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The Hubbard and spinless fermion chains are paradigms of strongly correlated systems, very well understood
using the Bethe ansatz, density matrix renormalization group (DMRG), and field theory/renormalization group
(RG) methods. They have been applied to one-dimensional materials and have provided important insights
for understanding higher-dimensional cases. Recently, an interacting fermion model has been introduced, with
possible applications to topological materials. It has a single Majorana fermion operator on each lattice site
and interactions with the shortest possible range that involve four sites. We present a thorough analysis of the
phase diagram of this model in one dimension using field-theory/RG and DMRG methods. It includes a gapped
supersymmetric region and a gapless phase with coexisting Luttinger liquid and Ising degrees of freedom. In
addition to a first-order transition, three critical points occur: tricritical Ising, Lifshitz, and a generalization of the
commensurate-incommensurate transition. We also survey various gapped phases of the system that arise when
the translation symmetry is broken by dimerization and find both trivial and topological phases with 0, 1, and 2
Majorana zero modes bound to the edges of the chain with open boundary conditions.
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I. INTRODUCTION

Models of strongly correlated electrons have provided
outstanding challenges to condensed matter theory for many
decades. These models are expected to describe the physics
of important materials such as high-temperature supercon-
ductors, complex oxides, and quantum magnets. While exact
or controlled analytical and numerical solutions are rare for
the two- and three-dimensional cases, great understanding has
been achieved for the one-dimensional (1D) versions of these
models. This is true despite the fact that quantum fluctuations
are generally enhanced in 1D, leading to the breakdown of
Fermi liquid and mean-field theories. The remarkable progress
may be ascribed to a number of theoretical techniques: the
Bethe ansatz, numerical methods, notably the density matrix
renormalization group (DMRG) [1], and field-theory methods
based on bosonization and the renormalization group (RG).

The canonical example of correlated electrons, namely, the
Hubbard chain depicted in Fig. 1(a), has interactions between
electrons with opposite spin on the same site,

H = −t
∑
jσ

(c†j,σ cj+1,σ + H.c.) + U
∑

j

n̂j,↑n̂j,↓. (1.1)

It has been well studied by all these methods and its
phase diagram is understood in great detail for both signs
of the on-site interaction U and for general values of the
chemical potential μ (which couples to the total density as
−μ

∑
jσ n̂j,σ ). (For a review see Ref. [2].) In Eq. (1.1), cjσ

annihilates an electron on site j with spin σ = ↑,↓ and
n̂jσ = c

†
jσ cjσ . An even simpler version of the Hubbard chain

for spinless fermions, which we henceforth refer to as the Dirac
chain, is described by the Hamiltonian

H =
∑

j

[−t(c†j cj+1 + H.c.) + V (n̂j − 1/2)(n̂j+1 − 1/2)].

(1.2)

The model (1.2) is illustrated in Fig. 1(b). It has also been
very well studied by all the methods mentioned above [3,4]
for general chemical potentials. In both models, Coulomb
interactions are treated as being highly screened, with strictly
on-site interactions in the spinful Hubbard case and nearest-
neighbor interactions, the shortest range possible due to
the Pauli exclusion principle, for the spinless case (note
that n̂2

j = n̂j ). The spinless fermion model is equivalent to
the XXZ spin-1/2 chain, providing important experimental
realizations.

There is a third very natural 1D model which reduces the
number of degrees of freedom per site by another factor of
1/2 compared to the spinless fermion chain. The fermions
in Eq. (1.2) are complex (Dirac) fermions with cj �= c

†
j . The

analog of Eq. (1.2) for real (Majorana) fermion operators γj ,
obeying

γ
†
j = γj , {γj ,γi} = 2δj,i , (1.3)

can be written as

H =
∑

j

[itγjγj+1 + gγjγj+1γj+2γj+3]. (1.4)

The Hamiltonian again has nearest-neighbor hopping and
interactions of the shortest possible range: since γ 2

j = 1, the
shortest range nontrivial interaction spans four consecutive
sites as shown in Fig. 1(c). In this case, no chemical potential
term is possible so the model only has one dimension-
less parameter g/t . Surprisingly, this third canonical model
of interacting fermions has remained relatively unexplored
[5–7]. This is partly due to the fact that Majorana fermions
are yet to be observed as elementary particles of nature.
However, Majorana zero modes (a special type of Majorana
fermion occurring at exactly zero energy), are predicted to
occur as collective degrees of freedom in several condensed
matter systems [8–17], with remarkable experimental progress
reported in recent years [18–24].
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FIG. 1. (Color online) (a) The Hubbard chain with on-site in-
teractions. (b) The spinless Dirac chain with nearest-neighbor
interactions. (c) The most local Majorana chain with four-site
interactions. (d) The phase diagram of the Majorana chain with the
Hamiltonian (1.4) as a function of g/t . Setting t = 1, it consists
of four phases: a fourfold degenerate gapped phase separated by a
generalized commensurate-incommensurate (C-IC) transition at g ≈
−2.86 from a critical phase with central charge c = 3/2 comprised of
a critical Ising and a decoupled Luttinger liquid (LL). The Ising+LL
phase is, in turn, separated from a critical Ising phase by a Lifshitz
critical point with dynamical exponent z = 3 at g ≈ −0.28. For
positive g, we have another transition from the Ising phase to a
doubly degenerate supersymmetric gapped phase at g ≈ 250 with
the phase transition described by the tricritical Ising (TCI) conformal
field theory (CFT) with central charge c = 7/10.

The model defined by Eq. (1.4) above has been proposed to
describe the low-energy physics of a 1D vortex lattice formed
in a superconducting film on the surface of a strong topological
insulator (STI) [25–27]. A Majorana zero mode (MZM)
exists in the core of each vortex [12]. The tunneling term
in Eq. (1.4) makes these Majorana modes dispersive, moving
their energy away from zero (corresponding to an isolated
MZM). By tuning the chemical potential of the STI, it is
possible to tune the hopping parameter t to zero (due to a chiral
symmetry [25,28,29]), providing access to the strong-coupling
regime |g/t | � 1. It was shown that ordinary Coulomb
interactions in the STI lead to g < 0. However, the g > 0
case might also be relevant due to the effectively attractive
electron-electron interactions leading to superconductivity.

Unlike the Hubbard or spinless Dirac fermion chain, the
Majorana chain has no continuous symmetries and is not Bethe
ansatz integrable, as far as we know. Also unlike the Hubbard
and Dirac chains, the Majorana chain has a nontrivial ground
state in the strong-coupling limit, t = 0. To study the model
numerically, and understand its behavior in certain limits, it
is convenient to construct Dirac fermion operators from pairs
of neighboring MZMs. Combining, e.g., sites 2j with 2j + 1
into

cj ≡ (γ2j + iγ2j+1)/2, (1.5)

the Hamiltonian takes the form

H =
∑

j

{t[p̂j − (c†j − cj )(c†j+1 + cj+1)]

+ g[−p̂j p̂j+1 + (c†j − cj )p̂j+1(c†j+2 + cj+2)]}, (1.6)

where p̂j is shorthand for 2n̂j − 1. Note that the hopping
term turns into a combination of a chemical potential,
nearest-neighbor hopping, and nearest-neighbor pairing terms,
whereas the interaction term turns into a combination of
nearest-neighbor interactions and second-neighbor hopping
and pairing with amplitude depending on the filling at the
central site. As anticipated, negative g corresponds to a
repulsive interaction term. Similar to the model of Eq. (1.2),
the Majorana chain model can also be exactly mapped into a
spin Hamiltonian by a Jordan-Wigner transformation σ z

j = p̂j

and σ+
j = eiπ

∑
k<j n̂k c

†
j , which leads to

H = t
∑

j

σ z
j − t

∑
j

σ x
j σ x

j+1

− g
∑

j

σ z
j σ z

j+1 − g
∑

j

σ x
j σ x

j+2. (1.7)

Despite the complicated form of the Hamiltonian (1.6)
and the absence of particle number conservation, we have
solved this model for large system sizes using DMRG as
well as by a combination of field-theory/RG and mean-field
arguments. We have determined the complete phase diagram
for both signs of the interactions. Altogether, we find 4
different stable phases, sketched in Fig. 1(d). Without loss of
generality, we may assume t > 0. For −0.285 < g/t < 250,
we find a critical “Ising” phase with a single gapless relativistic
Majorana fermion excitation. For −2.86 < g/t < −0.285,
we find a phase consisting of decoupled gapless Majorana
and Luttinger liquid excitations, with central charge c =
3/2 and a continuously varying Luttinger parameter K < 1,
corresponding to repulsive interactions. The Luttinger-liquid
sector of this phase has a conserved charge, which is an
emergent symmetry, not present in the lattice model. At strong
coupling of either sign, gapped phases with spontaneously
broken symmetries and degenerate ground states occur. For
g/t < −2.86, the ground state is fourfold degenerate. The
symmetry of the Hamiltonian (1.4) under translation by one
Majorana site is spontaneously broken down to translation
by four Majorana sites in the ground-state wave functions,
giving rise to a unit cell of four sites. For g/t > 250, on
the other hand, the ground state is twofold degenerate with
a unit cell of two sites. (Translation symmetry is broken down
to translation by two Majorana sites.) Since two Majoranas
can be combined into one Dirac fermion as in Eq. (1.6), in
terms of Dirac fermions, translation invariance is not broken
in the gapped phase with positive g (g/t > 250). However,
the Hamiltonian (1.6) is symmetric under the particle-hole
transformation cj → c

†
j at t = 0. This additional particle-hole

symmetry, only present for t = 0, is spontaneously broken in
this limit. The models with g/t = ±∞ are equivalent and we
find that for large positive g/t there is a low lying doublet of
excited states, with energy per unit length ∝ |t |, which become
degenerate with the two ground states as g/t → ∞.
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There are three critical points in the phase diagram, as well
as the first-order transition at g/t = ∞. The transition from
the Ising phase to the gapped twofold degenerate phase at
g/t = 250 is in the tricritical Ising universality class, with c =
7/10. The corresponding CFT is supersymmetric. The relevant
operator that drives the transition at this critical point respects
the supersymmetry, which is therefore present in the gapped
phase for g/t slightly bigger than the critical value g/t = 250.
(The effective Hamiltonian is also supersymmetric at g/t

slightly smaller than this critical value but supersymmetry is
spontaneously broken in this Ising phase.) On the negative-g
side, the transition between Ising and Ising plus Luttinger
liquid (LL) phases at g/t = −0.285 is characterized by the
vanishing of the velocities, giving rise to a dynamical exponent
z = 3 at the critical point, and an effective Fermi wave
vector which is zero at the critical point and grows as we
move into the Ising+LL phase. This critical point describes
a Lifshitz transition as the number of low-energy Majorana
modes changes from one (in the Ising phase) to three (in the
Ising+LL phase), which is analogous to the change in the
topology of the Fermi surface.

