n∑
l,p=1

∫
dt iTr(Zl−1

0 Z
†p−1
0 ) c�

l ċp

+ {
Tr

(
a0

[
Z

†p−1
0 ,Zl−1

0

]) − ωTr
(
Zl−1

0 Z
†p−1
0

)}
c�
l cp,

where we have dropped the constant contribution (3.17). We
need to compute two traces, both involving Z0 given in (3.16).
The first is

πμ Tr Zl−1
0 Z

†p−1
0 ≡ �lδlp

with �l = kl−1

l
n(n − 1) · · · (n − l + 1).

The second trace involves a0 and can be readily computed by
invoking the relationship ωZ0 = [a0,Z0], to give [a0,Z

†p

0 ] =
−pωZ

†p

0 . The action for the perturbations can then be written
in the simple form,

S =
n∑

l=1

�l

∫
dt (ic �

l ċl − ωlc �
l cl). (3.22)

This is the action for a real, chiral boson, defined on the
edge of the Hall droplet. We parametrize the perimeter of the
droplet by σ ∈ [0,2πR), with R given by (3.4). The continuum
excitations then take the form

c(σ,t) = 1√
2π

∞∑
l=−∞

eilσ/R

√
�l

l
cl(t) with c−l = c�

l .

Then the action (3.22) becomes

S = −
∫

dtdσ ∂tc ∂σ c + (ωR)∂σ c ∂σ c.

This is the form of the action for a chiral boson proposed
in [17], now truncated to the lowest n Fourier modes. The
action describes modes propagating in one direction around
the disk with velocity v = ωR. A previous derivation of the
chiral boson edge theory from the matrix model was given
in [50], albeit in a model with a different potential. It is unclear
to us how that derivation relates to the one above.

Note that as n increases, the radius of the disk (3.4) scales as√
n, while the number of Fourier modes increases linearly with

n. The density of modes therefore scales as 1/
√

n, suggesting
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the existence of a continuum d = 1 + 1 dimensional limit as
n → ∞.

F. The noncommutative description revisited

The original motivation for the quantum Hall matrix
model was to provide a finite n regularization of Susskind’s
noncommutative approach to quantum Hall fluids [54]. Taking
the n → ∞ limit of the matrix model, one can effectively drop
the field ϕ and the constraint (3.12) becomes

[X1,X2] = i
2πμ

k
= i

eBext

k
.

We interpret this as a noncommutative plane. Expanding
the action around the state (3.16) gives rise to a Chern-
Simons theory on this noncommutative plane, with fields
multiplied using the Moyal product [54]. The perspective
offered here shows that this noncommutative theory provides
a hydrodynamic description of the dynamics of n → ∞ BPS
vortices.

There is no harmonic trap introduced in the noncommu-
tative Chern-Simons description. Because it arises from the
expansion around (3.16), all perturbative excitations of the
theory are edge modes of an infinitely large disk, now con-
signed to asymptotia. However, these perturbation excitations
are not the end of the story. There are many other nonperturba-

tive bulk excitations. These correspond to separating vortices
or, as we will see in the next section, creating a hole in the
fluid of vortices. The noncommutative Chern-Simons theory
is capturing these modes.

However, we have already seen a different description of
these modes from the perspective of the d = 2 + 1 dimen-
sional spacetime picture: they are the gapless, lowest Landau
level of an interacting boson that we saw in Sec. II B. It
appears that the Chern-Simons theory on the noncommutative
plane is an alternative description of this lowest Landau level
physics.

G. Quasiholes

Let us now return to a finite droplet of vortices. While
the infinitesimal perturbations of the droplet describe edge
modes, one can also consider finite deformations. Of course,
if we make a large enough finite perturbation, then the
droplet will eventually fragment into its component vortices.
However, there are deformations for which the droplet retains
its integrity, but with a hole carved out in the middle. These
are the quasiholes of the quantum Hall effect.

There is a simple classical solution describing a quasihole
placed at the center of the vortex [19]. It arises by integrating
the nth Fourer mode,

Z =
√

k

πμ

⎛
⎜⎜⎜⎜⎜⎝

0
√

1 + q

0
√

2 + q

. . .
0

√
n − 1 + q√

qeinωt 0

⎞
⎟⎟⎟⎟⎟⎠. (3.23)

This obeys the constraint (3.12) and equation of motion (3.15)
with a0 = ω diag(n − 1,n − 2, . . . ,2,1,0) and ϕ = ϕ0.

This solution should be thought of as a deficit of magnetic
field in the middle of the Hall droplet [19] (see also [55]).
In other words, it is a quasihole. Using the maximum and
minimum eigenvalues of Z†Z as a proxy for the inner radius
R1 and the outer radius R2 of this annulus, we find

R2
1 ≈ kq

πμ
and R2

2 ≈ k(n + q)

πμ
,

which is consistent with the magnetic flux quantization (3.2)
if B remains constant for R1 < r < R2. We can subject this
interpretation to a further test. The angular momentum of the
matrix model solution is given by

J = πμ Tr Z†Z = kn2

2
+ knq.

But we can also compute the angular momentum of an annular
vortex by the same kind of calculation we used in (3.9). We
find

J ≈ −μ

2

∫ R2

R1

dr 2πr3B = kn2

2
+ knq,

confirming the solution (3.23) as a classical quasihole.

There are, presumably, more complicated classical solu-
tions, describing quasiholes displaced from the origin, rotating
with frequency ω. Rather than searching for these classical
solutions, we will instead describe their quantum counterparts.

1. Quantum quasiholes

We claim that the quantum state describing m quasiholes,
located at complex coordinates ηi , i = 1, . . . ,m, is

|η1, . . . ,ηm〉k ∝
m∏

i=1

det(Z† − η
†
i ) |ground〉k, (3.24)

where we have allowed for a normalization constant.
Let us first motivate this ansatz. Multiplying by det(Z† −

η†) is equivalent to taking one of the baryonic operators in the
ground state (3.19) and replacing each occurrence of ϕ†Z†p by
ϕ†Z†p(Z − η)†. Under the coherent state map of [21], where
the eigenvalues of Z are used as coordinates, this gives

|η1, . . . ,ηm〉k →
∏
a

(za − η)|Laughlin〉k,

which is indeed the Laughlin wave function for quasiholes.
As we vary the positions ηi , the resulting states |η1, . . . ,ηm〉

are not linearly independent. This reflects the fact that these
holes are made from a finite number of underlying particles.
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Nonetheless, for |ηi | < R, with R = √
kn/πμ the size of the

quantum Hall droplet (3.4), we expect the state to approx-
imately describe m localized quasiholes. This interpretation
breaks down as the quasiholes approach the edge of the droplet.
Indeed, the states degenerate and become approximately the
same for any value of |ηi | � R. We will see the consequences
of this below.

In the presence of a harmonic trap, the states (3.24) are not
energy eigenstates unless ηi = 0. Nonetheless, it is simple to
check that the time-dependent states |eiωtη1, . . . ,e

iωtηm〉k , in
which the quasiholes orbit the origin, solve the time-dependent
Schrödinger equation. In what follows, we will compute the
braiding of the time-independent states (3.24).

