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Upper bounds of spin-density wave energies in the homogeneous electron gas
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Studying the jellium model in the Hartree-Fock approximation, Overhauser has shown that spin-density waves
(SDWs) can lower the energy of the Fermi gas, but it is still unknown whether these SDWs are actually relevant
for the phase diagram. In this paper, we give a more complete description of SDW states. We show that a
modification of the Overhauser ansatz explains the behavior of the jellium at high density compatibly with
previous Hartree-Fock simulations.
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I. INTRODUCTION

The simplest model of electronic structure is jellium—
electrons embedded in a homogeneous background of opposite
charge such that the system is neutral. This model is a good
starting point to describe properties of simple metals such
as sodium [1]. At zero temperature, the only parameter of
this model is the density n, or the dimensionless parameter
rs = 3/(4πna3

B )1/3, where aB = �
2/(me2) is the Bohr radius.

Within the Hartree-Fock approximation (HF), Overhauser has
shown that the Fermi gas is unstable under a spin-density wave
(SDW) [2,3]. Only recently, almost 50 years after Overhauser’s
prediction, explicit numerical estimates of the HF ground state
have shown SDW evidence of the electron gas in three [4–7]
and two dimensions [7,8]. Still, a quantitative estimate of the
variation of the SDW amplitude and energy in the high-density
region rs � 1 is missing [9]. In this paper, we generalize
Overhauser’s ansatz and provide a quantitative solution of this
long-standing problem.

Beyond Hartree-Fock, the relevance of SDWs in the phase
diagram of the electron gas remains unclear due to the
competition with correlations [10,11]. However, up-to-date,
all-numerical methods used for quantitative computation of
correlation effects [12–14] elaborate on a certain reference
ground state—in general taken from a Hartree-Fock or
density functional based wave function. Although the resulting
(approximate) ground state wave function of the finite system
incorporates strong many-body correlations, the underlying
structure of the reference function most likely remains
unchanged [15]. We hope that the detailed understanding
of SDWs in HF with quantitative energy bounds will also
contribute to clarify the role of correlation on this phase.

The key point of a quantitative understanding of SDWs
in HF is to search for a solution in a nonperturbative way.
Indeed, small domains exist around the Fermi surface where
the one-body states differ radically from a single plane wave.
These states of wave vector k are coupled with the wave
vector k + Qk where Qk is constant over each domain. The
larger is this domain, the larger will be the energy gain of
the SDWs. One way to enlarge this domain is to cut the top
of the sphere as explained by Overhauser [2]. In the following
we show that adding a small cylinder on the top of the truncated
sphere as shown in Fig. 1 can increase the energy gain of

the SDW by orders of magnitude compared to Overhauser’s
ansatz. Furthermore, we provide an explicit estimate of the
energy gain of the SDW state. As we will see, the optimal
size of these domains dramatically shrinks with increasing
density, resulting in an extremely rapid decrease of the tiny
SDW energy gain and explaining the difficulties of observing
SDWs in the high-density region.

Our semianalytical results presented here are compared to
recent HF results [6] obtained with periodic models. Indeed,
Overhauser’s ansatz is in fact a periodic model (a crystal where
the one-body states are limited to the first mode) as soon as
the set vectors Qk belong to a discrete lattice. As the density
increases the number of vectors Qk (and of domains around the
Fermi sphere) may also increases [2] leading to a quasicrystal
which cannot be described by a periodic model.

Let us mention that in this paper we focus on the SDW
states. These states are easier to compute leading to simpler
formulas since the density of charge is constant. Equivalent
results may be obtained [2,3] for the charge-density waves
(CDWs).

In the following, we outline the main steps in the calculation
of the SDW energies. First we introduce the deformation of the
Fermi surface generalizing Overhauser’s model and describe
the SDW ansatz for the single-particle states. We then show
how the optimal solution can be found by calculating the
fixed point solution of a nonlinear functional equation. The
explicit results are then obtained by restricting ourselves to a
one-dimensional function and comparing to the outcome of
previous numerical simulations.

II. FERMI GAS ENERGY OF THE TRUNCATED SPHERE

Let us call EFG the HF energy of the Fermi gas where only
plane wave states of wave vectors k inside the Fermi sphere of
radius kF are occupied. Following Overhauser, in a first step
the Fermi sphere is deformed into a volume F as shown in
Fig. 1, and its energy increase is denoted �EF

FG = EF
FG − EFG.