The dynamically induced Fermi wave vector continuously
changes within the Ising+LL phase and reaches a commensu-
rate value of π/4 at the third critical point, g/t = −2.86, where
a transition occurs into a gapped fourfold degenerate state.
This is related to the commensurate-incommensurate (C-IC)
transition, which occurs in the spinless Dirac chain as the
chemical potential is varied for V > 2t [30,31]. It is, however,
a nontrivial generalization of the C-IC transition since the
interaction driving the transition couples LL and Ising sectors.
We therefore term this transition generalized C-IC.

Although the bulk of this paper deals with the translationally
invariant (translation by one Majorana site) system described
by the Hamiltonian (1.4), a more general one-dimensional
array of interacting Majoranas, in which we only have
invariance under translation by two Majorana sites, may be
relevant to experiments. This may occur, e.g., if the vortices are
arranged in a dimerized pattern. In general, the phase diagram
of the dimerized model will depend on three dimensionless
parameters t2/t1, g1/t1, and g2/t1 instead of just one parameter
g/t [see Eq. (2.5)]. While an in-depth analysis of the phase
diagram of the dimerized model is beyond the scope of this
paper, we present a topological classification of the gapped
phases of this model and identify them using self-consistent
mean-field calculation.

We argue that according to the results of Refs. [32,33]
the gapped phases of the dimerized model fall into eight
categories characterized by the difference between the number
of time-reversal even and odd Majorana bound states at the
endpoints of the chain with open boundary conditions. Within
the self-consistent mean-field scheme, we find that four of
these topological classes can (and do in parts of the phase
diagram) appear. The mean-field picture also provides a good
description of certain features of the phase diagram of the
nondimerized model. In particular, it accurately predicts the
Lifshitz transition.

The remainder of this paper is organized as follows. In
the next section we discuss the weak and strong coupling
limits (for both signs of the coupling constant, g). In Sec. III,
we analyze the model with g < 0 and in Sec. IV, g > 0.

In Sec. V, we employ mean-field theory to discuss a more
general dimerized model, where t and g alternate, and present
a topological classification of the gapped phases arising in
the system. Section VI elaborates on possible experimental
realizations of our model and various signatures of its phases
and phase transitions. Conclusions are given in Sec. VII and
further technical details appear in three appendices.

II. WEAK- AND STRONG-COUPLING LIMITS

A. Weak-coupling limit

Weak-coupling treatment of interacting Majoranas relies
on solving the noninteracting problem and treating the in-
teractions with RG (see Refs. [34–36] for a few examples).
We first discuss the noninteracting case, g = 0. As shown in
Appendix A, the low-energy Hamiltonian of the noninteracting
system is given by

H0 = iv

∫
dx[γL∂xγL − γR∂xγR], (v = 4t) (2.1)

{γR/L(x),γR/L(y)} = (1/2)δ(x − y), (2.2)

which describes free relativistic Majoranas. This is a CFT with
central charge c = 1/2, corresponding to the critical point of
the transverse-field Ising model [see Eq. (1.7) with g = 0].
Note that no mass term Hm ≡ im

∫
dxγRγL appears. This is a

consequence of the translational symmetry, γj → γj+1 which
maps

γR → γR, γL → −γL. (2.3)

Taking into account that γR/L(x) vary slowly on the lattice
scale, it is now straightforward to write the interaction term
projected onto the low-energy states as

Hint ≈ −256g

∫
dxγR∂xγRγL∂xγL. (2.4)

Note that 2 derivatives are necessary to get a nontrivial
interaction by Fermi statistics. This interaction has RG scaling
dimension 4, 1/2 for each Majorana field, and 1 for each
derivative, and so is highly irrelevant. [Dimension � > 2 is
irrelevant in relativistic (1+1) dimensional field theory.]

This implies the existence of an extended phase with a
massless Majorana in the vicinity of g = 0. Note that the
present scenario is quite different from what happens in
the 1D Hubbard and Dirac [see Eq. (1.2)] chains, where
nonderivative operators can occur. These lead to the Mott
transition at infinitesimal coupling in the Hubbard chain and
to the continuously varying Luttinger parameter in the gapless
phase of the spinless Dirac chain.

B. Strong-coupling limit

Unlike the spinless Dirac chain, the strong-coupling ground
states of the Majorana chain are nontrivial. However, insight
into the nature of these ground states can be obtained by consid-
ering a model with alternating hopping and interaction terms:

H =
∑

j

(it1γ2j γ2j+1 + it2γ2j+1γ2j+2

+ g1γ2j γ2j+1γ2j+2γ2j+3 + g2γ2j+1γ2j+2γ2j+3γ2j+4).

(2.5)
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FIG. 2. (Color online) Mean-field ground states for g > 0, corre-
sponding to ferromagnetic states in the spin representation. The small
blue and green circles represent the sites of the Majorana chain. Bold
links with large circles on them represent Dirac fermions formed by
combining two Majoranas (two types of combinations are considered:
blue-green and green-blue). A filled circle corresponds to the Dirac
level being filled and an empty circle to it being empty.

We will argue that the symmetry of translation by one site
is spontaneously broken at strong coupling and that the
ground states are thus qualitatively similar to the ones for the
Hamiltonian of Eq. (2.5).

In the strong-coupling limit ti = 0, the model is trivially
soluble if either g1 or g2 = 0. For instance, when g2 = 0 it
follows from Eq. (1.6) that

H → −g1

∑
j

p̂j p̂j+1. (2.6)

For g1 > 0, corresponding to attractive interactions, the two
ground states have all Dirac levels filled (pj = 1) or empty
(pj = −1). The case of g1 > 0 corresponds to a ferromagnetic
Ising interactions in the spin representation [see Eq. (1.7)]. For
g1 < 0, a charge density wave occurs, with every second Dirac
level filled or empty, pj = ±(−1)j (antiferromagnetic spin
chain). Similarly, if g1 = 0, we combine Majoranas to form
Dirac operators on sites (2j + 1,2j + 2) obtaining the same
Eq. (2.6) for a different set of Dirac fermions (shifted by one
Majorana site). These four different ground states are indicated
in Figs. 2 and 3 for the cases gi > 0 and gi < 0 respectively.
Clearly, there is a gap, 2|gi |, to the lowest energy excited states.
While we can only solve the model exactly at strong coupling
when the interactions vanish on half the quartets of Majoranas,
we will see that the four corresponding ground states, for either
sign of gi , are cartoon representations of the actual ground
states of the uniform chain in the strong-coupling limit. If
this is correct, there are two spontaneously broken discrete
symmetries. One of these is translation by 1 site: γj → γj+1.
In the special case t = 0, the model has particle hole symmetry,

FIG. 3. (Color online) Mean-field ground states for g < 0, cor-
responding to the antiferromagnetic states in the spin representation.

cj → c
†
j . For both definitions of Dirac modes this corresponds,

up to a phase, to

γj → (−1)j γj . (2.7)

Clearly this particle-hole symmetry is spontaneously broken
when t1 = t2 = 0 and either g1 or g2 = 0. The two ground
states in those cases are mapped into each other by a particle-
hole transformation. We expect that it is also spontaneously
broken when g1 = g2 and t1 = t2 = 0. The combination of
spontaneously broken translation symmetry and particle-hole
symmetry results in fourfold ground-state degeneracy.

It is also important to note that, for t = 0, the duality
transformation:

γj → −γj , (j = 4n)

→ γj , (otherwise) (2.8)

maps the Hamiltonian H → −H corresponding to g → −g.
This transformation interchanges the cartoon ground states of
Figs. 2 and 3. Thus if the spontaneously broken ground states
occur for one sign of g they must occur for the other.