In the quantum Hall effect, the quasiholes famously have
fractional charge and fractional statistics. We now show this
directly for the states (3.24). We follow the classic calcula-
tion of [18] in computing the Berry phase accumulated as
quasiholes move in closed paths. However, there is a technical
difference that is worth highlighting. In the usual Laughlin
wave function, the overlap integrals are too complicated to
perform directly. Instead, one resorts to the plasma analogy [8].
This requires an assumption that a classical 2d plasma exhibits
a screening phase.

A second route to computing the braiding of quasiparticles
is provided by the link to conformal field theories [15], where it
is conjectured to be equivalent to the monodromy of conformal
blocks. The primary focus has been on the richer subject
of non-Abelian quantum Hall states. Different approaches
include [56–58], the latter once again relying on a plasma
analogy. See also [59] for an alternative approach to braiding.

We will now show that the matrix model construction of
the quasihole states (3.24) seems to avoid these issues and a
direct attack on the problem bears fruit. We compute the Berry
phase explicitly without need of a plasma analogy.

2. Fractional charge

We start by computing the charge of the quasihole under
the external gauge field. To do this, we consider a single
excitation located at η = reiθ . We then adiabatically transport
the quasihole in a circle by sending θ → θ + 2π . If the
quasihole has charge qQH then we expect that the wave function
will pick up the Aharonov-Bohm phase � proportional to the
magnetic flux � enclosed in the orbit,

�(r) = �qQH = πr2BextqQH = 2π2μr2

e
qQH, (3.25)

where we have used the value of Bext = 2πμ/e computed
in (3.3), with e the charge of a single vortex. There is a more
direct expression for �, arising as the Berry phase associated
with the adiabatic change of the wave function,

�(r) = −i

∫ 2π

0
dθ k〈η| ∂

∂θ
|η〉k. (3.26)

Our task is to compute this phase. From this we extract qQH.
To do this, it will help to introduce some new notation. We

define the states |
l〉k , with l = 0, . . . ,n − 1,

|
l〉k = [εa1,...,anϕ†
a1

(ϕ†Z†)a2 · · ·
×(ϕ†Z† l−1)al

(ϕ†Z† l+1)al+1 · · · (ϕ†Z† n)an

10 20 30 40 50 60 70

−8000
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Θ

FIG. 3. (Color online) The Berry phase for a single quasihole in
n = 1000 vortices with k = 3. The phase � (solid, red line) and the
expected phase for a particle of charge −e/k in the field Bext (gray,
dashed line) are both plotted.

×[εb1,...,anϕ
†
b1

(ϕ†Z†)b2 · · · (ϕ†Z† n−1)bn
]k−2|0〉.

Each of these is an eigenstate of angular momentum, withJ =
J0 + πμ(n − l). We can expand the quasihole state (3.24) in
this basis as

|η〉k ∝
n−1∑
l=0

(−η†)l|
l〉k.

Because the |
l〉k have different angular momenta, they are
orthogonal. We write their inner product as

k〈
p|
l〉k = λ(l; k) δlp.

In terms of these inner products, the Berry phase (3.26) is
simply written as

�(r) = 2πi

∑n
l=0 ilλ(l; k) r2l∑n
l=0 λ(l; k) r2l

.

The computation of λ(l; k) is not straightforward. (Indeed, this
is the step in the usual calculation where one resorts to the
plasma analogy.) We find the following result:

λ(l; k) = (πμ)l−n

(
n

l

)[
n−l−1∏
a=0

(ka + 1)

]
k〈ground|ground〉k.

(3.27)

We relegate the proof of this statement to Appendix C.
Rather remarkably, the resulting sum can be written in

closed form. We find

�(r) = −2π2μr2

(
n

(n − 1)k + 1

×1F1(1 − n,2 − n − 1/k, πμr2/k)

1F1( −n,1 − n − 1/k, πμr2/k)

)
. (3.28)

This is the ratio of confluent hypergeometric functions of the
first kind.

The result (3.28) is plotted in Fig. 3 for n = 1000 vortices
and k = 3. The plot shows clearly that, for r < R, the
Berry phase � coincides with the expected Aharonov-Bohm
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phase (3.25) if the charge of the quasihole is taken to be

qQH = − e

k
.

This, of course, is the expected result [8,18].
Our Berry phase computation also reveals finite size effects.

The magnitude of the Berry phase reaches a maximum of 2πn

at r = R, the edge of the droplet. Outside this disk, the Berry
phase no longer increases and the picture in terms of quasiholes
breaks down. One can also use the result above to determine
the size of the edge effects; numerical plots reveal them to be
small as long as k � n.

There is another interpretation of the quasihole state (3.24):
it is an excitation of the fundamental boson φ in the Hall
phase (2.17). Now the Aharonov-Bohm phase arises because
this particle has charge 1 under the statistical gauge field
with magnetic field B = −2πμ/k. This is a pleasing, dual
perspective. The vortices are solitons constructed from φ.
But, equally, we see that we can reconstruct φ as a collective
excitation of many vortices!

3. Fractional statistics

Let us next consider the statistics of quasiholes as they are
braided. To do this, we consider a state with two excitations,
|η1,η2〉k . It is simplest to place the first at the origin, η1 = 0,
and transport the second in a full circle. This is equivalent
to exchanging the quasiholes twice and computes double the
statistical phase. Of course, there is also a contribution from
the Aharonov-Bohm phase �(r) described above and we must
subtract this off. The resulting statistical phase �stat is then

given by

2�stat(r) = −i

∫ 2π

0
dθ k〈0,η| ∂

∂θ
|0,η〉k − �(r),

where, again, η = reiθ .
To compute the statistical phase, we need yet more inner

products. We define the states

|
0,l〉k = [εa1,...,an (ϕ†Z†)a1 (ϕ†Z† 2)a2 · · ·
×(ϕ†Z† l)al

(ϕ†Z† l+2)al+1 · · · (ϕ†Z† n+1)an

×[εb1,...,anϕ
†
b1

(ϕ†Z†)b2 · · · (ϕ†Z† n−1)bn
]k−2|0〉.

This is similar to |
l〉k , defined previously, except now
each factor of Z† has been increased by 1. This is the
effect of placing the extra quasihole at the origin. (For more
general locations of the quasihole, we would need the obvious
generalizations of these states |
l′,l〉k .) The states |
0,l〉k are
again orthogonal. This time we find the norm is given by

k〈
0,l|
0,l〉k
k〈ground|ground〉k = (πμ)l−2n

(
n

l

)[
n−l−1∏
a=0

(ka + 1)

]

×
[

l−1∏
a=0

(ka + 1)

][
n−1∏
a=l

(ka + 2)

]
.

(3.29)

With these functions, it is straightforward to determine an
expression for the statistical phase in terms of a sum over n

states. Once again, this sum has a closed form, this time given
using regularized hypergeometric functions by

2�stat(r) = 2π2μr2

k
×

(
n

2F̃2(1 + 1/k,1 − n; 1 + 2/k,2 − n − 1/k; πμr2/k)

2F̃2(1/k, − n; 2/k, 1 − n − 1/k; πμr2/k)

)
− �r.