Here, the subscript FG is used to point out that the many-body
state is a Slater determinant of plane wave states inside the
corresponding Fermi surface. Using kF as unit of wave vectors,
the sphere in Fig. 1 has unit radius, and the deformation is
characterized by a small parameter ε approaching zero as rs

decreases. In order to keep the electron density constant, the
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FIG. 1. Shape of occupied zones for spiral SDWs. F↑ (plain
line) and F↓ (dashed line) are built from truncated sphere plus a
small cylinder. A perturbed spin-up state is a superposition of a
spin-up plane wave eikr on a spin-down plane wave ei(k+Qk)r with
Q = ‖Qk‖ = 2(1 − ε + hε).

deformed surface in Fig. 1 must be scaled by R such that
R3

∫
F↑

dk = R3
∫
F↓

dk = 4π/3 (see Ref. [16]). The Fermi gas

energy per particle in Hartree units [Ha = �
2/(ma2

B)] is

EF
FG = aKR5

r2
s

KFG − aV R4

rs

VFG, (1)

KFG =
∫
F↑+F↓

dk k2, (2)

VFG =
∫
F↑×F↑+F↓×F↓

dk dk′ 1

|k − k′|2 , (3)

with aV = 3
32π3 ( 9π

4 )
1/3

, aK/aV = 2π2( 9π
4 )

1/3 ≈ 37.9.
The energy change, �EF

FG, can be computed by direct
integration (see Fig. 2) and gives at the leading order in ε

(see Ref. [17])

�EF
FG ≈ 2π2aV ε3

rs

[
α(γ − 1) − 1

9
+ h

]
(4)

with α = 2(h − 1
2 )2 + 1

6 and γ = ln 2
ε

+ aK

aV πrs
. For small rs ,

ε is small and thus γ is large. The minimum of �EF
FG with
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FIG. 2. (Color online) �EF
FG as a function of h for different

values of ε at rs = 4.

respect to h is for h = 1
2 − 1

4(γ−1) ≈ 1
2 , and, for small rs , �EF

FG

is four times smaller than in the Overhauser case (h = 0).

III. ENERGY OF THE SPIN-DENSITY WAVES

In a second step, the SDWs are obtained by replacing a plane
wave |k, ↑〉 by ak|k, ↑〉 + bk|k + Qk, ↓〉 (|ak|2 + |bk|2 = 1),
for k in F↑. Symmetrically, for k in F↓, a plane wave |k, ↓〉 is
replaced by the combination a′

k|k, ↓〉 + b′
k|k + Qk, ↑〉 with

a′
k = a−k and b′

k = b−k. We choose ak real and positive and
in the following we assume that bk’s are also positive and that
bk < ak [18].

As in Fig. 1, Qk is such that for k in F↑, k + Qk does not
belong to F↓, and for k in F↓, k + Qk does not belong to F↑.
The energy change is given by

�EF
SDW = 2aKR5

r2
s

KSDW − 2aV R4

rs

VSDW, (5)

KSDW =
∫
F↑

dk (‖k + Qk‖2 − k2)b2
k, (6)

VSDW = −
∫
F↑×F↑

dkdk′ (akbk′ − bkak′)2

‖k − k′‖2

+
∫
F↑×F↑

dkdk′ (akbk′ + bkak′ )2

‖̃k − k′‖2
, (7)

with k̃z = Q − kz (see Fig. 1). Using the linear symmetric
operators T ±:

(T ±f )(k) =
∫
F↑

dk′
(

1

‖k − k′‖2
± 1

‖̃k − k′‖2

)
f (k′), (8)

Eq. (5) can be rewritten

�EF
SDW = 4aV R4

rs

[2(κ,b2) + (T −a2,b2) − (T +ab,ab)], (9)

where (f,g) is the scalar product
∫
F↑

fg, and 2κ(k) =
aKR
2aV rs

Q(Q − 2kz) � 0. In Eq. (9) the difference between 1 and
R is negligible and in the following we set R = 1.

A. Optimal solution

From the variations of Eq. (9) with respect to bk, the optimal
function b satisfies

2bκ + bT −(a2 − b2) = a2 − b2

a
T +ab. (10)

Setting ξ = ab and using b2 � 1
2 , a2 − b2 =

√
1 − 4ξ 2,

Eq. (10) can be rewritten ξ = J (ξ ), where

J (ξ ) = 1

2

T +ξ√
(κ + T −√

1/4 − ξ 2)2 + (T +ξ )2
. (11)

Thus the point is now to find the fixed points of the operator
J . The Fermi gas (ξ = 0) is a trivial fixed point. By definition
0 � ξ � 1

2 , and from Eq. (11), we see that 0 � J (ξ ) � 1
2 .