We note that the Hamiltonian (2.5) can be exactly mapped
into a spin Hamiltonian by a Jordan-Wigner transformation,
giving

H = t1
∑

j

σ z
j − t2

∑
j

σ x
j σ x

j+1

− g1

∑
j

σ z
j σ z

j+1 − g2

∑
j

σ x
j σ x

j+2. (2.9)

The special case g1 = 0 corresponds to the anisotropic
next-nearest-neighbor Ising (ANNNI) model. (For a re-
view, see Ref. [37].) For t1 = t2 = 0, the Hamiltonian (2.9)
maps to a multispin Ising chain with H = −g1

∑
j τ z

j −
g2

∑
j τ x

j−1τ
x
j τ x

j+1τ
x
j+2 through a transformation τ z

j = σ z
j σ z

j+1.
This model has been studied in the literature [38–41] and
based on a connection with the eight-state Potts model as
well as some numerical evidence [40,41] is believed to have a
first-order transition at the self-dual point g1 = g2. Therefore
(i) the system is likely gapped for t1 = t2 = 0, g1 = g2 and (ii)
the ground states on two sides of the transition (respectively
dominated by g1 and g2 only) are present at the self-dual point.
In the proceeding sections, we provide numerical evidence for
this scenario.

Assuming these gapped broken symmetry ground states at
t = 0, let us now consider the likely effect of a small nonzero
t . It is again convenient to start with the case g2 = 0, g1 = g

and turn on only a small t1 in the dimerized Hamiltonian of
Eq. (2.5). Again, in Dirac notation, we have a special case of
Hamiltonian (1.6):

H =
∑

j

(t1p̂j − g1p̂j p̂j+1). (2.10)

We see that t breaks particle-hole symmetry, favoring empty
Dirac levels for t1 > 0 or filled for 1 < 0. Its effects are quite
different depending on the sign of g1. For g1 > 0, t1 splits the
degeneracy between the two ground states, favoring the state
with all Dirac levels empty or filled, depending on its sign.
This would correspond to a first-order phase transition with
a jump in 〈p̂j 〉 (and consequently a jump in the occupation
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number 〈n̂j 〉 as p̂j = 2n̂j − 1) at t1 = 0 (see Appendix C for
numerical evidence). On the other hand, for g1 < 0, turning
on a small t1 does not split the degeneracy of the two ground
states, which remain the exact ground states for |t1| < |g1|, at
which point a transition occurs (through a multicritical point1)
into one of the g1 > 0 ground states with all Dirac levels
empty or filled, depending on the sign of t1. The Ising spin-
chain representation p̂j = σ z

j is also illuminating: the term
proportional to t1 in Eq. (2.10) serves as a magnetic field
coupled to the magnetization, which splits (does not split)
the degeneracy of a ferromagnet (antiferromagnet) when it is
less than the exchange coupling. Note that, in this section,
we have explicitly broken the symmetry of translation by one
Majorana lattice site. Given this assumption, we have argued
that, for g < 0, but not g > 0, there is a further spontaneous
breaking of symmetry of translation by two Majorana sites.
We will argue that these results are qualitatively correct for the
translationally invariant Hamiltonian, with t1 = t2, g1 = g2,
In the strong-coupling regime, |g| � |t |, there is a twofold
degenerate ground state for large positive g and a fourfold
degenerate ground state for large negative g. However, we
shall see that the transition out of the strong-coupling phases
is continuous, for both signs of g.

III. REPULSIVE INTERACTIONS: g < 0

As discussed in Sec. II A, we expect the Ising phase to
persist up to a finite critical g/t of either sign. We have
confirmed this primarily by calculating several energy levels in
the finite-size spectrum, with antiperiodic boundary conditions
(APBC). We can classify all states by their fermion parity
which we formally define, for a chain with an even number of
Majorana sites L = 2	 numbered 0,1,2, . . . ,(L − 1), as

F =
	−1∏
j=0

(iγ2j γ2j+1). (3.1)

Note that, defining Dirac fermions by Eq. (1.5), this becomes
F = ∏	−1

i=0 p̂j = (−1)NF +	, where NF is the number of Dirac
fermions added to the vacuum state. [While NF is not
conserved, (−1)NF is in Hamiltonian (1.6).] In the Ising,
i.e., free Majorana, phase, the low-energy excitations with
APBC simply correspond to creating particles of energy Ev|k|,
with k = 2πv(n + 1/2)/L for integer n. Thus the lowest
energy excited state has opposite fermion parity to the ground
state, energy πv/L and is twofold degenerate. The lowest
excited state with the same fermion parity as the ground
state has two fermions added at k = π/L and k = π − π/L

with energy 2πv/L (k is restricted to the interval 0 � k < π .
See Appendix A.). This ratio of excitation energies, two,
remains essentially constant in our DMRG results over the
entire Ising phase while the velocity, v varies. We performed

1For ±t1 = g1 < 0, there is zero energy cost to add a soliton between
the two charge-density-wave states since an energy −|t1| is gained
by flipping the occupancy of a site and an energy |g1| is lost from
having two neighboring sites that have the same occupancy. Thus any
state with an arbitrary configuration of solitons and antisolitons has
the same energy.

3.5 3.6 3.7 3.8 3.9 4
0

0.5

1

FIG. 4. (Color online) Velocity in the Ising phase near the Lif-
shitz transition. As the transition is driven by a renormalization of
the dispersion relation, mean-field calculations are in approximate
agreement with DMRG.

the computations at g = 1 by varying t . As t/g → −3.512
(corresponding to g/t = −0.285), we find that the velocity
vanishes as shown in Fig. 4. As we decrease t , the behavior
of the finite-size spectrum changes (compared with the Ising
phase realized at larger t/g). As we see this is a Lifshitz
transition corresponding to a change in the topology of the
Fermi surface. The velocities were extracted from a linear fit
of the finite-size gaps computed with DMRG to 1/L for a range
of system sizes with L = 40, . . . ,200 Majoranas. We kept 500
states in the DMRG computations to achieve convergence in
the energy gaps.

Computing the central charge sheds light on the nature of
the phase for larger hopping t . In a critical phase described by
a (1 + 1)d CFT, the entanglement entropy S of a subsystem
of length y with the rest of the system is related to the central
charge c through

S = c

3
log

[
L

πa
sin

(πy

L

)]
+ const. (3.2)

for a system of length L with periodic boundary condi-
tions [42]. We numerically computed the entanglement entropy
with DMRG (keeping 300 states) and extracted the central
charge from the relationship above. As expected, the central
charge in the Ising phase is c = 1/2. However, as seen in
Fig. 5, it jumps to c = 3/2 at the same value of t , for which
the velocity goes to zero. This indicates that upon decreasing
the value of t beyond this transition point, three species
of low-energy Majoranas appear at this phase transition. In
fact, as discussed below, the same behavior can arise in a
noninteracting model with third-neighbor hopping. Therefore
we can understand this phase transition simply in terms of a
kinetic energy renormalized by interactions. Incidentally, as

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

FIG. 5. (Color online) The behavior of the central charge as a
function of t for g = −1.
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0

5
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0

5

FIG. 6. (Color online) Dispersion relation indicating a Lifshitz
transition. For |t ′| < t/3, the zeros of the dispersion relation are at k =
0 and k = π . At |t ′| = t/3, the velocities of both these low-energy
modes vanish and for |t ′| > t/3, new low-energy modes appear at
finite momenta k0 and π − k0, with k0 = 0 at the Lifshitz transition
|t ′| = t/3.

we will see in Sec. V, a mean-field calculation captures this
transition with good accuracy (see Fig. 4).

Third-neighbor hopping is indeed allowed by all sym-
metries. [Spatial parity symmetry γj → (−1)j γ−j forbids a
second neighbor hopping term. Notice that a naive parity
transformation γj → γ−j changes the sign of the nearest-
neighbor hopping term and the (−1)j term simply correct for
this.] Consider a quadratic Hamiltonian

H = i
∑

j

γj [tγj+1 + t ′γj+3] = 1

2

∑
k

Ekγ (−k)γ (k) (3.3)

with Ek = 4t sin k + 4t ′ sin(3k). As in Appendix A, it is
convenient to regard γ (k) as an annihilation operator for the
regions of k where Ek > 0 and write γ (k) as γ †(−k) for the
complementary regions. Consider the case t > 0, t ′ < 0. For
t ′ > −t/3, Ek vanishes at k = 0 and π only, with velocity
v = 4t + 12t ′. However, v → 0 at t ′ = −t/3. For t ′ < −t/3,
Ek vanishes at four other points, ±k0 and ±(π − k0) with
sin k0 = (1/2)

√
3 + t/t ′. Now there are three regions of k

where Ek > 0, shown by thick black lines in Fig. 6. The
velocity at k = 0 is v0 = 16 sin2 k0, while at k = k0,π − k0,
we have v = 2v0 cos k0. Note that v0 and v increase linearly
with −t ′ − t/3 while k0 increase more rapidly ∝ √−t ′ − t/3.
Here, k0 plays the role of a Fermi wave vector. We may again
introduce relativistic fermions to represent the low-energy
excitations as

γj ≈ 2γL(j ) + (−1)j 2γR(j )

+ [e−ik0jψR(j ) + ei(k0−π)jψL(j ) + H.c.]. (3.4)

Here, ψR/L are Dirac fermion operators, simply related to
the Fourier modes of the original Majoranas as

ψR(q) = γ (k0 + q), ψL(−q) = γ (π − k0 − q),

−� < q < �, (3.5)

where � � 1 is the momentum cut-off of the low-energy
sector. Note that the right/left movers occur at k points where
Ek has positive/negative slope. For k slightly larger than k0,
γ (k) is identified with a right-moving particle annihilation
operator whereas for k slightly less than k0 it is identified with
a right-moving antiparticle creation operator. The low-energy
Hamiltonian becomes

H0 = i

∫
dx[v0(γL∂xγL − γR∂xγR)

+ v(ψ†
L∂xψL − ψ

†
R∂xψR)]. (3.6)

We now consider the effect of the interactions. These
are most rigorously treated if we added a t ′ term to the
Hamiltonian by hand, and then turned on a small g. However,
we expect the universal properties of the resulting phase to also
describe the case at hand where t ′ is generated dynamically.
However, in this case, we are not in the weak-coupling regime
since |g| must be O(t) to drive the Lifshitz transition. Since
we have more fields in the low-energy field theory, it is
possible to have nonderivative interaction terms. Many of these
come with spatially oscillating factors, making them irrelevant
for general values of k0. However, there are two nonoscillatory
four-fermion interactions allowed by symmetry:

Hint ≈
∫

dx[g0 : ψ
†
LψLψ

†
RψR : +g′γRγL(ψLψR + ψ

†
Lψ

†
R)],

(3.7)

where g0 = −16g[cos k0 − cos(3k0)] for weak coupling and
“:” indicates normal ordering. Since we are considering g < 0,
we have g0 > 0 corresponding to repulsive interactions. The
effects of this term by itself are well-known and easily treated
using bosonization techniques, leading to a Luttinger liquid
(LL). This corresponds to a free massless relativistic boson
theory with the RG scaling dimensions varying continuously.
These scaling dimensions are controlled by a single dimen-
sionless parameter K known as the Luttinger parameter,
which takes the value K = 1 − g0

2πv
+ . . . for weak coupling.