20 40 60 80 100 120 140

0.1
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FIG. 4. (Color online) The statistical phase for a quasihole en-
circling a second quasihole at the origin for n = 5000 and k = 3.
The Berry phase �stat (solid, red line) is plotted, together with the
expected phase for a particle of statistics π/k (gray, dashed line).

We plot this for n = 5000 and k = 3 in Fig. 4. All other plots
with k � n have similar features. We see that there is clearly
an intermediate, parametrically large regime, in which the pair
of particles are both far from the edge of the disk and far from

each other, where their exchange statistics are given by

�stat = π

k
.

This is the expected result for a quasihole at filling fraction
ν = 1/k.

IV. FUTURE DIRECTIONS

Supersymmetry has long proven a powerful tool to un-
derstand physics at strong coupling in relativistic systems.
It is clear that if this power could be transported to the
nonrelativistic realm, then supersymmetry may be employed to
say something interesting about open problems in condensed
matter physics.

In this spirit, there have been a number of recent papers
in which mirror symmetry (which can be viewed as an exact
particle-vortex duality in d = 2 + 1 interacting systems) has
been explored in the presence of external sources. This has
been used to study impurities [60,61], non-Fermi liquids [62],
and the physics of the lowest Landau level [63]. It would be
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interesting to follow the fate of mirror pairs (or Seiberg duals)
under the nonrelativistic limit.

The Laughlin physics described in this paper is, of course,
just the tip of the quantum Hall iceberg. A long-standing open
problem has been how to generalize the quantum Hall matrix
model of [19] to more general filling fractions such as the Jain
heirarchy. (See [48] for an attempt.) The perspective offered in
this paper suggests a route. It is known that the most general
Abelian quantum Hall state can be captured by the K-matrix
approach [64], with an effective field theory given by several
coupled Chern-Simons fields:

L = 1

4π
KIJ εμνρAI

μ∂νA
J
ρ + e

2π
Aext

μ tI ε
μνρ∂νA

I
ρ + · · · .

It is a simple matter to generalize this to a nonrelativistic
supersymmetric theory. However, the dynamics of vortices in
these theories have not been well studied. A matrix model
for the vortex dynamics in these theories would presumably
furnish a description of the most general Abelian quantum Hall
states. (A matrix model for vortices in a class of theories with
product gauge groups was proposed in [61,65].)

Another obvious generalization is to look at vortices in
non-Abelian U (N ) gauge theories. These were introduced
in [42,66]. The vortices now have an internal degree of freedom
and the moduli space is given by

πμ[Z,Z†] +
N∑

i=1

ϕiϕ
†
i = k1n

modulo U (n) gauge transformations. This model was pre-
viously discussed in the context of quantum Hall physics
in [67,68]. It would be interesting to better understand what
these states are and how they are related to the underlying
non-Abelian Chern-Simons theories.

Finally, we have restricted our attention in this paper to the
case with chemical potential μ �= 0. With μ = 0, the theory
develops a nonrelativistic superconformal symmetry. An index
was proposed in [69] but, beyond this, little seems to be known
about the structure of these theories. With nonrelativistic,
conformal theories playing an important role in various cold
atom systems, these superconformal theories appear worthy of
further study.

We hope to return to some of these issues in the future.
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APPENDIX A: NONRELATIVISTIC LIMITS

The Lagrangian (2.1) can be derived by starting from a rel-
ativistic Chern-Simons matter theory, with N = 2 supersym-
metry, and taking a limit in which antiparticles decouple [7]. A
number of other nonrelativistic theories with different gauge

groups, and more supersymmetry, have been constructed in
this manner [70–73].

In this Appendix we review this nonrelativistic limit. We
construct a more general theory than that of [7], with gauge
group U (Nc) and Nf matter multiplets transforming in the
fundamental representation of the gauge group. We also show
how the chemical potential term μ can arise in this limit.

We restrict our attention to the bosonic fields and, only at the
end, describe the generalization to the fermions. The bosonic
Lagrangian for the N = 2 supersymmetric U (Nc) Yang-Mills
Chern-Simons theory is

Srel = −
∫

d3x
1

4e2
Tr (FμνF

μν) + k

4π
εμνρTr

(
Aμ∂νAρ

− 2i

3
AμAνAρ

)
+ 1

2e2
Tr (Dμσ )2 +

Nf∑
i=1

|Dμφi |2

+φ
†
i σ

2φi + e2

2
Tr

(∑
i

φiφ
†
i − kσ

2π
− v2

)2

. (A1)

Here σ is the real, adjoint scalar which accompanies Aμ in
the vector multiplet, while φi are fundamental scalars that live
in chiral multiplets. We have included a Fayet-Iliopoulos term
v2, but not real masses for the φi . This can be done and results
in different inertial masses in the nonrelativistic limit.

Before proceeding, it is useful to perform some simple
dimensional analysis. We work with � = 1. This, of course,
relates energy to inverse time scales. However, as we are
ultimately interested in nonrelativistic physics, we retain the
speed of light c. This means that we have two dimensionful
quantities, length L and time T .

The factors of c in (A1) are currently hidden in the notation.
The measure is

d3x = c dt d2x, (A2)

while the derivatives are

|Dμφ|2 = − 1

c2
|Dtφ|2 + |Dαφ|2,

with α = 1,2 indexing spatial directions. Similarly, A0 =
At/c. The action is dimensionless. The other fields have
dimensions [At ] = T −1 and [Aα] = [σ ] = L−1 and [φ] =
L−1/2. The parameters have dimension [k] = 0 and [e2] =
[v2] = L−1.

We first take the infrared limit e2 → ∞ to remove the Yang-
Mills term. This also imposes the D term as a constraint:

kσ

2π
=

∑
i

φiφ
†
i − v2. (A3)

Using this to integrate out the adjoint scalar σ , the scalar
potential terms in (A1) become

V =
(

2π

k

)2 ∑
i

Tr φiφ
†
i

(∑
φjφ

†
j − v2

)2
. (A4)

This kind of sextic potential is standard in supersymmetric
Chern-Simons theories. The next step is to take the nonrela-
tivistic limit by discarding antiparticle excitations. To this end,

235125-13



DAVID TONG AND CARL TURNER PHYSICAL REVIEW B 92, 235125 (2015)

we make the ansatz

φi(x,t) = 1√
2mc

φ̃i(x,t)e−imc2t . (A5)

Here m is the mass of φ, which we read off from the quadratic
term in the potential (A4)

m = 2πv2

kc
.

The key point of the nonrelativistic limit is that φ̃ varies much
more slowly that the frequencies mc2 set by the mass gap. In
particular, this means that the ansatz (A5) prohibits antiparticle
excitations which scale as e+imc2t . Plugging the ansatz (A5)
into the kinetic terms gives, after an integration by parts,

1

c2
|Dtφ|2 = 1

2mc

(
1

c2
|Dt φ̃|2 + 2imφ̃†Dt φ̃ + m2c2|φ̃|2

)
.

