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Monoclinic crystal structure of α-RuCl3 and the zigzag antiferromagnetic ground state
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The layered honeycomb magnet α-RuCl3 has been proposed as a candidate to realize a Kitaev spin model
with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled jeff = 1

2 Ru3+

magnetic moments. Here, we report a detailed study of the three-dimensional crystal structure using x-ray
diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models
for the stacking of honeycomb layers and find evidence for a parent crystal structure with a monoclinic unit cell
corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking
faults, in contrast with the currently assumed trigonal three-layer stacking periodicity. We report electronic
band-structure calculations for the monoclinic structure, which find support for the applicability of the jeff = 1

2
picture once spin-orbit coupling and electron correlations are included. Of the three nearest-neighbor Ru-Ru bonds
that comprise the honeycomb lattice, the monoclinic structure makes the bond parallel to the b axis nonequivalent
to the other two, and we propose that the resulting differences in the magnitude of the anisotropic exchange along
these bonds could provide a natural mechanism to explain the previously reported spin gap in powder inelastic
neutron scattering measurements, in contrast to spin models based on the three-fold symmetric trigonal structure,
which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both
powders and stacked crystals, as well as magnetic neutron powder diffraction, show a single magnetic transition
upon cooling below TN ≈ 13 K. The analysis of our neutron powder diffraction data provides evidence for zigzag
magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization
measurements on stacked single crystals in pulsed field up to 60 T show a single transition around 8 T for
in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of
strongly anisotropic exchange interactions.
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I. INTRODUCTION

There has been considerable recent interest in materials
that realize strongly anisotropic, bond-dependent interactions
as the resulting frustration effects could potentially stabilize
novel forms of cooperative magnetic order or a spin liquid
state [1]. A canonical Hamiltonian is the Kitaev spin model
on the honeycomb lattice [2], where each bond carries an
Ising interaction, but where the Ising axes are reciprocally
orthogonal for the three bonds meeting at each lattice site,
leading to an exotic quantum spin liquid state with fractional
spin excitations. In a pioneering set of papers [3,4] it was
proposed that Kitaev physics may be realized in A2IrO3

(A = Na, Li) materials with a tricoordinated, edge-sharing
bonding geometry of IrO6 octahedra. Here, the combined
effect of strong spin-orbit coupling at the Ir4+ 5d5 site and
near-cubic crystal field of the O6 octahedra stabilize jeff = 1

2
Ir moments, and superexchange via two near 90◦ Ir-O-Ir paths
is predicted to couple (to leading order) only the magnetic
moment components normal to the plane of the Ir-O-Ir bond,
with three such near-orthogonal planes meeting at each Ir site.

*roger.johnson@physics.ox.ac.uk

Evidence for dominant Kitaev interactions in such materials
has been observed in the structural polytypes β- and γ -Li2IrO3

where the Ir ions have the same local threefold coordination
as in the planar honeycomb, but now form fully connected
three-dimensional networks, so-called hyperhoneycomb and
stripyhoneycomb, respectively. In both structural polytypes,
complex counter-rotating and noncoplanar incommensurate
magnetic orders have been observed [5,6], which cannot be re-
produced by isotropic (Heisenberg) exchanges, but require the
presence of dominant ferromagnetic Kitaev interactions [7–9]
supplemented by additional smaller interactions. In contrast,
the layered honeycomb iridate Na2IrO3 shows a very different
magnetic order, with spins arranged in zigzag ferromagnetic
chains aligned antiferromagneticaly [10–12], believed to be
stabilized by the competition between many interactions
including a strong ferromagnetic Kitaev term and further
neighbor interactions [13]. In Na2IrO3, evidence for the
presence of strong Kitaev interactions has been provided by
measurements of the diffuse scattering at temperatures above
the magnetic ordering transition temperature, which observed
a locking of the polarization of spin fluctuations with the
wave-vector direction [14].

α-RuCl3 has been proposed [15] as a candidate Kitaev
material in a 4d analog of the layered honeycomb iridates.
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This might be surprising at first as the spin-orbit coupling is
expected to be considerably weaker in Ru compared to Ir (due
to the smaller atomic number), but it was argued [15,16] that
(i) the crystal field of the Cl6 octahedra may potentially be
much closer to cubic in α-RuCl3 as layers are only very weakly
bonded (by van der Waals interactions), in contrast to Na2IrO3

where the O6 octahedra are strongly trigonally squashed due
to the strong bonding to the adjacent hexagonal Na+ layers,
and (ii) correlation effects in a narrow band could potentially
enhance the effects of spin-orbit coupling.