Generally, we have K < 1 for repulsive interactions.
We now argue that the second term in Eq. (3.7) above is

irrelevant in the RG sense for K < 1. The scaling dimension of
ψLψR appearing in the g′ interaction is 1/K , which is larger
than one for repulsive interactions. The γRγL factor in this
term also contributes 1 to the scaling dimension which leads
to � = 1 + 1/K > 2, making it irrelevant. Therefore we find
that the Ising and LL sectors are decoupled in the low-energy
theory. This implies that a U(1) charge conservation symmetry
emerges in the LL sector of the Ising+LL phase, along with
an associated Fermi wave-vector k0. The charge is related to
the occupation of modes near momenta ±k0 and ±(π − k0) as

N̂ =
∑

−�<q<�

[γ †(k0 + q)γ (k0 + q)

+ γ †(π − k0 − q)γ (π − k0 − q) − 1]. (3.8)
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The constant −1 in the sum above is chosen such that there are
no fermions in the ground state. For example, instead of writing
the number of right movers as

∑
−�<q<� ψ

†
R(q)ψR(q), which

is nonzero in the ground state (with q < 0 modes occupied),
we write

N̂R =
∑

0<q<�

ψ
†
R(q)ψR(q) −

∑
−�<q<0

ψR(q)ψ†
R(q), (3.9)

which measures the charge of the right-movers with respect
to the Fermi level. The above expression and its analog for
the left-movers leads to Eq. (3.8) through N̂ = N̂R + N̂L [see
Eq. (3.5)].

All of this is in good agreement with our DMRG results.
Again, the finite-size spectrum provides a powerful technique
for confirming the phase diagram and extracting the universal
parameters, which govern it. As shown in Appendix B, the
excitation spectrum of the system for a noninteracting LL
(K = 1) can be computed using elementary methods and is
given by

�E = 2π

L

[v

4
(N − k0L/π )2 + v

4
M2 + v0

4
N2

I + v0

4
M2

I

]
,

(3.10)

where N and M (NI and MI ) are integers of the same parity,
labeling excitations in the LL (Ising) sector. Physically, N

is the total number of particles (both right and left movers),
while M is the difference between the number of right and left
movers, characterizing the charge current (this also implies
that N and M have the same parity). In the ground state, we
either have M = 0 and N is the closest even integer to k0L/π

or M = ±1 with N is the closest odd integer. The value of N

in the ground state determines how much it is shifted from the
eigenvalues of the operator N̂ in Eq. (3.8). We have neglected
the particle-hole excitations, which do not contribute to the
low-energy excited states we study in this paper.

The effect of the marginal coupling constant g0 in Eq. (3.7)
on the finite-size spectrum can be accounted for as follows.
After bosonizing, the charge density becomes proportional to
the spatial derivative of a massless boson field, ∂xφ. Similarly,
the current density becomes proportional to the derivative of its
dual boson, ∂xθ . The Luttinger parameter scales φ by 1/

√
K

and θ by
√

K . It then follows that Eq. (3.10) becomes

�E = 2π

L

[
v

4K
(N − k0L/π )2 + vK

4
M2 + v0

4
N2

I + v0

4
M2

I

]
.

(3.11)

There is no change in the energy of Ising excitations due to the
interactions, since they only act in the LL sector.

The finite-size spectrum now exhibits great complexity as
k0L/π is varied, either by varying L or k0 via the hopping
parameter t (with g held fixed at g = −1). We are interested
in the ground state and the first excited state in the two sectors
corresponding to the total fermion parity. While the absolute
ground state must have NI = MI = 0, we may have Ising
excitations in the ground state in a given parity sector. To
proceed, we first define feven/odd(x) as the closest even/odd
integer to a real number x. It is easy to show that these functions

are given by

feven(x) = 1
2 (2�x� + 1 − (−1)�x�), (3.12)

fodd(x) = 1
2 (2�x� + 1 + (−1)�x�), (3.13)

where �x� is the floor function of x.
Now, fixing the fermion parity, we can write the candidates

for the ground-state energy in each sector as

Eeven
0,Dirac = 2π

KL

[
feven

(
k0

π
L

)
− k0

π
L

]2

, (3.14)

Eeven
0,Ising = 2π

KL

[
fodd

(
k0

π
L

)
− k0

π
L

]2

+ πKv

2L
+ πv0

L
,

(3.15)

Eodd
0,Dirac = 2π

KL

[
fodd

(
k0

π
L

)
− k0

π
L

]2

+ πKv

2L
, (3.16)

Eodd
0,Ising = 2π

KL

[
feven

(
k0

π
L

)
− k0

π
L

]2

+ πv0

L
, (3.17)

where the superscripts indicate the total fermion parity and the
subscript Dirac (Ising) denoted the absence (presence) of an
Ising excitation in the ground state of the given sector. We then
have

Eeven
0 = min

(
Eeven

0,Dirac,E
even
0,Ising

)
, (3.18)

Eodd
0 = min

(
Eodd

0,Dirac,E
odd
0,Ising

)
. (3.19)

The absolute ground-state energy is given by
min(Eeven

0 ,Eodd
0 ) = min(Eeven

0,Dirac,E
odd
0,Dirac). When k0L/π

is close to an even integer, the ground state has even fermion
parity with N even and M = 0. However, if k0L/π is close
to an odd integer, the twofold degenerate ground states have
odd fermion parity with N an odd integer and M = ±1. As
K gets smaller, the latter scenario occurs for a larger range of
k0L/π determined from the condition

K2 <
8

v
(−1)�k0L/π�(k0L/π − �k0L/π� − 1/2). (3.20)

The lowest excited state in the odd sector exhibits even
greater complexity. For some ranges of parameters it can be in
the Ising sector, with NI = MI = 1 and for other ranges in the
LL sector. This can be determined by comparing the energies
of several candidates as in the ground-state case. A sample of
such data, for t = 2.25 is shown in Fig. 7. We can fit the data
using the four parameters v0, v, k0, and K . As expected, the fit
gets better as L increases.

We also verified that the fermionic correlation functions are
in agreement with the spectrum. We expect from Eq. (3.4) that

i〈γ0γx+1〉 ∼ a/x + b sin (k0x + φ)/x(K+1/K)/2 (3.21)

for even x, nonuniversal coefficients a and b, and phase
shift φ. Using even x simplifies the fit as further oscilla-
tions with wave vector π and π − k0, i.e., (−1)x/x and
(−1)x sin (k0x + φ′)/x(K+1/K)/2 [see Eq. (3.4)], do not appear
for even x. The values of K and k0 extracted from this are in
agreement with those obtained from the finite-size spectrum.
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FIG. 7. (Color online) (a) Odd-even and even-even gap, scaled
by L for g = −1 and t = 2.25. The stars are DMRG data and the
other symbols are the best fit to the LL+Ising spectrum. The blue
symbols correspond to excitations in the LL sector whereas the
red ones correspond to excitations in the Ising sector. The black
circle corresponds to an excited state of even parity containing
simultaneous Ising and LL excitations. (b) The Majorana correlation
function. The fit to spectrum gives K = 0.4517 and k0 = 0.5444,
while fitting the correlation function (for even x so that there are
no (−1)x oscillations) gives K = 0.4611 and k0 = 0.5375, in very
good agreement. The DMRG results were checked for convergence
(with negligible truncation error) for each system size. The maximum
number of states kept in the computations was 700.

We extracted the 4 fitting parameters from the finite-size
spectrum and the results are plotted versus t in Fig. 8. Note
that both v and v0 appear to increase linearly with tL − t while
k0 increases as

√
tL − t as expected from the noninteracting

model. tL is the value of t at the Lifshitz transition for g =
−1. Also K decreases with increasing |g|/t as expected for
increasing repulsive interaction strength.