The overall factor of 1/c is canceled by the factor of c in
the measure (A2). The third term m2c2|φ̃|2 is designed to
cancel the quadratic term in the potential. We now take the
nonrelativistic limit c → ∞. In doing so, we are left only with
the term linear in time derivatives. We can repeat this for all
other terms in the action. In particular, taking a similar scaling
of the potential (A4), leaves us only with the quartic coupling

V = − π

kmc

∑
ij

(φ̃j φ̃i)(φ̃
†
i φ̃j ).

The same scaling can be applied to the fermions in the original
N = 2 theory. The end result is a U (Nc) Chern-Simons theory,
coupled to Nf fundamental matter multiplets. To describe
it, we revert to the notation φ̃ → φ. The final nonrelativistic
action is

S =
∫

dtd2x

Nf∑
i=1

iφ
†
i Dtφi + iψ

†
i Dtψi

− k

4π
Tr εμνρ

(
Aμ∂νAρ − 2i

3
AμAνAρ

)

− 1

2m

Nf∑
i=1

(Dαφ
†
i Dαφi + Dαψ

†
i Dαψi + ψ

†
i Bψi)

− π

mk

∑
i,j

[(φ†
jφi)(φ

†
i φj ) − (φ†

jψi)(ψ
†
i φj )

+ 2(φ†
i φj )(ψ†

j ψi)]. (A6)

For U (1) with Nf = 1, this is the action (2.1) when μ = 0.
[We have used the notation ∂0 rather than ∂t in (2.1).]

The action (A6) is invariant under superconformal trans-
formations described in [7] and, in more detail, in [69].
The generators of the supersymmetries are the obvious non-
Abelian generalizations of (2.9) and (2.10).

The action (2.1) also includes a chemical potential μ

which plays a crucial role in our quantum Hall story. It is
straightforward to add an analogous to term to the relativistic
Lagrangian (A1). It is

Lμ = μTr (A0 − σ ). (A7)

Obviously this breaks d = 2 + 1 Lorentz invariance. It pre-
serves two of the four supercharges. Indeed, such terms are
well known in the context of quantum mechanics models with
N = (0,2) supersymmetry and were first introduced in [74].
In taking the infrared limit, the σ term in (A7) gets replaced by∑

φiφ
†
i through the constraint (A3). The resulting interaction

terms of the nonrelativistic theory are

V = π

mk

∑
i,j

[(φ†
jφi)(φ

†
i φj ) − μφ

†
i φi

− (φ†
jψi)(ψ

†
i φj ) + 2(φ†

i φj )(ψ†
j ψi)].

Despite the fact that the relativistic theory with the defor-
mation (A7) preserves only one complex supercharge, both
supercharges (2.9) and (2.10) are recovered after taking the
nonrelativistic limit. However, as we have seen, only Q2

remains a symmetry of the spectrum.

APPENDIX B: THE GEOMETRY OF THE VORTEX
MODULI SPACE

In this Appendix we review a few basic facts about the
geometry of the vortex moduli space. Suppose that we have at
our disposal the most general solution to the vortex equation
with winding n,

φ(x; X) and Az(x; X).

We define 2n zero modes (δaφ,δaAz) to be the infinitesimal
deformations which take us from one solution to another:

δaφ = ∂φ

∂Xa
+ iαaφ and δaAz = ∂Az

∂Xa
+ ∂zαa. (B1)

Here αa(x; X) is an accompanying gauge transformation. By
construction, these zero modes solve the linearized versions
of the vortex equations (3.1) for any choice of α(x,X). This
ambiguity is fixed by further requiring that the zero modes
obey the background gauge condition,

∂z δaAz + ∂z̄ δaAz̄ = 2π

k
(iφδaφ

† − iφ†δaφ). (B2)

The metric on the vortex moduli space Mn is constructed by
taking the overlap of the zero modes

gab =
∫

d2x
k

π
(δaAz̄ δbAz + δaAz δbAz̄)

+ (δaφ
† δbφ + δaφ δbφ

†). (B3)

In relativistic theories, this metric plays an important role: the
low-energy dynamics of the vortices is described by a sigma
model on Mn with metric gab. The metric is known to be
free of singularities. It is also Kähler, inheriting its complex
structure from the natural action of complex conjugation on
the fields. The associated Kähler form is


ab = i

∫
d2x

k

π
(δaAz̄ δbAz − δaAz δbAz̄)

+ (δaφ
† δbφ − δaφ δbφ

†). (B4)

We now show that this Kähler form governs the first order
dynamics of vortices in our model. We will prove that the

235125-14



QUANTUM HALL EFFECT IN SUPERSYMMETRIC CHERN- . . . PHYSICAL REVIEW B 92, 235125 (2015)

effective action for vortices is given by

Svortex =
∫

dt Fa(X)Ẋa with dF = 
.

This result was previously derived in [24,38,39].
We work in the usual spirit of the moduli space: we promote

the collective coordinates of the static solutions to be time
dependent: Xa(t). We then substitute this time-dependent
ansatz into the kinetic terms of the action (2.1). This results in
an effective vortex action,

S =
∫

d3x
ik

2π
(Az̄Ȧz − AzȦz̄) + i

2
(φ†φ̇ − φ̇†φ)

≡
∫

dt Fa(X)Ẋa, (B5)

with

Fa(X) = i

2

∫
d2x

k

π

(
Az̄

∂Az

∂Xa
− ∂Az̄

∂Xa
Az

)

+
(

φ† ∂φ

∂Xa
− ∂φ†

∂Xa
φ

)
.

Note that the kinetic terms in (B5) contain time derivatives
rather than covariant time derivatives. This is because the A0

terms in (2.1) multiply Gauss’ law and so necessarily vanish.
Correspondingly, the expression for Fa above contains partial
derivatives of fields which differ from the zero modes defined
in (B1) as they are missing the contribution from the gauge
transformation αa(x; X).

The two form 
̃ = dF is


̃ab = ∂Fa

∂Xb
− ∂Fb

∂Xa
= i

∫
d2x

k

π

(
∂Az̄

∂Xa

∂Az

∂Xb
− ∂Az

∂Xa

∂Az̄

∂Xb

)

+
(

∂φ†

∂Xa

∂φ

∂Xb
− ∂φ

∂Xa

∂φ†

∂Xb

)
.

Our goal is to show that 
̃ab = 
ab, the Kähler form defined
in (B4). The expressions look similar. They differ because the
expression for 
ab includes extra contributions from the gauge
fixing terms. We now show that these terms vanish.