The magnetic properties of α-RuCl3 are currently the
subject of much experimental and theoretical investigation
[15,17–23]. Early studies have established the existence of two
distinct structural polytypes: the α polytype with edge-sharing
RuCl6 octahedra forming stacked honeycomb layers with mag-
netic order below ≈14 K (Ref. [24]), and the β polytype with
face-sharing RuCl6 octahedra arranged in chains, which shows
no magnetic ordering down to the lowest temperatures mea-
sured [25]. However, detailed studies of the three-dimensional
crystal structure of the layered (α) polytype have proved
difficult because of the prevalence of diffuse scattering due
to stacking faults [26], an inevitable consequence of the weak
bonding between adjacent honeycomb layers. A trigonal space
group P 3112 with a three-layer stacking periodicity is usually
presupposed based on an early structural study [27], although
this structural model has been questioned by later studies
[28–30]. In particular, Ref. [29] reported a monoclinic C2/m

stacking of honeycomb layers for the related halide IrBr3

(AlCl3 structure type [31]) and proposed, by analogy, a similar
structural framework for α-RuCl3, but no lattice parameters
or any other structural details were provided. The difficulty
in reliably solving the crystal structure stems from the fact
that in principle several candidate stacking sequences of the
honeycomb layers may be possible [monoclinic, trigonal,
rhombohedral (to be discussed later)] and it is experimentally
rather challenging to reliably distinguish between them in
the presence of stacking faults and/or when samples may
contain multiple twins. Having a reliable determination of
the full three-dimensional crystal structure is important for
understanding the underlying electronic and magnetic prop-
erties, as electron hopping terms, and consequently magnetic
interactions and anisotropies, appear to be quite sensitive to
the stacking sequence of layers and to weak distortions inside
each layer, as we will show later in Sec. V.

Previous studies on single crystals of α-RuCl3 have
observed two anomalies near 8 and 14 K in both magnetic
susceptibility and heat capacity [17,19,20] (with the transition
near 8 K attributed [17] to the onset of zigzag magnetic order
as in Na2IrO3), whereas studies on powder samples showed
only one anomaly near TN ≈ 13 K (Refs. [24,25]), raising the
question of why the powders and single crystals show distinct
behaviors. To date, the ground-state magnetic structure is yet
to be reported for samples that exhibit a single magnetic phase
transition upon lowering temperature.

Here, we report comprehensive results and an extensive
discussion of x-ray diffraction measurements on untwinned
crystals of α-RuCl3 that display a single magnetic phase
transition upon cooling to low temperatures, in agreement
with powder samples. We find that the crystal structure
is monoclinic, with space group C2/m. Features in the

diffraction pattern necessitated by the assumed trigonal P 3112
model are clearly absent. The monoclinic structure of α-RuCl3
is found to be iso-structural to the layered honeycomb
materials Na2IrO3 (Ref. [11]) and α-Li2IrO3 (Ref. [32]). From
neutron powder diffraction data, we present evidence of a
magnetic propagation vector k = (0,1,0.5), consistent with
zigzag or stripy long-range magnetic ordering. We find that the
calculated magnetic diffraction pattern expected for the stripy
model is inconsistent with the experimental data and conclude
that the zigzag model with antiferromagnetic stacking gives
the best account of the true magnetic structure. Furthermore,
we characterize the stability of the zigzag order in applied
magnetic field and construct a magnetic phase diagram for
field applied in the honeycomb layers. To complement the
x-ray diffraction studies, we report electronic band-structure
calculations to check the stability of the crystal structure and
determine the resulting magnetic ground state of the Ru3+

ions.
The paper is organized as follows: Section II presents the

methods employed. Single-crystal diffraction results are given
in Sec. III, with the space-group determination and stacking
faults analysis presented in Sec. III A, the structural refinement
discussed in Sec. III B, and comparison to other structural
models drawn in Sec. III C. Following this, in Sec. IV we
focus on the magnetic order at low temperatures through
discussion of susceptibility, pulsed-field magnetization, and
neutron powder diffraction results. In Sec. IV C we discuss
the implications of the monoclinic symmetry for the low-
energy spin excitations and in Sec. V we present results of
ab initio electronic-structure calculations. Finally, conclusions
are summarized in Sec. VI.

II. METHODS

Crystals of α-RuCl3 were grown by vacuum sublimation
from commercial RuCl3 powder (Sigma Aldrich, Ru content
45%–55%) sealed in a quartz ampoule and placed in a
three-zone furnace with the end temperatures 650 ◦C and
450 ◦C. Those temperatures were chosen in order to obtain
phase-pure α-RuCl3 (the β polytype transforms irreversibly
into the α phase above 395 ◦C [24]) and to ensure that the
Cl2 gas pressure in the ampoule did not exceed atmospheric
pressure. The grown polycrystalline samples contained many
flat-plate crystal pieces, often with a hexagonal shape and up
to 1 mm in diameter. Single-crystal x-ray diffraction in the
range 80–300 K (under N2 gas flow) was performed on many
of those crystal platelets using a Mo-source Oxford Diffraction
Supernova diffractometer.