We claim that starting with ξ = 1/2 and iterating the process
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ξ → J (ξ ) leads to a nontrivial fixed point satisfying

ξ (kz = Q/2) = 1
2 . (12)

Indeed, by Eq. (8) the kernels of T ± are positive, and thus
T ± are positivity-preserving linear operators: if ξ � ξ ′, then
T +ξ � T +ξ ′; similarly T −√

1/4 − ξ 2 < T −√
1/4 − ξ ′2, and

consequently,

ξ � ξ ′ ⇒ J (ξ ) � J (ξ ′). (13)

Thus starting with ξ0 = 1/2, we have J (ξ0) � ξ0 and setting
ξn = J (ξn−1), ξn is a decreasing sequence of positive functions
and thus converges to a fixed point ξ∞.

B. 1-D approximation

Now we impose that bk (thus ξk) is nonzero only in the
cylinder C corresponding to the gray region of Fig. 1 where it
depends only on kz: C = {k : k2

x + k2
y � r2 = 1 − (1 − ε)2 ≈

2ε,0 � kz � Q}. As we shall see below, bk differs from zero
only in the neighborhood of the top disk of F↑ (and its
symmetric for F↓). In any case, these restrictions always
provide an upper bound for the energy of the SDW.

First, for the second term of Eq. (9), we have

(a2,T −b2) = (b2,T −a2) = (b2,T −1) − (b2,T −b2). (14)

From Eq. (8), T −1 = vF (k) − vF (̃k), where vF is the potential
induced by the truncated sphere. In the spherical case, the
potential of the unit sphere is given by

v(k) = 2π + π
1 − k2

k
ln

1 + k

|1 − k| .

In this case, for k close to 1 (k and k̃ are close and near the unit
sphere and k̃z = 2 − kz), v(k) − v(̃k) ≈ −4π (1 − k) ln( 1−k

2 ).
This singular behavior is associated with the discontinuity of
the density (in k space). An analytic solution is provided for
the truncated sphere [17]. This solution has the same behavior
except that 1 − k has to be replaced by the distance of k to the
discontinuity of the density, i.e., the top disk of F↑:

(T −1)(k) ≈ −4π (Q/2 − kz) ln

( |Q/2 − kz|
2

)
, (15)

provided that |Q/2 − kz| � 1. For h > 0, Eq. (15) is still
valid [17] except in a small neighborhood of the edge of the top
disk. In the following we neglect this effect and apply Eq. (15)
also for h > 0.

Using the scaled distance x = (Q/2 − kz)/r ,

2κ + T −1 = 2πr[γ x − 2x ln(x)], (16)

and integrating over q = (kx,ky), Eq. (9) becomes

�EF
SDW = 4πaV r4

rs

δEF
SDW, (17)

δEF
SDW = 2π (γ x − 2x ln(x),b2) − (T −b2,b2) − (T +ξ,ξ ),

(18)
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FIG. 3. (Color online) Renormalized energy �Er2
s /ε

3 as a func-
tion of the density. The dashed-dotted line stands for the analytical
solution: �Er2

s /ε
3 = −0.115. The black circles stand for the SDW

simulations. Other symbols stand for HF energies (see Fig. 5 of
Ref. [6]).

where the scalar product is now (f,g) = ∫
x>0 dx f (x)g(x),

and T ± become in terms of x

(T ±f )(x) = π

∫ 1/r

0
dx ′[G(x − x ′) ± G(x + x ′)]f (x ′), (19)

G(x) = 1

π2r2

∫
q2,q ′2<r2

dq dq′ 1

r2x2 + (q − q′)2
(20)

= 2 ln

[
1 + 2

|x|u
]

− 4

u2
, u = |x| +

√
x2 + 4.

(21)

In fact, for small rs , the term (T −b2,b2) may be neglected
in Eq. (18) [17]. In any case, since T − is a positive operator,
we get an upper bound for the energy and the variation of the
resulting upper bound leads to ξ = Jξ , where J is now an
operator on the positive functions on R+:

J (ξ ) = 1

2

T +ξ√
π2[γ x − 2x ln(x)]2 + (T +ξ )2

. (22)

As above, the fixed point of Eq. (22) can be easily found by
iteration.

Thereafter, for fixed rs the total energy variation �E(ε,h) =
�EF

FG(ε,h) + �EF
SDW(ε) is computed and optimized with

respect to ε. For rs = 3 about 20 iterations of the opera-
tor J are required and about 100 iterations for rs = 0.01
(see black circles in Fig. 3).

In the next paragraph, we give a solution for ξ at small rs

and deduce the scaling of �E from it.

C. Analytic solution for small rs

For small rs , γ is large and Eq. (22) can be solved
approximately [17]:

ξ (x) ≈ 1

2
√

x2

x2
0

+ 1
cos

[√
2

γ ′ arcsinh

(
x

x0

)]
, (23)

x0 = 2 exp

(
− π

2
√

2

√
γ ′ − 1

2

)
, (24)
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for 2π
√

2(γ ′ − γ ) = √
γ (π2 + 4), leading to the asymptotic

behavior of �EF
SDW:

�EF
SDW(ε) � −C

2π2aV

rs

ε2γ exp

(
− π√

2

√
γ

)
, (25)

with C = 8e−3/2−π2/8.