As we decrease t to around 0.5, the quality of fits decreases.
We expect a phase transition to a gapped phase for some tC <

0.5. Importantly, it appears that k0 → π/4 and K → 1/4 as
we approach the phase transition and fitting to the Ising+LL
begins to fail. This transition can be understood by observing
that a possible interaction term, which was not included in
Eq. (3.7) due to its fast oscillations at generic k0, namely,

H ′ ∝
∫

dxγRγL[ei(4k0−π)xψ
†
R∂xψ

†
RψL∂xψL − H.c.], (3.22)

becomes nonoscillatory at k0 = π/4. The scaling dimension
of H ′ is 1 + 4K . Our DMRG data in Fig. 8 indicates that
K → 1/4 at the transition point so this interaction becomes
relevant. Since H ′ couples together LL+Ising fermions, we
expect to gap out both sectors. The fact that its dimen-
sion goes to two at precisely the point where it becomes
commensurate appears to be a novel generalization of the

0.2
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0.6

0.8

0.5 1 1.5 2 2.5 3 3.5
0
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6

FIG. 8. (Color online) Parameters of LL+Ising phase deter-
mined from fitting the even-even and even-odd gaps, for a range
of t , with g = −1.

commensurate-incommensurate transition, which occurs in
the spinless Dirac chain [30,31].

To determine the critical value of tC for the C-IC transition,
we utilize an exact degeneracy of the gapped phase with
periodic boundary conditions (PBC) as discussed below. For
smaller t , we expect that the qualitative description in Sec. II B
applies, with a fourfold degenerate gapped ground state. The
gap appears to remain very small all the way to t = 0 making
this phase challenging to study with DMRG. However, we
found that the fourfold ground-state degeneracy provides a
convenient way of determining tC accurately. This degeneracy
turns out to be exact for L = 8N sites with PBC, where all
states come in degenerate pairs of opposite fermion parity.
This follows, for periodic boundary conditions (PBC), since
translation by one site, T , maps F into −F :

F = γ0γ1 . . . γ2L−1 → γ1γ2 . . . γ2L−1γ0 = −F. (3.23)

It then follows that for any energy eigenstate |ψ〉, T |ψ〉 is
also an eigenstate of the same energy and opposite fermion
parity. The full fourfold degeneracy of the ground state is less
generic and signals the broken symmetry phase. It corresponds
to twofold degeneracy of the ground states in both even and
odd fermion parity sectors. Let us focus, for example, on the
even fermion parity sector. It is then convenient to start with
the case g2 = t = 0, so that the Hamiltonian only contains the
g1 term. Then the two ground states are known exactly:

|ψ1〉 = c
†
1c

†
3 . . . c

†
4N−1|0〉

|ψ2〉 = c
†
2c

†
4 . . . c

†
4N |0〉. (3.24)

Now consider translation by two sites (in the Majorana chain),
a symmetry even when only g1 �= 0:

T 2|ψ1〉 = |ψ2〉,
T 2|ψ2〉 = c

†
3c

†
5 . . . c

†
4N−1c

†
1|0〉 = −|ψ1〉. (3.25)

Thus we can construct linear combinations of these degenerate
ground states:

|ψ±〉 ≡ (|ψ1〉 ∓ i|ψ2〉)/
√

2, (3.26)
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FIG. 9. (Color online) (a) The gap from the ground state to the
first excited state as a function of the hopping amplitude t for a
fixed system size and fermion parity. To distinguish exact degeneracy
(in the gapped phase) from a small gap (in the critical phase in the
vicinity of tc), highly accurate DMRG computations were performed
by retaining up to 1000 states. (b) The extrapolation of tc for the C-IC
transition gives tc ≈ 0.35, setting g = −1.

which are eigenstates of T 2 with eigenvalues ±i. This
corresponds to momentum ±π/2 with respect to translation
by two Majorana sites, corresponding to 1 Dirac site, that
is, we define momentum P ′ in this case by T 2 ≡ eiP ′

. Now
consider gradually increasing g2 to g1. Although the two
ground states become more complicated, they must remain
degenerate since they have equal and opposite momentum, by
spatial parity symmetry. At g2 = g1, the degeneracy becomes
fourfold due to the additional symmetry of translation by
one site. Now defining momentum by T = eiP , we can form
linear superpositions of even and odd fermion parity ground
states with momentum ±π/4, ±3π/4. Turning on a small
t , the ground-state degeneracy must survive up to the phase
transition at tC by the same argument. On the other hand, if the
number of Majorana sites is L = 8N + 4 this argument fails,
and mixing and splitting of the two low-lying states in each
fermion parity sector occurs for finite system size.

We then determine tC (for g = −1) from our DMRG data by
finding the largest value of t at which there is an exact fourfold
ground-state degeneracy (exact twofold degeneracy with, say,
even fermion parity) for L = 8N and extrapolating this value
of t to large 	 = L/2. The results are shown in Fig. 9. We plot
the value of tC , where this exact degeneracy splits as a function
of 1/	. Linear (a/	 + tC) and quadratic (a/	 + b/	2 + tC) fits
to 1/	 give the same result for the extrapolation within the
error bar of 0.025 and we thus find tC/g = −0.35 ± 0.025
(g/tC = −2.86).

IV. ATTRACTIVE INTERACTIONS AND THE
TRICRITICAL ISING POINT: g > 0

The system for g > 0 was studied in Ref. [43], where it was
shown to realize the tricritical Ising model, a supersymmetric
CFT with central charge c = 7/10, at a critical value of
g/t , which separates the c = 1/2 Ising phase (at weak

coupling) from a doubly-degenerate gapped phase (at strong
coupling). While the primary focus of this paper is on repulsive
interactions, in this section, we review some of the salient
results of Ref. [43] for completeness. We also analyze a
first-order phase transition that occurs between the symmetry
broken phases at g/t = ∞ (fixed g > 0 and t = 0), which has
not been discussed elsewhere.

The arguments of Sec. II A, supporting a critical Ising phase
around g = 0, were independent of the sign of g. Therefore
the c = 1/2 Ising phase is expected to extend to a finite value
of interaction strength g also for attractive interactions. As
we argued in Sec. II B, unlike the fourfold degeneracy of the
strong-coupling limit gapped phase for g < 0, the gapped
phase at strong coupling is doubly degenerate in the case
of g > 0. A priori, it is not obvious that there is only one
phase transition between these two strong- and weak-coupling
phases. If this is the case, however, it is well known from the
theory of an Ising model with vacancies [44], that the most
natural phase transition between the critical Ising phase and
a doubly degenerate gapped phase is the TCI CFT. This CFT
is of great interest as it provides a rare example of emergent
supersymmetry in condensed matter physics.

It turns out that the doubly degenerate gapped phase has a
very large correlation length. Therefore, numerical verification
of the above-mentioned scenario is exceedingly difficult. As
showed in Ref. [43], however, universal ratios in energy gaps
provide a powerful method of verifying the scenario and
identifying the transition point corresponding to the TCI CFT.
Our primary diagnostic is the ratio

R = Eodd
0 − Eeven

0

Eeven
1 − Eeven

0

, (4.1)

where the superscripts even and odd indicate the fermion
parity, E0 (E1) is the ground (first excited) state energy in the
parity sector, and all energies are computed with antiperiodic
boundary conditions. The finite-size spectra of CFTs can be
derived from the scaling dimensions of their primary operators.
In particular, for the TCI CFT we have

RTCI = 7/2. (4.2)

As shown in Fig. 10, the numerically computed value of R

plateaus at t/g = 0.004 as a function of system size precisely
at R = 7/2 predicted for the TCI CFT.

20 30 40 50 60 70 80 90 100
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FIG. 10. (Color online) The gap ratio R as a function of system
size computed with DMRG (keeping 600 states). A plateau emerges
at t/g ≈ 0.004 at the expected value of 7/2 for the TCI CFT.
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Several other universal ratios support the presence of a
transition between the Ising phase and the gapped phase
through the TCI CFT. Unlike the c = 1/2 Ising model, the low-
energy fermionic excitations of the TCI CFT are not regular
free Majorana fermions. This indicates nontrivial exponents
for the Green’s function 〈γ (x,t)γ (0,0)〉. In particular, the
equal-time Green’s function decays as 1

x7/5 for the TCI CFT as
opposed to 1

x
for the Ising case, as was verified in Ref. [43].

V. SELF-CONSISTENT MEAN-FIELD THEORY AND
TOPOLOGICAL CLASSIFICATION OF THE GAPPED

PHASES

In this section, we extend the mean-field-like picture of
Sec. II B, which provided a qualitative description of the
strong-coupling limit, to a more systematic self-consistent
mean-filed treatment. As argued in Sec. III, the Lifshitz
transition can be understood in terms of the generation of an
effective third-neighbor hopping in the renormalization group,
which can renormalize the dispersion relation. Such terms are
also naturally generated in the mean-filed decomposition, and
as we show, the self-consistent mean-field theory can provide
an accurate description of this transition. We also provide a
topological classification of the more general dimerized model
defined in Eq. (2.5).

Many 1D systems, such as polyacetylene, are known to
spontaneously dimerize. In our present model, as realized by
the 1D chain of vortices, dimerization may also occur, leading
to a model with explicitly broken translational symmetry.
Whether or not such a dimerization occurs and its amplitude
will depend on the details of the vortex lattice physics,
specifically the intervortex interactions and vortex pinning.
We do not attempt to specify the conditions under which
dimerization may take place or calculate its strength. Rather,
we explore in this section the phases of the dimerized model
and discuss their topological properties.