Magnetometry measurements were made under static fields
using both a Quantum Design Magnetic Properties Measure-
ment System (MPMS) and vibrating sample magnetometer
(VSM). Pulsed-field magnetization experiments were per-
formed on a stack of aligned crystal platelets in both H ⊥ c∗
(field in the honeycomb layers) and H ‖ c∗ (field normal to the
honeycomb layers) geometries. We employed an improved
version of the setup described in Ref. [33], placed within
a 3He cryostat with a base temperature of 0.4 K and the
60 T short-pulse magnet at NHMFL Los Alamos [34]. The
magnetization values measured in the pulsed-field experiments
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were calibrated against VSM data collected on the same
sample.

Neutron powder diffraction measurements to obtain infor-
mation about the magnetic structure were performed using the
time-of-flight diffractometer WISH at the ISIS Facility in the
UK. Approximately 5 g of powder α-RuCl3 (extracted from
the crystal growth ampoule described above) was placed in an
aluminium can and mounted in a standard helium-4 cryostat
with a base temperature of 2 K. Additional measurements
were performed using a closed-cycle refrigerator with a base
temperature of 6 K.

The electronic-structure calculations were performed with
the all-electron full potential WIEN2K code [35]. We set
the basis-size controlling parameter RKmax equal to 8 and
considered a mesh of 8 × 6 × 8 k points in the first Brillouin
zone (FBZ) for the self-consistency cycle. The density of states
were calculated with 12 × 12 × 12 k points in the FBZ. All
calculations were double-checked with the full potential local
orbital (FPLO) code [36].

III. CRYSTAL STRUCTURE

A. Space group and stacking faults

The x-ray diffraction pattern was measured for many crystal
platelets extracted from several growth batches. In all samples
studied (over 50), one could invariably observe sharp reflec-
tions and weak diffuse scattering in rods along the direction
surface normal to the crystal plates, as characteristic of a lay-
ered crystal structure with stacking faults [37]. The positions
of the sharp Bragg reflections could be consistently indexed
by a monoclinic unit cell with space group C2/m both at room
temperature and the lowest temperature measured (80 K) with
lattice parameters given in Table I. Some samples were found
to have a single structural domain, some were found to contain
two monoclinic twins rotated by ≈120◦ about the direction
normal to the plates (c∗), and other samples contained multiple
structural domains. For the untwinned crystals, the diffraction
patterns had the empirical selection rule for observed Bragg
peaks h + k = even, as characteristic of C-centering in the ab

plane, and the peak intensities were symmetric under a twofold
rotation around b∗ and mirror-plane reflection normal to b∗, as
expected for a 2/m Laue class. The highest symmetry space
group consistent with the above information is C2/m.

Representative data at 300 K from an untwinned crystal (of
≈80 μm diameter) are shown in Figs. 1(d)–1(f), for various
diffraction planes. Note that all sharp Bragg peaks are in good
agreement with calculations [Figs. 1(g)–1(i)] for a C2/m

structure. In addition to sharp Bragg peaks, rods of diffuse
scattering are also clearly visible along l [see Figs. 1(e)–1(f)],
with the general selection rule k = 3n + 1 or 3n + 2 (n integer)
and h + k = even (due to C-centering). Diffuse scattering with
the same selection rule was also observed in Na2IrO3 and
attributed to faults in the stacking sequence of honeycomb
Na1/2IrO3 layers [11]. By analogy, we attribute the above
diffuse scattering observed in α-RuCl3 as originating from
occasional shifts in the ab plane by ±b/3 between stacked
RuCl3 honeycomb layers. The intensities of the sharp Bragg
peaks located at integer l positions on those diffuse scattering
rods are expected to have a reduced intensity compared to a

TABLE I. α-RuCl3 crystal structure parameters at 80 K.