The proof is very similar to that given recently in [75] in
the context of first order motion on the instanton moduli space.
We take the difference


ab − 
̃ab = i

∫
d2x

k

π

(
∂Az̄

∂Xa
∂zαb − ∂Az

∂Xa
∂z̄αb

)

+
(

i
∂φ†

∂Aa
αbφ + iφ†αa

∂φ

∂Xa

)
− (a ↔ b)

= −
∫

d2xαb

∂

∂Xa

(
− k

2π
B + φ†φ

)
− (a ↔ b),

where we have integrated by parts to get to the second line.
But the term in brackets vanishes, courtesy of the Gauss’ law
constraint (3.1). We learn that dF = 
, the Kähler form, as
advertised. Note that the proof above did not need us to use the
background gauge fixing condition (B2). While the metric (B3)
is sensitive to the background gauge condition, the Kähler
form (B4) is not.

APPENDIX C: OVERLAP OF MATRIX MODEL STATES

Our derivation of the fractional charge and statistics of
quasiholes relied on expressions for the norms of matrix
model states given in (3.27) and (3.29). These results have
been derived previously, most notably in the context of the
Calogero-Sutherland-Moser model. Because these results are
stated in a slightly different language, we use this Appendix
to explain the connection.

The quantum Hall matrix model is well known to be
equivalent to the bosonic integrable Calogero-Sutherland-
Moser model [19,76]. This describes identical particles in one
spatial dimension, placed in a harmonic trap and interacting
via a specific inverse-square potential. To see the connection
we begin, following [22], by working with a coherent state
representation of all matrix model states. First, expand Z =
X1 + iX2 into Hermitian and anti-Hermitian parts, and let the
overcomplete states |X,φ〉 be defined by

X̂1|X,φ〉 = X|X,φ〉, ϕ̂|X,φ〉 = φ|X,φ〉

together with the normalization

∫
e−φ̄φdφdφ̄

∏
i,j

dXij |X,φ〉〈X,φ| ≡ 1,

where we have added hats to emphasize which symbols denote
the quantum operators. With respect to these states, we can
write all states in terms of a wave function by taking inner
products with 〈X,φ|. This in turn gives us a way to compute the
inner products of matrix model states by computing integrals
over X,φ. In what follows, we work with convention πμ = 1.

On these wave functions, Z† has the representation

Z
†
ij ≡ 2−1/2

(
Xij − ∂

∂Xji

)

analogous to the raising operator of the more familiar Hermite
polynomials. Hence, up to an overall normalization, the states
we are interested in all have wave functions of the form

�f (X,φ) = f (Z†)[εa1,...,an φ̄a1 (φ̄X)a2

× · · · (φ̄Xn−1)an
]k−1e− 1

2 TrX2
,

where f is some homogeneous, gauge-invariant polynomial.
Specifically, we have the following correspondence:

|ground〉k : f (B) = 1,

|
l〉k : f (B) = B
a1
[a1

Ba2
a2

· · · Ban−l

an−l ]
,

|
0,l〉k : f (B) = det B · B
a1
[a1

Ba2
a2

· · ·Ban−l

an−l ]
.

At given n,k we will denote the state with a given choice of f

simply by |f 〉.
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One can evaluate the action of f on the state to obtain
instead

�f (X,φ)

= f̃ (X)[εa1,...,an φ̄a1 (φ̄X)a2 · · · (φ̄Xn−1)an
]k−1e− 1

2 TrX2
,

where at leading order f̃ (B) ∼ 2(deg f )/2f (B).
Now the relationship to the states of the Calogero model is

seen by performing a change of variables: diagonalize X via
X = UDU−1, where Dij = xiδij . Defining the Vandermonde
determinant

� = εa1,...,anx0
a1

· · · xn−1
an

=
∏
i<j

(xi − xj ),

one sees that the wave function becomes

�f (X,φ) = f̃ (D)�k−1 e− 1
2 x2 ∏

i(φ̄U )k−1
i .

Note that f̃ (D) ≡ f̃ (x) is simply a polynomial in x, whose
leading behavior we can determine from f . Also, we can see
that U,φ have decoupled from x.

Hence, taking account of the Jacobian �2 for our change
of variables, at a given n,k all inner products satisfy

〈f |g〉 = cn,k

∫
dnxe−x2

�2kf̃ (x)g̃(x), (C1)

where cn,k is a calculable constant which we do not need for
our computation.

As is shown in detail in [22], the key observation now is
that the action of the matrix model Hamiltonian H on our
wave functions is given by H ≡ �−1HCal�, where HCal is the
Hamiltonian of the Calogero model at statistical parameter
k. But the eigenstates of the Calogero model are known;
they correspond precisely to the Hi-Jack polynomials, the
multivariable generalizations of the Hermite polynomials
which are orthogonal with respect to the measure in (C1).
These are labeled by partitions λ.

One may readily check that in fact f̃ ,g̃ in Eq. (C1) must
be multiples of the generalized Hermite polynomials of Sec.
3 discussed in [77]. But now we can refer to Proposition 3.7
of that paper which is readily unpacked to give the ratios
between the norms of general states. Concretely, their Hλ(x)
have leading term

Hλ(x) ∼ 2|λ| (x
λ1
1 x

λ2
2 · · · xλn

n + distinct permutations)

number of distinct permutations

and norms

∫
H 2

λ (x) dμ(x)∫
dμ(x)

= 2|λ| ∏
(c,d)∈λ

{k lλ(c,d) + [aλ(c,d) + 1]}{k[lλ(c,d) + 1] + aλ(c,d)}
k[n − (c − 1)] + (d − 1)

.

Here |λ| = ∑
i λi is the number of cells in the corresponding Young diagram, and aλ(c,d),lλ(c,d) are respectively the arm and

leg length of the cell with coordinates (c,d) in that diagram.
All that remains is to work out what choice of λ and normalization correspond to the examples of f given above for the matrix

model states. It is easily found that

|ground〉k : f̃ = H(0,0,...,0),

|
l〉k : f̃ = 2(n−l)/2

(
n

l

)
H(1,1,...,1,0,0,...,0),

|
0,l〉k : f̃ = 2(2n−l)/2

(
n

l

)
H(2,2,...,2,1,1,...,1),

where there are n − l instances of 1 (2) in the second (third) partition and then (3.27) and (3.29) both follow on evaluating the
above product.

It is very clear how this generalizes to arbitrary states in the matrix model, especially if one realizes the close relationship
between the partition λ and the original definition of the matrix model states |
l〉k and |
0,l〉k .
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as classical Hall liquid, Int. J. Mod. Phys. B 15, 3397
(2001).

[41] T. M. Samols, Vortex scattering, Commun. Math. Phys. 145,
149 (1992).

[42] A. Hanany and D. Tong, Vortices, Instantons and branes, J. High
Energy Phys. 07 (2003) 037.

[43] A. Hanany and D. Tong, Vortex strings and four-
dimensional gauge dynamics, J. High Energy Phys. 04
(2004) 066.

[44] T. Dimofte, S. Gukov, and L. Hollands, Vortex counting
and Lagrangian 3-manifolds, Lett. Math. Phys. 98, 225
(2011).

[45] Y. Yoshida, Localization of vortex partition functions in N =
(2,2) super Yang-Mills theory, arXiv:1101.0872.

[46] T. Fujimori, T. Kimura, M. Nitta, and K. Ohashi, Vortex counting
from field theory, J. High Energy Phys. 06 (2012) 028.