IV. EVALUATION OF THE BEST TOTAL ENERGY

Now Eqs. (4) and (25) provide the behavior of �E(ε,h):

�E = �EF
SDW + �EF

FG

= 2π2aV γ ε2

rs

[
εα − C exp

(
− π√

2

√
γ

)]
. (26)

The minimum energy is at ε = ε0[1 + O(
√

rs)]:

�E ≈ −πaKα

r2
s

ε3, (27)

ε0 = 2C

3α
e−π2/4−π

√
γ0/2 ≈ 0.0294e−7.714/

√
rs

α
, (28)

where γ0 = aK/(aV πrs). Equation (27) shows that at small rs ,
�E r2

s /ε3 goes to a constant. Figure 3 shows the numerical
results for the scaled energy at h = 1/2 (black circles). This
scaled energy is of order −0.1 over a wide range of rs . On the
other hand, while ε0, Eq. (28), varies over decades when rs

decreases, Fig. 4 shows that the ratio ε/ε0 is a slowly varying
function. The analytical result is supposed to be relevant for
large γ , that is, for 3√

rs


 1. This can be verified in the figure:

the next corrections in Eqs. (27) and (28) behave as
√

rs .

A. Influence of h

The dependency in h is through the parameter α; see
Eq. (4). Figure 5 shows the effect of h on ε and �E obtained
numerically. For small rs , at h = 1/2 (thus α = 1/6), the
energy is actually 16 times larger than in the Overhauser model
(h = 0, α = 2/3). At larger rs , this ratio can be significantly
increased; e.g., it is about 200 for rs = 5. In this region we
expect the energy gain to deeply rely on the precise shape
of F .

0 1 2 3 4 5
1

2
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50

rs

/
0
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fcc
hexa
sc

FIG. 4. (Color online) Scaled parameter ε/ε0 as a function of the
density. ε0 is the value of Eq. (28) for h = 1/2. The black circles stand
for the present work, while other symbols stand for HF results [6].
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FIG. 5. (Color online) Influence of h on the energy gain versus
rs : the triangles represent the energy and the circles the ε ratios.

B. Comparison with HF simulations

In previous HF computations of the jellium [6,7] we have
considered a discretized Fermi sphere of 643, 963, and 1283

values of k. This corresponds to 32, 48, and 64 equally
distributed values of k in the interval (0,1). For rs < 5 evidence
of SDW ground states has been found [6]. In Figs. 3 and 4, we
show the corresponding energy gain per number of SDWs (2
for hexa up to 12 for bcc). The larger energy gain of the HF
simulations for rs � 3 can be mostly attributed to a smoother
and better optimized shape, compared to the simple cylinder
used in the analytical SDW; other assumptions such as the
1-dimensional approximation decrease the energy further by
a factor of 2–3. For rs < 3, the discretization of the Fermi
sphere becomes crucial, and even the simulations with 1283 k

points used in [6] are insufficient to resolve the expected SDW
amplitudes leading to the standard Fermi gas ground state
(ε = 0 and bk = 0). Direct numerical simulations of the SDW
in this high-density region will require a significant increase
of k points by several order of magnitude.

V. CONCLUSION

Considering the ground state of jellium in the Hartree-Fock
approximation, we quantified the energy of the SDW suggested
by Overhauser. Furthermore, we prove that a modification of
the truncated Fermi sphere leads to an energy gain 16 to 200
times larger than in the Overhauser model.

Our results readily extend to a polarized model: in Eq. (7)
we have to take into account the direct potential which
appears with a factor 1/Q2 and thus is negligible at small rs

(of order ε4).
In order to obtain the energy of jellium, the results of

Fig. 3 must be multiplied by the number of SDWs. For simple
periodic models considered in previous works, this factor
varies from 2 (hexa) up to 12 (bcc). At very small rs , the
perturbation of the SDW is localized in tiny regions which do
not interact; thus, one may suppose that we can have many
of them distributed around the Fermi sphere giving rise to a
quasiperiodic behavior of the spin density.

The role of electronic correlations on the stability of SDWs
beyond HF remains still open. Our calculations show that
the energy gain in the high-density region, rs � 1, where
SDWs were searched for, is unexpectedly small and becomes
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rapidly unobservable with increasing density. In addition,
direct observation of SDWs in HF requires an extremely fine
mesh of k points corresponding to very large systems. Typical

system sizes used in post-HF calculations [12–14] are likely
far too small to directly observe SDWs as, already in HF,
extremely large sizes are needed for their occurrence.
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