Cell parameters
Space group: C2/m

Z = 4
a,b,c (Å) 5.9762(7) 10.342(1) 6.013(1)
α,β,γ (◦) 90 108.87(2) 90

Volume (Å
3
) 371(2)

Atomic fractional coordinates from DFT
Atom Site x y z

Ru 4g 0 0.33441 0
Cl1 8j 0.75138 0.17350 0.76619
Cl2 4i 0.73023 0 0.23895

Selected bond lengths and angles from DFT
Ru1-Ru2 3.42513 Å
Ru2-Ru3 3.46080 Å

Ru1-Cl2-Ru2 92.5954◦

Ru2-Cl1-Ru3 93.9310◦

Fitted isotropic atomic displacement parameters

Atom Uiso(Å
2
)

Ru 0.005(1)
Cl1 0.006(2)
Cl2 0.006(2)

Data collection
SFa SFb NSF

No. measured refl. 991 325 135
No. independent refl. 189 68 32

Rint(C2/m) 8.0% 3.3% 2.9%

Fit to NSF peaks
[Criterion for observed reflections: I > 3.0σ (I )]
No. observed reflections: 32
No. fitted parameters: 3

fully ordered structure due to some transfer of intensity into
the diffuse rod [37]. For the quantitative structural refinement
we will show that it is helpful to distinguish between different
families of Bragg peaks, and for this purpose we label the above
family of Bragg peaks whose intensities are affected by diffuse
scattering from sliding stacking faults as in Na2IrO3, as “SFa”
(peaks affected by stacking faults of type “a” to distinguish
them from another family of type “b,” to be discussed below).

Upon cooling to low temperatures (80 K) no new diffraction
peaks appear, but a second family of diffuse scattering rods
becomes apparent. This is most clearly seen by comparing
Figs. 1(a) and 1(d), note the diffuse scattering rod near
(2,0,−2) [Fig. 1(a), labeled peak position], which is prominent
at low temperature, but only just visible at 300 K [Fig. 1(d)].
Note also in Fig. 1(c) the strong diffuse scattering along
(1,±3,l) positions, almost absent at 300 K [Fig. 1(f)]. This
type of diffuse scattering was not detected at 300 K in
Na2IrO3 (Ref. [11]) and has a different selection rule (k = 3n

and h = 3m + 1 or 3m + 2 with n, m integers and h + k =
even) compared to the diffuse scattering of type “a” discussed
previously. At 80 K, both families of diffuse scattering rods
have comparable intensities [see Fig. 1(c)]. As before, the
Bragg peaks located at integer l positions on this second family
of diffuse scattering rods are expected to be reduced in intensity
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FIG. 1. (Color online) Observed x-ray diffraction patterns (log intensity scale) for an untwinned crystal of α-RuCl3 at 80 K (a)–(c), 300 K
(d)–(f), shown for three different planes, compared with calculations (g)–(i) for the monoclinic C2/m structural model (Fig. 2) and the trigonal
P 3112 model (j)–(l). All wave vectors are labeled in r.l.u. units of the monoclinic cell and a∗

h, b∗
h, and c∗

h denote reciprocal lattice vectors of the
hexagonal primitive cell of the trigonal structure (for the relation between the hexagonal and monoclinic axes, see Sec. III C). Note the sharp
peaks in the data are in good agreement with the monoclinic model [compare (d)–(f) with (g)–(i)], whereas the “supercell” peaks expected in
the case of the trigonal model (k)–(l) at fractional positions l = n + 1/3, n + 2/3 (n integer) are clearly absent from the data, instead only
diffuse scattering is found in those places.

compared to a fully ordered structure. We label this family of
Bragg peaks as “SFb” (peaks affected by stacking faults of
type “b”).

Finally, a third family of Bragg peaks exist that are sharp
at all temperatures measured, such as (00n) (n integer) in
Fig. 1(a), so appear not to be affected by the presence of
stacking faults. These have the general reflection condition
h = 3m and k = 3n (n,m integers and h + k = even), and we
label them NSF (peaks not affected by stacking faults).

B. Structural refinement at 80 K

To obtain a reference, fully ordered 3D structure with no
stacking faults we must refine a structural model against only
those diffraction peaks that are unaffected by the presence

of stacking faults. These are the family labeled NSF, as
defined above. In the following, we focus primarily on the data
collected at 80 K. Out of a total 1451 Bragg peaks measured,
135 are NSF peaks, of those just 32 are symmetry inequivalent
after data reduction in space group C2/m. Despite the small
number of reflections, a full refinement using FULLPROF [38]
of a structural model, with starting atomic positions for Ru
and Cl taken to be those of Ir and O in the structure of
Na2IrO3, converged well. Hence, the data were found to
be fully consistent with the same structural motif as that
found in Na2IrO3 with honeycomb layers of edge-sharing
RuCl6 octahedra stacked vertically with an in-plane offset
(see Fig. 2), with Ru in place of Ir, Cl in place of O, and
removing Na altogether. However, detailed tests showed that
the refinement was in fact not sufficiently sensitive to the
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FIG. 2. (Color online) Monoclinic crystal structure of α-RuCl3,
showing the unit cell as a black outline, Ru as gray balls, and Cl as
green. (a) Projection onto the ac plane. (b) Basal layer projected onto
the ab plane.