[47] T. H. Hansson, J. Kailasvuori, and A. Karlhede, Charge and
current in the quantum Hall matrix model, Phys. Rev. B 68,
035327 (2003).

[48] A. Cappelli and I. D. Rodriguez, Jain states in a matrix theory
of the quantum Hall effect, J. High Energy Phys. 12 (2006)
056.

[49] A. Cappelli and M. Riccardi, Matrix model description of
Laughlin Hall states, J. Stat. Mech. (2005) P05001.

[50] I. D. Rodriguez, Edge excitations of the Chern Simons ma-
trix theory for the FQHE, J. High Energy Phys. 07 (2009)
100.

[51] O. Bergman, Y. Okawa, and J. H. Brodie, The stringy quantum
Hall fluid, J. High Energy Phys. 11 (2001) 019.

[52] Y. Hikida, W. Li, and T. Takayanagi, ABJM with flavors and
FQHE, J. High Energy Phys. 07 (2009) 065.

[53] A. Hanany and R. K. Seong, Hilbert series and moduli spaces
of kU (N ) vortices, J. High Energy Phys. 02 (2015) 012.

[54] L. Susskind, The quantum Hall fluid and non-commutative
Chern-Simons theory, arXiv:hep-th/0101029.

[55] M. Van Raamsdonk, Open dielectric branes, J. High Energy
Phys. 02 (2002) 001.

[56] N. Read, Non-Abelian adiabatic statistics and Hall viscosity in
quantum Hall states and px + ipy paired superfluids, Phys. Rev.
B 79, 045308 (2009).

[57] V. Gurarie and C. Nayak, A plasma analogy and Berry matrices
for non-Abelian quantum Hall states, Nucl. Phys. B 506, 685
(1997).

[58] P. Bonderson, V. Gurarie, and C. Nayak, Plasma analogy and
non-Abelian statistics for Ising-type quantum Hall states, Phys.
Rev. B 83, 075303 (2011).

[59] A. Seidel and D.-H. Lee, Domain wall type defects as anyons in
phase space, Phys. Rev. B 76, 155101 (2007).

[60] A. Hook, S. Kachru, and G. Torroba, Supersymmetric defect
models and mirror symmetry, J. High Energy Phys. 11 (2013)
004.

[61] D. Tong and K. Wong, Vortices and impurities, J. High Energy
Phys. 01 (2014) 090.