The relevant Hamiltonian (2.5) can be conveniently rewrit-
ten in terms of new Majorana operators αj = γ2j and βj =
γ2j+1 as H = H0 + H ′ with

H0 = i
∑

j

(t1αjβj + t2βjαj+1), (5.1)

H ′ =
∑

j

(g1αjβjαj+1βj+1 + g2βjαj+1βj+1αj+2). (5.2)

We continue assuming that t1 and t2 are positive but consider
either sign of g1 and g2. Although the original transla-
tion symmetry by one Majorana site is broken the model
obeys the antiunitary time-reversal symmetry T generated
by (αj ,βj ) → (αj , − βj ) and i → −i. We note that in the
language of previous sections this corresponds to γR ↔ γL

and i → −i, which is the proper form of time-reversal in
the relativistic field theory. In the absence of interactions it
also obeys the antiunitary particle-hole duality C generated
by (αj ,βj ) → (αj ,βj ) and i → −i which maps H0 → −H0.
This puts the noninteracting Hamiltonian H0 into the BDI
class under the Altland-Zirnbauer classification [45]. In 1D,
its gapped topological phases are therefore classified by an
integer invariant ν [46]. If we define να/β as the number of
unpaired MZMs of type α/β bound to the left end of the chain

with open boundary conditions then the invariant ν coincides
with να − νβ . Note that the two types of Majorana modes
are distinguishable because they transform as even and odd,
respectively, under T . Also, because there is the same number
of α’s and β’s in the system for each α bound to the left edge
there must be one β bound to the right edge and vice versa.

In their seminal work Fidkowski and Kitaev [32,33] showed
that when interactions preserving T are added to such a
Hamiltonian, which is the case here, its integer classification
is changed to the Z8 classification: phases characterized by
invariants ν and ν + 8 become indistinguishable.

It is important to note that symmetry T of H0 hinges on
the absence of the second neighbor tunneling because terms
such as iαjαj+1 would clearly break T . In a physical system,
this may be realized to a good approximation due to the
exponential decay of the MZM wave functions. Alternately,
as demonstrated in Refs. [26,27], the T symmetry can be
implemented exactly when the chain is realized in a system of
alternating vortices and antivortices in the surface of an STI
with the chemical potential tuned to the neutrality point. When
T is broken the noninteracting system is in symmetry class D
and its classification in 1D is Z2, with or without interactions.
Physically, then, only phases with even and odd index ν are
distinct.

The Hamiltonian H contains three dimensionless parame-
ters. A detailed analysis of this three-dimensional parameter
space using DMRG and exact diagonalization would require
a lot of computer time and we leave it to future studies. Here,
we perform a survey of its gapped phases using the mean-field
theory. Although such MF theories often fail to accurately
capture the physics of systems in low dimensions we expect
the description of gapped phases to be qualitatively correct
over part of the phase diagram (although not the nature of the
critical points). In some parameter ranges, we find a good
agreement between the MF results and the more accurate
DMRG calculations.

To proceed we perform a MF decoupling of the interaction
term H ′ in all channels respecting the symmetries of H . This
leads to the MF Hamiltonian of the form

HMF = i
∑

j

(τ1αjβj + τ2βjαj+1 + τ ′
1αjβj+1 + τ ′

2βjαj+2),

(5.3)

where τ ’s are the MF parameters. Note that, in the transla-
tionally invariant case, τ ′

i corresponds to the third neighbor
hopping t ′ introduced in Eq. (3.3). These are determined
based on the requirement that the ground state |�MF〉 of HMF

minimizes the expectation value 〈H 〉MF = 〈�MF|H |�MF〉.
This leads to a system of self-consistent MF equations for
parameters τ that read

τ1 = t1 + 1

N

∑
k>0

(
2g1

∂Ek

∂τ2
+ g2

∂Ek

∂τ ′
1

)
, (5.4)

τ ′
1 = 1

N

∑
k>0

g1
∂Ek

∂τ1
, (5.5)

and similar equations for τ2 and τ ′
2 obtained by interchanging

all indices 1 ↔ 2. Here, N denotes the number of unit cells
in the system, k extends over one half of the Brillouin zone
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(−π,π ), which is now half the size of the BZ used in Sec. III
because the unit cell has been doubled due to dimerization.

Ek = 4

√(
τ+ sin

k

2
+ τ ′+ sin

3k

2

)2

+
(
τ− cos

k

2
+ τ ′− cos

3k

2

)2

,

(5.6)

is the spectrum of excitations of HMF and τ± = (τ1 ± τ2)/2.
The physics of the MF approximation has a simple intuitive

interpretation. In the noninteracting limit HMF coincides with
H0. The interaction terms present in H ′ are seen to renormalize
the nearest neighbor hopping terms t1 and t2 via Eq. (5.4) and
generate third-neighbor hoppings through Eq. (5.5). Second-
neighbor hoppings would violate T and are therefore not
generated. For weak interactions, it is easy to see that the MF
equations imply an increase in hoppings with increasing |g| for
g positive but decrease when g is negative. This observation
provides an intuitive explanation for the qualitatively different
behavior of the model depending on the sign of g found
in the previous sections. We also note that the MF theory
becomes exact in the strong-coupling limit when, say g2 =
t2 = 0 and for positive g1. [Notice that when g2 = t2 = 0, the
Hamiltonian reduces to Eq. (2.10), in which the operator n̂j =
(p̂j + 1)/2 is conserved. The MF approximation linearizes
the fluctuations of n̂j and is exact if no such fluctuations
are present.] In this limit, Eqs. (5.4) and (5.5) reproduce
the “ferromagnetic” ground state discussed in Sec. II B. For
negative g1, the expected “antiferromagnetic” ground state
breaks the symmetry under translation by two Majorana sites
built into HMF and is therefore not captured by this MF theory,
although a more general MF theory could be constructed to
describe this state.

The MF analysis proceeds in two steps. First, for given
parameters (t1,t2,g1,g2) we find the MF Hamiltonian HMF that
best approximates H by solving Eqs. (5.4) and (5.5) to find
MF parameters (τ1,τ2,τ

′
1,τ

′
2). This step must be performed

numerically. Second, we determine the topological phase
characterizing the ground state of HMF with these parameters.

Because of the large parameter space involved in the
analysis it is instructive to start with the second step and
enumerate the possible topological phases of the nonin-
teracting MF Hamiltonian (5.3). This is most easily done
by studying its spectrum of excitations (5.6). We adopt
a reasonable assumption that the gapped regions represent
distinct topological phases with phase transitions marked by
gap closings. We furthermore adopt τ+ as our unit of energy
and work with three dimensionless coupling parameters

r = τ ′
+

τ+
, s = τ−

τ+
, s ′ = τ ′

−
τ+

. (5.7)

For Ek to be gapless both brackets under the square root in
Eq. (5.6) must separately vanish for the same momentum
k. This imposes two conditions on three parameters (r,s,s ′)
and momentum k, leading to the conclusion that phase
transitions occur at a set of two-dimensional surfaces in
the three-parameter space of HMF. We expect this result to
remain valid beyond the MF theory. When the translation
symmetry is broken, a mass term becomes allowed in the
low-energy effective Hamiltonian (2.1). The mass m, then,
is a function of three dimensionless parameters that can be

FIG. 11. (Color online) Phase diagram of the mean-field Hamil-
tonian HMF. Topological phases for (a) r ∈ (− 1

3 ,1) and (b) r < − 1
3 .

The dashed phase boundary coincides with the solid line for r = − 1
3 ,

then rotates clockwise with increasing |r|, eventually reaching slope
+ 1

2 as r → −∞. (c) A chain with only third nearest-neighbor (nn)
hoppings is equivalent to three decoupled Kitaev chains. When
τ ′

1 < τ ′
2, the top and the bottom Kitaev chains will be in the topological

phase while the middle chain will be trivial, leading to the invariant
ν = 2. In the opposite case, the roles switch and we obtain ν = −1.

constructed from couplings (t1,t2,g1,g2). Phase transitions
between massive phases correspond to m = 0, which imposes
a single condition on three dimensionless parameters, leading
to the same conclusion as above. In the Luttinger Liquid +
Ising phase a mass term, imγRγL in the Ising sector and a
pairing term �(ψRψL + H.c.) are allowed by symmetry in the
dimerized model. A single condition is enough to make either
m or � vanish corresponding to either a massless Ising model
or a massless Luttinger Liquid.

The first bracket in the spectrum in Eq. (5.6) vanishes
(i) for k = 0 and all values of r or, (ii) for k = k0 with r

given by

r = 1

4 sin2 (k0/2) − 3
. (5.8)

This solution exists only when r � − 1
3 or r � 1. Now we must

find for which values of s and s ′ the second bracket vanishes
at these values of k.

Consider first r ∈ (− 1
3 ,1). The second bracket vanishes for

k = 0 when s ′ = −s. There is, therefore, a single phase tran-
sition in the s-s ′ plane indicated in Fig. 11(a). The transition
takes place between a topological phase with ν = 1 and a
trivial ν = 0 phase. This can be deduced by considering the
limit r = s ′ = 0 in which HMF coincides with the Hamiltonian
of the Kitaev chain with nearest-neighbor (nn) hopping whose
classification is well known. Adiabatic continuity then insures
that the invariant ν remains unchanged unless we cross a phase
boundary, hence the identification of phases in Fig. 11(a).
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Now consider r � − 1
3 . In addition to the k = 0 solution, we

now have a solution at k = k0 with k0 given by Eq. (5.8). The
first solution implies a phase transition at s ′ = −s as before,
while the second implies another phase transition line given by

s ′ =
(

r

2r + 1

)
s. (5.9)

The phase diagram is shown in Fig. 11(b). In addition to the
ν = 0,1 phases present before, two new topological phases
with ν = −1,2 appear. The identification of these phases fol-
lows from observing that the gap closing described by Eq. (5.9)
[dashed line in Fig. 11(b)] involves two Majorana modes and
one thus expects ν to change by ±2 across this line. Alternately,
one can consider the limit τ± → 0 (corresponding |r|,|s ′| �
|s|) in which the third nn hoppings dominate. In this limit, the
system breaks up into three weakly coupled Kitaev chains as
illustrated in Fig. 11(c). Two of these chains have an α operator
on their left edge and one has a β operator there. The two possi-
ble phases in this limit are thus characterized by ν = 2, − 1. To
verify this phase assignment, we have also explicitly computed
the index ν in a system with periodic boundary conditions and
found agreement with Figs. 11(a) and 11(b). Similar analysis
applies to the parameter region r > 1 with the same four
distinct phases possible but we find that this regime is never
reached in the solution of MF equations (5.4) and (5.5) and is
therefore not relevant to our original interacting problem.