y position of the Ru ion, or the precise distortions of the
Cl6 octahedra, so the internal atomic fractional coordinates
could not be uniquely determined from the x-ray data alone.
The atomic positions are key to understanding the underlying
physics as the exchange interactions (and their anisotropy)
are expected to be strongly dependent on the geometry of the
Ru-Cl-Ru bonds. So to construct a robust structural model
we use ab initio density functional theory (DFT) calculations
to predict the atomic positions that give the lowest-energy
ground state using as input the experimentally determined
space group and lattice parameters, and then check consistency
of this constrained structural model with the intensities in
the x-ray diffraction data. For the DFT structural relaxation
calculations we employed the projector augmented wave
method as implemented in the VASP package [39] with the
generalized gradient approximation (GGA) [40], as well as
the full potential local orbital (FPLO) method [36].

The atomic fractional coordinates predicted by DFT within
the above empirical constraints are given in Table I. The
refinement of the structural model against the 80 K NSF peak
intensities was repeated with atomic fractional coordinates
fixed to those DFT values, with only isotropic displacement pa-
rameters and a global scale factor left free to vary. A reliability
factor of RF 2 = 4.2% was obtained, which compared to a value
of RF 2 = 3.7% achieved for the completely free refinement
(when atomic coordinates were also allowed to vary), demon-
strates that the theoretically predicted atomic coordinates are
fully consistent with the x-ray diffraction data. Figure 3 shows
the observed structure factors squared |F |2 for all families of
diffraction peaks compared to those calculated from the fit
against only the NSF peaks. The excellent agreement with
the NSF peak intensities at 80 K is clear [Fig. 3(b), black
symbols]. Furthermore, one can see that intensities of both SFa
(blue) and SFb (red) peaks are systematically overestimated,
consistent with the expectation that some of their nominal
intensity has been transferred into the diffuse scattering in their
vicinity. Figure 3(a) shows the same fit, but performed against
the room-temperature data set [with empirically determined
lattice parameters a = 5.9856(4) Å, b = 10.3557(5) Å, c =
6.0491(4) Å, β = 108.828(7)◦ and assuming atomic fractional
coordinates fixed to the DFT predicted values listed in Table I].
Even at this temperature, the structural model agrees well with
the x-ray data (RF 2 = 5.5% for NSF peaks), and the intensities
of the SFb peaks (red symbols) appear to be also almost

FIG. 3. (Color online) Observed structure factor squared values
of all three families of diffraction peaks compared to those calculated
by fitting the C2/m monoclinic structural model with fixed theo-
retical atomic fractional coordinates to data measured at (a) room
temperature, and (b) 80 K.

quantitatively reproduced by the model, as at this temperature
the diffuse scattering near SFb peaks is almost absent, so the
intensity of SFb peaks is expected to be only very weakly
reduced compared to a perfectly ordered structure.

The obtained crystal structure allows us to naturally
understand the strong periodic modulations in the intensity
of x-ray diffraction peaks, in particular the rather conspicuous
period-4 repeat in the intensity of peaks along l in the (h0l)
plane [see Fig. 1(d)] with almost extinct peaks at (0,0,±2)
and (±2,0,0) positions. The near absence of intensity at those
positions is due to an almost total cancellation of the scattering
from the Ru ion with that from the three Cl ions with atomic
scattering amplitudes fRu : fCl in ratio almost 3 : 1. In detail,
the Ru ion is located at z = 0, whereas the Cl ions are at z � 1

4
and 3

4 (see Table I), so the structure factors for (00l) reflections
follow (to a good approximation) a period-4 sequence of values
fRu + 3fCl, fRu, fRu − 3fCl, fRu, fRu + 3fCl . . . . In the limit
of small wave vectors Q, the atomic scattering factors are given
by the number of electrons, so fRu : fCl = 44 : 17 ≈ 3 : 1,
such that to good approximation the structure factors are
multiples of 4,1,0,1,4 . . . for l = 0,1,2,3,4 . . . . Similarly, one
can show that a period-4 modulation in intensity along l

occurs in general for (h0l) peaks, with zeros at h + l = 4n + 2
(n integer and h even) explaining all the near extinctions and
apparent intensity modulations seen in Fig. 1(d). We note that
such near extinctions do not occur in the diffraction pattern of
the isostructural Na2IrO3, as the scattering factors of Ir and O
are much more anisotropic (ratio almost 10 : 1) and Na is also
contributing to the diffraction peak intensities.
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To summarize, the x-ray diffraction patterns uniquely
identify the monoclinic C2/m space group both at room
temperature and the lowest temperature measured (80 K),
and quantitative structural refinement using fixed atomic
fractional coordinates predicted by DFT, performed only
against the sharp diffraction peaks whose intensity is not
affected by the presence of stacking faults, gives a very good
description of the data. The corresponding crystal structure is
shown in Fig. 2 and consists of monoclinically stacked RuCl3
honeycomb layers as in AlCl3 (Ref. [31]) and Na2IrO3. The
real materials are understood to have occasional stacking faults
with respect to this reference monoclinic structure.