235125-17

http://dx.doi.org/10.1103/PhysRevLett.62.86
http://dx.doi.org/10.1103/PhysRevLett.62.86
http://dx.doi.org/10.1103/PhysRevLett.62.86
http://dx.doi.org/10.1103/PhysRevLett.62.86
http://dx.doi.org/10.1103/PhysRevB.42.8133
http://dx.doi.org/10.1103/PhysRevB.42.8133
http://dx.doi.org/10.1103/PhysRevB.42.8133
http://dx.doi.org/10.1103/PhysRevB.42.8133
http://dx.doi.org/10.1103/PhysRevB.44.5246
http://dx.doi.org/10.1103/PhysRevB.44.5246
http://dx.doi.org/10.1103/PhysRevB.44.5246
http://dx.doi.org/10.1103/PhysRevB.44.5246
http://dx.doi.org/10.1142/S0217979291001085
http://dx.doi.org/10.1142/S0217979291001085
http://dx.doi.org/10.1142/S0217979291001085
http://dx.doi.org/10.1142/S0217979291001085
http://dx.doi.org/10.1103/PhysRevB.41.12838
http://dx.doi.org/10.1103/PhysRevB.41.12838
http://dx.doi.org/10.1103/PhysRevB.41.12838
http://dx.doi.org/10.1103/PhysRevB.41.12838
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0370-2693(78)90357-X
http://dx.doi.org/10.1016/0370-2693(78)90357-X
http://dx.doi.org/10.1016/0370-2693(78)90357-X
http://dx.doi.org/10.1016/0370-2693(78)90357-X
http://dx.doi.org/10.1103/PhysRevLett.59.1873
http://dx.doi.org/10.1103/PhysRevLett.59.1873
http://dx.doi.org/10.1103/PhysRevLett.59.1873
http://dx.doi.org/10.1103/PhysRevLett.59.1873
http://dx.doi.org/10.1103/PhysRevLett.53.722
http://dx.doi.org/10.1103/PhysRevLett.53.722
http://dx.doi.org/10.1103/PhysRevLett.53.722
http://dx.doi.org/10.1103/PhysRevLett.53.722
http://dx.doi.org/10.1088/1126-6708/2001/04/011
http://dx.doi.org/10.1088/1126-6708/2001/04/011
http://dx.doi.org/10.1088/1126-6708/2001/04/011
http://dx.doi.org/10.1088/1126-6708/2001/04/011
http://dx.doi.org/10.1088/1126-6708/2001/10/039
http://dx.doi.org/10.1088/1126-6708/2001/10/039
http://dx.doi.org/10.1088/1126-6708/2001/10/039
http://dx.doi.org/10.1088/1126-6708/2001/10/039
http://dx.doi.org/10.1103/PhysRevB.64.245316
http://dx.doi.org/10.1103/PhysRevB.64.245316
http://dx.doi.org/10.1103/PhysRevB.64.245316
http://dx.doi.org/10.1103/PhysRevB.64.245316
http://dx.doi.org/10.1103/PhysRevB.65.075304
http://dx.doi.org/10.1103/PhysRevB.65.075304
http://dx.doi.org/10.1103/PhysRevB.65.075304
http://dx.doi.org/10.1103/PhysRevB.65.075304
http://dx.doi.org/10.1088/1126-6708/2004/02/046
http://dx.doi.org/10.1088/1126-6708/2004/02/046
http://dx.doi.org/10.1088/1126-6708/2004/02/046
http://dx.doi.org/10.1088/1126-6708/2004/02/046
http://dx.doi.org/10.1006/aphy.1997.5672
http://dx.doi.org/10.1006/aphy.1997.5672
http://dx.doi.org/10.1006/aphy.1997.5672
http://dx.doi.org/10.1006/aphy.1997.5672
http://dx.doi.org/10.1088/0951-7715/12/4/306
http://dx.doi.org/10.1088/0951-7715/12/4/306
http://dx.doi.org/10.1088/0951-7715/12/4/306
http://dx.doi.org/10.1088/0951-7715/12/4/306
http://dx.doi.org/10.1063/1.530521
http://dx.doi.org/10.1063/1.530521
http://dx.doi.org/10.1063/1.530521
http://dx.doi.org/10.1063/1.530521
http://dx.doi.org/10.1016/0550-3213(84)90308-0
http://dx.doi.org/10.1016/0550-3213(84)90308-0
http://dx.doi.org/10.1016/0550-3213(84)90308-0
http://dx.doi.org/10.1016/0550-3213(84)90308-0
http://dx.doi.org/10.1007/BFb0113369
http://dx.doi.org/10.1007/BFb0113369
http://dx.doi.org/10.1007/BFb0113369
http://dx.doi.org/10.1007/BFb0113369
http://dx.doi.org/10.1007/BFb0113369
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1007/JHEP10(2014)101
http://dx.doi.org/10.1007/JHEP10(2014)101
http://dx.doi.org/10.1007/JHEP10(2014)101
http://dx.doi.org/10.1007/JHEP10(2014)101
http://dx.doi.org/10.1103/PhysRevB.53.13559
http://dx.doi.org/10.1103/PhysRevB.53.13559
http://dx.doi.org/10.1103/PhysRevB.53.13559
http://dx.doi.org/10.1103/PhysRevB.53.13559
http://dx.doi.org/10.1103/PhysRevB.79.245304
http://dx.doi.org/10.1103/PhysRevB.79.245304
http://dx.doi.org/10.1103/PhysRevB.79.245304
http://dx.doi.org/10.1103/PhysRevB.79.245304
http://dx.doi.org/10.1103/PhysRevD.19.3008
http://dx.doi.org/10.1103/PhysRevD.19.3008
http://dx.doi.org/10.1103/PhysRevD.19.3008
http://dx.doi.org/10.1103/PhysRevD.19.3008
http://dx.doi.org/10.1007/BF01197552
http://dx.doi.org/10.1007/BF01197552
http://dx.doi.org/10.1007/BF01197552
http://dx.doi.org/10.1007/BF01197552
http://dx.doi.org/10.1016/j.nuclphysb.2005.09.032
http://dx.doi.org/10.1016/j.nuclphysb.2005.09.032
http://dx.doi.org/10.1016/j.nuclphysb.2005.09.032
http://dx.doi.org/10.1016/j.nuclphysb.2005.09.032
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.038
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.038
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.038
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.038
http://dx.doi.org/10.1016/0370-2693(82)90950-9
http://dx.doi.org/10.1016/0370-2693(82)90950-9
http://dx.doi.org/10.1016/0370-2693(82)90950-9
http://dx.doi.org/10.1016/0370-2693(82)90950-9
http://dx.doi.org/10.1063/1.1379315
http://dx.doi.org/10.1063/1.1379315
http://dx.doi.org/10.1063/1.1379315
http://dx.doi.org/10.1063/1.1379315
http://dx.doi.org/10.1088/0951-7715/17/4/010
http://dx.doi.org/10.1088/0951-7715/17/4/010
http://dx.doi.org/10.1088/0951-7715/17/4/010
http://dx.doi.org/10.1088/0951-7715/17/4/010
http://dx.doi.org/10.1142/S0217979201007361
http://dx.doi.org/10.1142/S0217979201007361
http://dx.doi.org/10.1142/S0217979201007361
http://dx.doi.org/10.1142/S0217979201007361
http://dx.doi.org/10.1007/BF02099284
http://dx.doi.org/10.1007/BF02099284
http://dx.doi.org/10.1007/BF02099284
http://dx.doi.org/10.1007/BF02099284
http://dx.doi.org/10.1088/1126-6708/2003/07/037
http://dx.doi.org/10.1088/1126-6708/2003/07/037
http://dx.doi.org/10.1088/1126-6708/2003/07/037
http://dx.doi.org/10.1088/1126-6708/2003/07/037
http://dx.doi.org/10.1088/1126-6708/2004/04/066
http://dx.doi.org/10.1088/1126-6708/2004/04/066
http://dx.doi.org/10.1088/1126-6708/2004/04/066
http://dx.doi.org/10.1088/1126-6708/2004/04/066
http://dx.doi.org/10.1007/s11005-011-0531-8
http://dx.doi.org/10.1007/s11005-011-0531-8
http://dx.doi.org/10.1007/s11005-011-0531-8
http://dx.doi.org/10.1007/s11005-011-0531-8
http://arxiv.org/abs/arXiv:1101.0872
http://dx.doi.org/10.1007/JHEP06(2012)028
http://dx.doi.org/10.1007/JHEP06(2012)028
http://dx.doi.org/10.1007/JHEP06(2012)028
http://dx.doi.org/10.1007/JHEP06(2012)028
http://dx.doi.org/10.1103/PhysRevB.68.035327
http://dx.doi.org/10.1103/PhysRevB.68.035327
http://dx.doi.org/10.1103/PhysRevB.68.035327
http://dx.doi.org/10.1103/PhysRevB.68.035327
http://dx.doi.org/10.1088/1126-6708/2006/12/056
http://dx.doi.org/10.1088/1126-6708/2006/12/056
http://dx.doi.org/10.1088/1126-6708/2006/12/056
http://dx.doi.org/10.1088/1126-6708/2006/12/056
http://dx.doi.org/10.1088/1742-5468/2005/05/P05001
http://dx.doi.org/10.1088/1742-5468/2005/05/P05001
http://dx.doi.org/10.1088/1742-5468/2005/05/P05001
http://dx.doi.org/10.1088/1126-6708/2009/07/100
http://dx.doi.org/10.1088/1126-6708/2009/07/100
http://dx.doi.org/10.1088/1126-6708/2009/07/100
http://dx.doi.org/10.1088/1126-6708/2009/07/100
http://dx.doi.org/10.1088/1126-6708/2001/11/019
http://dx.doi.org/10.1088/1126-6708/2001/11/019
http://dx.doi.org/10.1088/1126-6708/2001/11/019
http://dx.doi.org/10.1088/1126-6708/2001/11/019
http://dx.doi.org/10.1088/1126-6708/2009/07/065
http://dx.doi.org/10.1088/1126-6708/2009/07/065
http://dx.doi.org/10.1088/1126-6708/2009/07/065
http://dx.doi.org/10.1088/1126-6708/2009/07/065
http://dx.doi.org/10.1007/JHEP02(2015)012
http://dx.doi.org/10.1007/JHEP02(2015)012
http://dx.doi.org/10.1007/JHEP02(2015)012
http://dx.doi.org/10.1007/JHEP02(2015)012
http://arxiv.org/abs/arXiv:hep-th/0101029
http://dx.doi.org/10.1088/1126-6708/2002/02/001
http://dx.doi.org/10.1088/1126-6708/2002/02/001
http://dx.doi.org/10.1088/1126-6708/2002/02/001
http://dx.doi.org/10.1088/1126-6708/2002/02/001
http://dx.doi.org/10.1103/PhysRevB.79.045308
http://dx.doi.org/10.1103/PhysRevB.79.045308
http://dx.doi.org/10.1103/PhysRevB.79.045308
http://dx.doi.org/10.1103/PhysRevB.79.045308
http://dx.doi.org/10.1016/S0550-3213(97)00612-3
http://dx.doi.org/10.1016/S0550-3213(97)00612-3
http://dx.doi.org/10.1016/S0550-3213(97)00612-3
http://dx.doi.org/10.1016/S0550-3213(97)00612-3
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1103/PhysRevB.76.155101
http://dx.doi.org/10.1103/PhysRevB.76.155101
http://dx.doi.org/10.1103/PhysRevB.76.155101
http://dx.doi.org/10.1103/PhysRevB.76.155101
http://dx.doi.org/10.1007/JHEP11(2013)004
http://dx.doi.org/10.1007/JHEP11(2013)004
http://dx.doi.org/10.1007/JHEP11(2013)004
http://dx.doi.org/10.1007/JHEP11(2013)004
http://dx.doi.org/10.1007/JHEP01(2014)090
http://dx.doi.org/10.1007/JHEP01(2014)090
http://dx.doi.org/10.1007/JHEP01(2014)090
http://dx.doi.org/10.1007/JHEP01(2014)090


DAVID TONG AND CARL TURNER PHYSICAL REVIEW B 92, 235125 (2015)

[62] A. Hook, S. Kachru, G. Torroba, and H. Wang, Emergent Fermi
surfaces, fractionalization and duality in supersymmetric QED,
J. High Energy Phys. 08 (2014) 031.