We now proceed to analyze the MF equations (5.4)
and (5.5). For concreteness and simplicity, we set g1 = g2 = g,
although it is no more difficult to analyze the general case. For
g > 0, we find that only two phases indicated in Fig. 11(a)
appear in the MF theory and the transition occurs at t1 = t2,
as could be expected on the basis of symmetry when g1 = g2.
The transition is second order when g = 0 but becomes weakly
first order for any g �= 0. We have seen in Sec. II that the actual
transition in the interacting problem remains second order up to
large values of g so this is an artifact of the MF approximation.
We note, however, that for weak coupling the excitation
gap at the transition point is exponentially small (∼ e−t/g)
so the MF theory provides at least a qualitatively correct
description of the transition at weak coupling (a spectrum with
an exponentially small gap will be, for practical purposes,
indistinguishable from a truly gapless spectrum). Figure 12
shows the discontinuity in the MF solution for τ1 and τ2 for
an intermediate coupling strength g = 1, clearly indicating the

0 0.5 1 1.5 2
0

1

2

3

4

FIG. 12. (Color online) Mean-field parameters as a function of t2
for fixed t1 = g1 = g2 = 1. A jump at t2 = 1 indicates the first-order
transition between topological phases with ν = 0 and 1.

first order transition. For larger g, the discontinuity becomes
more prominent but no new phases appear.

For repulsive interactions g < 0, the behavior is qualita-
tively different. Consider first the high-symmetry situation
t1 = t2 = t . The numerical solution of the MF equations (5.4)
and (5.5) indicates that for g < 0 the effective nn hopping
τ decreases with increasing |g| from its initial value τ = t

at g = 0. At the same time, τ ′ also decreases, starting from
zero and moving towards the negative values. When the
velocity v = 2(τ + 3τ ′) vanishes, a Lifshitz transition occurs
with additional gapless branches of excitations making their
appearance at k = k0. To make contact with our work in
Sec. III, we plot in Fig. 4 the velocity v extracted from the
MF solution as a function of t for g = −1. We observe that it
vanishes at tc � 3.41, reasonably close to the value 3.52 found
from DMRG for a fully interacting problem.

Now consider the gapped phases reached by perturbing
the system away from the t1 = t2 symmetry line for g < 0.
When t > tc, such perturbations only give rise to ν = 0,1
phases indicated in the phase diagram Fig. 11(a). This is
suggested by the solution of the MF equations and we have
also verified this by an exact numerical diagonalization of the
full interacting Hamiltonian, see (5.1) and (5.2). For t < tc, MF
theory suggests that all four distinct phases with ν = −1,0,1,2
shown in Fig. 11(b) can be reached. This is in accord with the
intuition that multiple species of low-energy gapless Majorana
modes, once gapped by symmetry breaking perturbations,
should give rise to phases with multiple MZMs bound to the
edges of the chain. On the other hand, as indicated in Fig. 12(c),
we expect the new ν = −1,2 phases to be reached only when
the effective third nn hoppings dominate. In the model defined
by Eqs. (5.1) and (5.2), this will occur for relatively strong
interaction strength because the third nn hoppings are absent
when g = 0. In this regime, we expect the MF theory to be at
best qualitatively correct and our limited search using the exact
diagonalization method did not find conclusive evidence for
these phases. The ν = −1,2 phases can be stabilized by adding
the third nn hoppings to the interacting Hamiltonian. They are
allowed by symmetries and will generically be present in the
physical system. We leave the detailed investigation of the
resulting phases for future studies.

We close this section by noting that in the parameter
regions where only ν = 0,1 phases are present spontaneous
dimerization in the geometry with open boundary conditions
may favor the phase without MZMs. This can be seen by
thinking about the strong-coupling ground states of the model
visualized in Figs. 2 and 3. Clearly, the state with all MZMs
combined into Dirac fermions will be lower in energy than the
state with two unpaired MZMs at the edges. If there is a region
in the parameter space where only the ν = −1,2 phases exist,
presumably, by the same argument the ν = −1 phase will be
energetically favored over the ν = 2 phase.

VI. EXPERIMENTAL REALIZATIONS AND SIGNATURES

As argued previously in Refs. [25,26] all the ingredients
are now in place to start experimentally exploring systems of
strongly interacting Majoranas including the simple 1D system
discussed in this work. The most promising physical platform
is the superconducting surface of an STI where MZMs are
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bound in the cores of Abrikosov or Josephson vortices [12].
Experimentally, superconducting order has been induced in
such surfaces by multiple groups and in several different STI
materials [47–55]. The ability to tune the chemical potential
to the vicinity of the Dirac point, required to bring in the
regime of strong interactions, has also been demonstrated [51–
53]. Recently, individual vortices have been imaged in these
systems [54] and spectroscopic evidence indicative of MZMs
in the cores of vortices has been reported [56]. 1D structures
such as those envisioned in this work most naturally arise in
Josephson junctions built on the STI surface. When a magnetic
field is applied perpendicular to the surface of the STI a line
of Josephson vortices is known to form inside the junction.
Such Josephson vortices carry MZMs and their spacing can
be conveniently controlled by the magnetic field amplitude.
Evidence suggestive of MZMs in such devices has recently
been reported [57].

The chain of 1D interacting Majoranas could be realized in
other physical systems that are known to host MZMs [15–17].
This includes semiconductor quantum wires with strong spin-
orbit coupling and the edge of a 2D topological insulator. If
these are coupled to a periodic structure made of alternating su-
perconducting and magnetic regions then MZMs are expected
to form at the boundaries between the corresponding domains.
In the presence of interactions, the physics of such MZMs will
be described by Hamiltonian (1.4) studied in this work.

Scanning tunneling microscopy (STM) can provide valu-
able experimental signatures of the phases and phase transi-
tions of this system when the model is realized by MZMs
bound to vortex cores or other structures as discussed above.
Importantly, the experimental ability to tunnel into a Josephson
junction region has previously been demonstrated [58,59],
both with STM and with planar contact tunneling. Below, we
address the characteristic signatures of various phases and
phase transitions present in our model that are observable
through the tunneling conductance.

The tunneling current between the sample and the normal
tip goes as 〈I 〉 ∝ GR(−eV ), where the retarded Green’s
function is [60]

GR(ω) = −i

∫ ∞

0
dteiωt 〈[γj (t)ψ0(t),γj (0)ψ†

0(0)]〉. (6.1)

Here the operator ψ0 annihilates an electron at the tip. Due to a
factorization of the time-ordered Green’s function into tip and
sample correlators, the tunneling current captures the behavior
of the temporal correlation functions of the Majorana chain,
which are closely related to the spatial (equal-time) correlators
at low energies due to the emergent Lorentz invariance.

Several experimental signatures follow from this. For
example, in the Ising phase, the Green’s function decays with
the characteristic free-fermion exponent as x−1 and we find
IIsing ∝ V . At the tricritical point, the leading (with the smallest
scaling dimension) fermionic operator has scaling dimension
7/10. Therefore, as shown in Ref. [43], the Green’s function
decays as x−7/5 and the tunneling current goes as

ITCI ∝ sgn(V )|V |7/5. (6.2)

In the twofold degenerate gapped (massive) phase, the power-
law dependence of the tunneling current on V , which occurs in

massless Ising and tricritical phases, becomes an exponential
dependence.

On the negative-g side, the Lifshitz transition is charac-
terized by a dynamical exponent z = 3, which changes the
constant density of states of the Ising phase to a density of
states at energy ε proportional to ε−2/3. This leads to

ILifshitz ∝ |V |1/3. (6.3)

Interestingly, at the Lifshitz transition the tunneling con-
ductance dI

dV
diverges for small V . In the Ising+LL phase,

the Green’s function decays as x−1 to leading order, with
subleading corrections of the form x−(K+1/K)/2 [see. Eq. (3.21)
and Fig. 7(b)], indicating a tunneling current linear in V with
subleading corrections (for small V ) scaling as V (K+1/K)/2.

Although the contribution of the LL sector to the tunneling
current in the Ising+LL phase is subdominant in V , it may
be possible to see it clearly by doing STM near the end
of a Majorana chain. There we expect a Luttinger-liquid
contribution that oscillates spatially at wave-vector 2k0 while
decaying with a K-dependent power law with the distance
from the end of the chain [61]. Observing the values of
k0 = π/4 and K = 1/4, followed by a breakdown of the
power-law dependence of the tunneling current on V , when
entering the fourfold degenerate gapped phase, can then signal
the C-IC transition.