C. Other structural models

The current structural model assumed for α-RuCl3 (trig-
onal space group P 3112 [27], conventionally described in
a hexagonal unit cell) differs from the monoclinic C2/m

structure primarily in the stacking sequence of the honeycomb
layers, with a three-layer stacking periodicity as opposed to
single layer in C2/m. We note that the dimensions of the
unit cell are, in general, an insufficiently robust criterion
to reliably distinguish between those two structural models
as the monoclinic unit-cell metric is in fact very close to
hexagonal, i.e., b � √

3a to within better than 0.2%, and
3c × cos β � −a to within 2%. When the latter equation is
satisfied exactly, one has eclipsed (straight-on-top) stacking
at the third honeycomb layer, so an alternative hexagonal cell
with a three-layer periodicity along the direction normal to
the layers could in principle provide an approximate metric
to index the positions of Bragg diffraction peaks. In this
case, the transformation between the hexagonal (subscript h)
and symmetrized monoclinic unit-cell vectors (subscript m)
is given by am = −ah − bh, bm = ah − bh, cm = (ah + bh +
ch)/3, where am = ah, bm = √

3ah, β = π/2 + atan(ah/ch),
and cm = ch/(3 sin β).

However, the internal atomic arrangement in the monoclinic
and trigonal structures is different due to the distinct symme-
tries of the corresponding space groups, and these differences
would be directly observed in the measured single-crystal
diffraction patterns. In particular, the two structures have a
distinct stacking sequence of the honeycomb layers: for two
adjacent layers both the symmetrized monoclinic and trigonal
structures would appear identical, but for every subsequent
layer in the trigonal structure the direction of the in-plane
offset (defined by the monoclinic angle β) would rotate by
120◦ around the direction normal to the layers. The resulting
three-layer stacking periodicity in the trigonal structure would
lead to the appearance of extra supercell peaks along the
c∗ axis, which, in the monoclinic basis, would occur at
noninteger positions l = n + 1

3 and n + 2
3 (k = 3m + 1 or

3m + 2, and h + k = even with h, m, n integers) in addition
to, and with the same intensity as, the nominal peaks at
integer l = n positions [see Figs. 1(k) and 1(l)]. The absence
of supercell peaks in our diffraction data [compare Figs. 1(e)
and 1(f) with 1(k) and 1(l)] conclusively rules out the proposed
P 3112 model. For completeness, we note that an alternative
rhombohedral stacking sequence of the honeycomb layers
with space group R3̄ proposed [19] for α-RuCl3 by analogy
with the low-temperature phase of CrCl3 (Ref. [41]) also

has a three-layer stacking periodicity so would also predict
supercell peaks at noninteger l = n + 1

3 and n + 2
3 positions,

not observed in the data, so this rhombohedral structure can
similarly be ruled out for the crystals studied here.

We note that if a sample contained three monoclinic twins of
equal weight and rotated by 120◦ around c∗, then there would
be no striking qualitative difference between the diffraction
pattern from monoclinic and trigonal/rhombohedral structural
models. Furthermore, under the symmetry constraints of those
candidate structures there would be only slight variations in
intensity due to differences in the displacements of the Cl or Ru
ions from their idealized positions, which are expected to be
small and likely below the experimental sensitivity. As such,
measuring untwinned crystals has proved to be crucial in this
study to qualitatively, and quantitatively, determine the correct
monoclinic reference structure for the samples reported here.