[63] S. Kachru, M. Mulligan, G. Torroba, and H. Wang, Mirror
symmetry and the half-filled Landau level, Phys. Rev. B 92,
235105 (2015).

[64] X. G. Wen and A. Zee, A classification of Abelian quantum Hall
states and matrix formulation of topological fluids, Phys. Rev.
B 46, 2290 (1992).

[65] M. Aganagic, N. Haouzi, and S. Shakirov, An-Triality,
arXiv:1403.3657.

[66] R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi, and A. Yung, Non-
Abelian superconductors: Vortices and confinement in N = 2
SQCD, Nucl. Phys. B 673, 187 (2003).

[67] B. Morariu and A. P. Polychronakos, Finite noncommutative
Chern-Simons with a Wilson line and the quantum Hall effect,
J. High Energy Phys. 07 (2001) 006.

[68] T. Kimura, Vortex description of quantum Hall ferromagnets,
Int. J. Mod. Phys. A 25, 993 (2010).

[69] Y. Nakayama, Index for non-relativistic superconformal field
theories, J. High Energy Phys. 10 (2008) 083.

[70] Y. Nakayama, S. Ryu, M. Sakaguchi, and K. Yoshida, A family
of super Schrodinger invariant Chern-Simons matter systems, J.
High Energy Phys. 01 (2009) 006.

[71] Y. Nakayama, M. Sakaguchi, and K. Yoshida, Interacting SUSY-
singlet matter in non-relativistic Chern-Simons theory, J. Phys.
A 42, 195402 (2009).

[72] Y. Nakayama, M. Sakaguchi, and K. Yoshida, Non-relativistic
M2-brane gauge theory and new superconformal algebra, J. High
Energy Phys. 04 (2009) 096.

[73] K. M. Lee, S. Lee, and S. Lee, Nonrelativistic superconformal
M2-brane theory, J. High Energy Phys. 09 (2009) 030.

[74] T. Banks, N. Seiberg, and E. Silverstein, Zero and one-
dimensional probes with N = 8 supersymmetry, Phys. Lett. B
401, 30 (1997).

[75] N. Dorey and A. Singleton, Instantons, integrability and discrete
light-cone quantisation, arXiv:1412.5178.

[76] A. P. Polychronakos, Physics and mathematics of Calogero
particles, J. Phys. A 39, 12793 (2006).

[77] T. H. Baker and P. J. Forrester, The Calogero-Sutherland model
and generalized classical polynomials, Commun. Math. Phys.
188, 175 (1997).

235125-18

http://dx.doi.org/10.1007/JHEP08(2014)031
http://dx.doi.org/10.1007/JHEP08(2014)031
http://dx.doi.org/10.1007/JHEP08(2014)031
http://dx.doi.org/10.1007/JHEP08(2014)031
http://dx.doi.org/10.1103/PhysRevB.92.235105
http://dx.doi.org/10.1103/PhysRevB.92.235105
http://dx.doi.org/10.1103/PhysRevB.92.235105
http://dx.doi.org/10.1103/PhysRevB.92.235105
http://dx.doi.org/10.1103/PhysRevB.46.2290
http://dx.doi.org/10.1103/PhysRevB.46.2290
http://dx.doi.org/10.1103/PhysRevB.46.2290
http://dx.doi.org/10.1103/PhysRevB.46.2290
http://arxiv.org/abs/arXiv:1403.3657
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.029
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.029
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.029
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.029
http://dx.doi.org/10.1088/1126-6708/2001/07/006
http://dx.doi.org/10.1088/1126-6708/2001/07/006
http://dx.doi.org/10.1088/1126-6708/2001/07/006
http://dx.doi.org/10.1088/1126-6708/2001/07/006
http://dx.doi.org/10.1142/S0217751X10047816
http://dx.doi.org/10.1142/S0217751X10047816
http://dx.doi.org/10.1142/S0217751X10047816
http://dx.doi.org/10.1142/S0217751X10047816
http://dx.doi.org/10.1088/1126-6708/2008/10/083
http://dx.doi.org/10.1088/1126-6708/2008/10/083
http://dx.doi.org/10.1088/1126-6708/2008/10/083
http://dx.doi.org/10.1088/1126-6708/2008/10/083
http://dx.doi.org/10.1088/1126-6708/2009/01/006
http://dx.doi.org/10.1088/1126-6708/2009/01/006
http://dx.doi.org/10.1088/1126-6708/2009/01/006
http://dx.doi.org/10.1088/1126-6708/2009/01/006
http://dx.doi.org/10.1088/1751-8113/42/19/195402
http://dx.doi.org/10.1088/1751-8113/42/19/195402
http://dx.doi.org/10.1088/1751-8113/42/19/195402
http://dx.doi.org/10.1088/1751-8113/42/19/195402
http://dx.doi.org/10.1088/1126-6708/2009/04/096
http://dx.doi.org/10.1088/1126-6708/2009/04/096
http://dx.doi.org/10.1088/1126-6708/2009/04/096
http://dx.doi.org/10.1088/1126-6708/2009/04/096
http://dx.doi.org/10.1088/1126-6708/2009/09/030
http://dx.doi.org/10.1088/1126-6708/2009/09/030
http://dx.doi.org/10.1088/1126-6708/2009/09/030
http://dx.doi.org/10.1088/1126-6708/2009/09/030
http://dx.doi.org/10.1016/S0370-2693(97)00366-3
http://dx.doi.org/10.1016/S0370-2693(97)00366-3
http://dx.doi.org/10.1016/S0370-2693(97)00366-3
http://dx.doi.org/10.1016/S0370-2693(97)00366-3
http://arxiv.org/abs/arXiv:1412.5178
http://dx.doi.org/10.1088/0305-4470/39/41/S07
http://dx.doi.org/10.1088/0305-4470/39/41/S07
http://dx.doi.org/10.1088/0305-4470/39/41/S07
http://dx.doi.org/10.1088/0305-4470/39/41/S07
http://dx.doi.org/10.1007/s002200050161
http://dx.doi.org/10.1007/s002200050161
http://dx.doi.org/10.1007/s002200050161
http://dx.doi.org/10.1007/s002200050161