VII. CONCLUSIONS

The spinful and spinless variants of the Hubbard model
in 1D, which, respectively, have on-site and nearest-neighbor
interactions, are two widely studied canonical models of
interacting Dirac fermions. Here, we studied a third canonical
model, namely, the minimal 1D model of interacting Majorana
zero modes. These Majorana degrees of freedom have Hermi-
tian creation operators and are effectively half of a (complex)
Dirac fermion. In this case, the minimal interaction involves
four sites.

In light of the focused experimental efforts on realizing
and manipulating Majorana zero modes as emergent particles
in solid-state devices, the behavior of interacting many-
body Majorana systems is of great theoretical as well as
experimental interest. We argued that ingredients necessary to
begin experimental investigations of such systems with strong
interactions are presently in place. Such investigations could
naturally start with model defined in Eq. (1.4), this being the
simplest interacting 1D Hamiltonian one can construct with
these degrees of freedom.

Using a combination of analytical techniques based on
field-theory and RG, mean-field calculations, and numerical
DMRG studies, we determined the full phase diagram of this
novel strongly correlated system. The physics that emerges
from this simplest model of interacting Majoranas is extremely
rich and complex, revealing novel phases and phase transitions
that are not present in the well studied Dirac counterparts. As
previously shown in Ref. [43], this model provides one of
the few examples of emergent space-time supersymmetry for
attractive interactions. In the present paper, we extended the
analysis of the model to the case of repulsive interactions.
We found a novel z = 3 quantum critical point, at which a
Lifshitz transition occurs changing the topology of the Fermi
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surface. On the weak-coupling (strong-coupling) side of the
Lifshitz transition, we have one (three) species of low-energy
Majoranas. In the Ising phase, the Majoranas are free, while
on the strong-coupling side (the Ising+LL phase), only one
species remain free. The other two species combine into
interacting Dirac fermions forming a Luttinger liquid, with
an emergent Fermi momentum and particle number (despite
the fact that particle number conservation is not a symmetry
of the Hamiltonian).

At even larger repulsive interactions, the Ising+LL phase
undergoes a transition to a fourfold degenerate gapped phase.
The nature of this novel phase transition, which fully gaps
out a c = 3/2 CFT is reminiscent of the commensurate-
incommensurate transition. As the emergent Fermi momentum
varies with interactions, a term in the Hamiltonian, which
generically has fast oscillations, becomes nonoscillatory at a
particular commensurate wave vector and drives the transition.

When the translation symmetry of the chain is explicitly
broken by dimerization, as often happens in 1D systems,
additional phases can appear. We performed a brief survey of
these dimerized phases using mean-field theory and found four
distinct gapped phases characterized by an integer topological
invariant ν. The latter takes values −1,0,1,2, and can be
interpreted as the number of unpaired Majorana zero modes
bound to the edge of the chain in the geometry with open
boundary conditions.

Our work extends the space of canonical 1D models of
interacting fermions from the Hubbard chain and its spinless
variant to a third simple and experimentally relevant model
describing the most natural interacting system composed of
Majorana zero modes, revealing a plethora of novel phases
and phase transitions. When this paper was almost complete,
we became aware of Ref. [62], which contains related results.

ACKNOWLEDGMENTS

This work was supported by NSERC (I.A., M.F., and A.R.),
CIfAR (I.A. and M.F.), Max Planck-UBC Centre for Quantum
Materials (I.A., M.F., and A.R.), and China Scholarship
Council (X.Z.).

APPENDIX A: WEAK COUPLING

While it is possible to diagonalize the noninteracting limit
of Eq. (1.6) by a Bogliubov-DeGennes transformation, it is
much simpler to Fourier transform the Majorana operators.
For a chain of L Majorana operators, γ1,γ2, . . . ,γL:

γj =
√

2

L

∑
k

e−ikj γ (k) (−π � k � π ), (A1)

where k = 2πn/L with periodic boundary conditions or
k = 2π (n + 1/2)/L with antiperiodic boundary conditions.
Inverting, we obtain

γ (k) =
√

1

2L

∑
k

eikj γj . (A2)

This implies

{γ (k),γ (k′)} = δk,−k′ , γ (−k) = γ †(k). (A3)

The Fourier transformed Hamiltonian is simply

H = 2t
∑

k

γ (−k)γ (k) sin k. (A4)

This is already diagonalized and we see that we should identify
γ (k) as an annihilation operator for k > 0 and as a creation
operator for k < 0:

H0 = 4t
∑

0<k<π

γ †(k)γ (k) sin k − 2t

sin(π/L)
. (A5)

In order to treat interactions using the renormalization group,
we focus on the low-energy excitations, occurring at k near
zero and π where the dispersion relation becomes linear with
slope v = 4t . In Schrödinger representation, we may write

γj (t) ≈ 2γR(vt − j ) + (−1)j 2γL(vt + j ), (A6)

where

γR(vt − j ) ≡
√

1

2L

∑
0<k<�

[e−ik(vt−j )γ (k) + eik(vt−j )γ †(k)],

γL(vt + j ) ≡
√

1

2L

∑
0<k<�

[e−ik(vt+j )γ (π − k)

+ eik(vt+j )γ †(π − k)]. (A7)

Here, � is a momentum cutoff, � � 1. (We work in units
where the lattice spacing is set to 1.) γR/L(vt ∓ j ) is a
relativistic right/left moving Majorana fermion field.

APPENDIX B: SPECTRUM OF THE ISING+LL PHASE

Let us first review the finite-size spectrum for noninteract-
ing relativistic Dirac fermions with Fermi wave vector kF , with
APBC. This depends on a number f , with |f | � 1/2, which
is the fractional part of kF L/(2π ). The energy to add NR

fermions in the lowest energy states above the Fermi energy
on the right branch is

E = 2πv

L

NR−1∑
n=0

(n + 1/2 − f ) = 2πv

L

(
1

2
N2

R − f NR

)
.

(B1)

Taking NR to be a negative integer, this formula also gives the
energy to create NR holes in the lowest energy states. Thus
Eq. (B1) gives the energy for the lowest excited state with
charge NR relative to the charge of the ground state. After
adding NR particles in the lowest energy states, we can make
arbitrary particle-hole excitations. If NnR particles are raised
by n energy levels, the energy cost is (2πv/L)nNnR . So the
energy for a general particle-hole excitation of right movers is

ER,ph = 2πv

L

∞∑
n=1

NnRn. (B2)

The same formulas hold for left-moving excitations. Combin-
ing them, it is convenient to define

N ≡ NR + NL,

M ≡ NR − NL. (B3)
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Note that N and M must have the same parity:

N = M, (mod 2). (B4)

The excitation energy for an arbitrary low-energy state is

�E = 2πv

L

[
1

4
(N − 2f )2 + 1

4
M2 +

∞∑
n=1

(NnR + NnL)n

]
.

(B5)

These formulas carry over directly to the low energy excita-
tions of the noninteracting Majorana system for t ′ < −t/3,
with kF replaced by k0. The analog of creating a right-moving
hole corresponds to creating an excitation at k slightly less
than −k0.

In addition, we may create excitations in the Ising sector.
Adding IR particles to the lowest energy states at small positive
k and IL particles to the lowest energy states at k slightly larger
than −π costs energy

�EI = 2πv0

L

(
1

4
N2

I + 1

4
M2

I

)
. (B6)

Again,

NI = IR + IL,
(B7)

MI = IR − IL,

and NI and MI have the same parity. The formula for particle-
hole excitations is more complicated in this case although it is
well known. We will not need it to analyze our DMRG data. It
is convenient to shift N in Eq. (B5) by twice the integer part
of k0L/2π , yielding Eq. (3.10).

APPENDIX C: NUMERICAL EVIDENCE FOR THE
FIRST-ORDER TRANSITION BETWEEN

SYMMETRY-BROKEN PHASES FOR g > 0

As discussed in Sec. II B, the first-order transition corre-
sponds to a splitting of the fourfold degenerate ground states of
Fig. 2 into twofold degenerate ground states plus a degenerate
pair of excited states as t is turned on for g = 1. Depending
on the sign of t either the states with filled (〈p̂j 〉 = 1) or
empty (〈p̂j 〉 = −1) Dirac levels are favored (first and third or
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FIG. 13. (Color online) (a) The expectation value of p̂j , for PBC
(computed with DMRG and retaining 700 states), goes to a nonzero
value as t → 0+ for g = 1 even in finite systems. As 〈p̂j 〉 changes
sign when t → −t , this indicates a discontinuous jump in 〈p̂j 〉. (b)
Extrapolating 〈p̂j 〉|t→0+ to the thermodynamic limit strongly suggests
that the jump survives at 	 → ∞.

second and fourth states in Fig. 2). With PBC, the surviving
twofold degenerate states have opposite fermion parity, as
argued above. [See Eq. (3.23).] If we focus on the states
with even fermion parity, first and third in Fig. 2, then they
are distinguished by 〈p̂j 〉. For t > 0 (t < 0), the states with
〈p̂j 〉 < 0 (〈p̂j 〉 > 0) occur. The transformation γ2j → −γ2j ,
which leads to t → −t , implies that 〈p̂j 〉(t) = −〈p̂j 〉(−t). The
first-order transition should be signaled by a jump in 〈p̂j 〉 at
t = 0. We found that this jump occurs even for finite systems.
As seen in Fig. 13(a), the value of 〈p〉 saturates as t approaches
0+ (notice the logarithmic horizontal axis). In Fig. 13(b), we
extrapolate the value of 〈p̂j 〉 for t → 0+ to 	 → ∞ and find
that it goes to 0.70 ± 0.01, clearly indicating a jump as we
cross t = 0.
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