IV. MAGNETIC PROPERTIES

A. Susceptibility and magnetization

The magnetic susceptibility of a stack of single crystals
representative of those used in our structural study (Sec. III),
and a 12.8 mg powder, was measured on heating (after
zero-field cooling) from 2 K up to 300 K. Only a single
anomaly was observed for both samples near 13 K [see
Fig. 4(a)], which is indicative of long-range antiferromagnetic
ordering of the ruthenium magnetic moments. Our powder data
are fully consistent (in absolute units) with data previously

FIG. 4. (Color online) (a) Magnetic susceptibility as a function
of temperature for a stack of single crystals (red circles, H ⊥ c∗)
representative of those used in the x-ray diffraction experiments
described in Sec. III, and the powder sample used in the neutron
diffraction experiments discussed in Sec. IV B (black triangles),
in a magnetic field H = 1000 Oe. (b) Temperature dependence of
the integrated intensity of the two magnetic reflections observed in
neutron powder diffraction pattern in Fig. 7, normalized to an average
of unity at low temperatures. The dashed line is a guide to the eye.
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FIG. 5. (Color online) (a) Magnetic phase diagram for single-crystal α-RuCl3 in magnetic field H ⊥ c∗. Solid points mark the maxima in
the differential susceptibility dM/dH derived from data shown in panel (b) (upper traces). Open symbols mark the maximum in M(T ) VSM
temperature sweeps, as shown in the pane inset for constant magnetic field values close to the phase boundary. The dashed line is a guide
to the eye phase boundary between the zigzag antiferromagnetic phase (yellow shading) and paramagnetic (PM, blue shading). (b) M(H,T )
data recorded in the rising part of 15 T field pulses at a series of constant temperatures. At lower temperatures, the steep rise in M(H ) is
strongly suggestive of a field-induced phase transition near 8 T. (c) M(H,T ) data recorded in the rising part of 60 T field pulses in both the
antiferromagnetic and paramagnetic phases.

reported on powder α-RuCl3 samples [25]. Previous single-
crystal studies have reported two magnetic transitions near 8
and 14 K (Refs. [17,19,20]), which have been attributed to
either a mixture of two coherent stacking orders, with each
order associated with a single transition, respectively [18], or
alternatively to a single phase that supports an unexpected
magnetic ground state [17]. Here, to the contrary, we find
that the low-field magnetic susceptibility of single crystals is
consistent with that of the powder, both displaying a single
transition to magnetic order at low temperatures.

Pulsed-magnetic-field M(H,T ) data are shown for field
sweeps up to 15 T at various constant temperatures T in
Fig. 5(b). The data shown were recorded during the rising part
of the field pulses; M(H ) curves from the rising and falling
portions of the field pulse were indistinguishable within the
limit of experimental sensitivity (i.e., there was little or no
hysteresis). For H ⊥ c∗ the low-temperature M(H ) curves
show a pronounced steepening at about 8 T, characteristic
of a field-induced phase transition, which gradually shifts
down in field and fades as the temperature increases. This
trend is more clearly seen in the full phase diagram shown
in Fig. 5(a), which displays maximum values (solid symbols)
of the differential susceptibility (dM/dH ) as a function of H

and T . The inset to Fig. 5(a) shows complementary M(H,T )
data recorded in the VSM as temperature sweeps in fixed
field. The same transition is seen as a peak in M(T ) that
disappears at fields above 8 T. This trend is also drawn in
the main panel of Fig. 5(a), which completes a continuous
phase boundary (dashed line) consistent with a single enclosed
antiferromagnetic phase for α-RuCl3 at low temperatures and
modest magnetic fields applied in the honeycomb layers.

The pulsed-field data shown in Fig. 5(b) for H ‖ c∗ exhibit
M(H,T ) values that are a factor 5–6 times smaller than those
recorded on the same sample under comparable conditions for

H ⊥ c∗. This is likely to be due to Ru g-factor anisotropy [19].
Note that there is no sign of the phase transition observed in
the other field orientation, leading us to conclude that it is a
feature observed only when the field lies in the honeycomb
plane.

Having measured the magnetization along the two
nonequivalent directions on the same sample enables us to
reliably put both data sets in absolute units by calibration
against the susceptibility data measured on a powder sample
[Fig. 4(a) black symbols] under the same conditions of applied
field and temperature, thus avoiding the inherent uncertainties
associated with measuring the precise mass of very small
(of order ∼0.1 mg) crystals. The powder susceptibility is
expected to reflect the spherically averaged value, obtained
as χpowder = (2/3)χ‖ + (1/3)χ⊥ = χ‖(2 + r)/3, where r =
χ⊥/χ‖ is the susceptibility anisotropy. The single-crystal data
sets in Figs. 4(a) (red symbols) and 5(b) and 5(c) were
then scaled to satisfy the above relations with the powder
susceptibility data at μ0H = 0.1 T and 15 K, where the
susceptibility anisotropy under those conditions was obtained
as r = 0.157 from the pulsed field data.

Figure 5(c) shows M(H,T ) data recorded in 60 T pulsed-
field shots; as is the case with the lower-field data, there is little
or no hysteresis between up and down sweeps of the field and,
so, for clarity, only data recorded on the rising part of the field
pulse are shown. The M(H ) anisotropy persists to high fields,
although the data for H ⊥ c∗ show signs of the approach to
saturation. There are no further phase transitions visible up to
60 T in either field direction.

The shape of the magnetization curve at high field as
observed by the upper traces in Fig. 5(c) with a gradually
decreasing differential susceptibility upon increasing field
suggests an asymptotic approach to magnetization saturation.
Such a behavior of the magnetization near saturation is
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commonly seen [42,43] when the spin Hamiltonian does not
have rotational symmetry around the applied field direction. In
this case, the total spin along the field direction S

ξ

T = ∑
i S

ξ

i is
not a good quantum number (the operator does not commute
with the spin Hamiltonian [Sξ

T,H] 
= 0, where ξ denotes the
direction of the applied field H and i runs through all the
magnetic sites) and as a consequence even in the limit of
very high fields quantum fluctuations are still present and
reduce the magnetization from its fully available value, with
saturation strictly reached only in the asymptotic limit of
infinite field. This is qualitatively different from the case
when the spin Hamiltonian does have rotational symmetry
around the field direction, for example, the case of purely
Heisenberg interactions H = ∑

ij Jij Si · Sj . In this case, the
total spin along the field direction is a good quantum number,
magnetization saturation is an exact plateau phase where
quantum fluctuations are entirely absent, and the approach
to magnetization saturation from below is via a sharp phase
transition at a critical field HC , with the susceptibility in
general increasing upon increasing field up to HC , then being
strictly zero above it. The observed shape of the magnetization
curve at high field [upper traces in Fig. 5(c)] is consistent
with the former scenario with an asymptotic approach to
saturation and could be taken as evidence for the presence of
strongly anisotropic, non-Heisenberg exchanges in α-RuCl3,
of Kitaev [43] or another strongly anisotropic form.

B. Magnetic neutron powder diffraction

Neutron powder diffraction data were collected deep in
the ordered phase (6 K) and in the paramagnetic region (20 K)
with high counting statistics to allow a quantitative refinement.
Additional data to monitor the temperature dependence and
extract an order parameter were collected with lower statistics
at 2 K intervals in the range 2–14 K. Figure 7 shows the purely
magnetic contribution to the neutron diffraction pattern at 6 K
obtained after subtracting off the 20 K paramagnetic pattern.
Two clear magnetic diffraction reflections are observed at
d spacings d = 3.88 and 7.67 Å. The integrated intensity of
the two reflections is plotted as a function of temperature in
Fig. 4(b). Both peaks show the same temperature dependence,
and clearly demonstrate the onset of long-range magnetic order
below TN ≈ 13 K. Furthermore, both magnetic susceptibility
and neutron diffraction data are consistent with a single
magnetic ordered phase down to the lowest temperature
measured (2 K).

Both magnetic reflections could be indexed with the
propagation vector k = (0,1,0.5) with reference to the C2/m

structural unit cell. This finding alone provides key informa-
tion on the ground-state magnetic structure of our α-RuCl3
samples. The value kz = 0.5 determines that the magnetic
moments in neighboring honeycomb layers are aligned an-
tiferromagnetically. Within a honeycomb layer there are four
symmetry equivalent ruthenium ions per unit cell, labeled 1–4
in Figs. 2(b) and 6. The four sites can be considered as two
pairs of sites, (1 and 2) and (3 and 4), intrarelated by mirror
symmetry operations at (x, 1

2 ,z) and (x,0,z), respectively, and
interrelated by the C-centering translation vector t = ( 1

2 , 1
2 ,0).

The relative orientation of the magnetic moment pairs, (1 and
2) and (3 and 4), is uniquely determined by the phase 2πk · t,

FIG. 6. (Color online) The zigzag magnetic structure of α-RuCl3.
The magnetic moments of ruthenium atoms colored red and blue
are aligned antiparallel and oriented within the ac plane. Ru-Ru
connections are drawn in thick black lines to illustrate the honeycomb
layers, and the C2/m monoclinic unit cell is drawn in thin gray lines.

i.e., for kx = 0 and ky = 1 the two pairs are aligned anti-
ferromagnetically. Furthermore, for this k vector the relative
orientation of moments within a given pair is strictly parallel
or antiparallel by symmetry, however, these two scenarios are
not differentiated by the propagation vector alone and must
be tested against the diffraction data. For parallel alignment
within each pair, the resulting magnetic structure is a “stripy”
antiferromagnet with spins forming ferromagnetic stripes
(ladders) along a alternating in orientation along b. In the
case of antiparallel alignment within each pair, the magnetic
structure consists in “zigzag” ferromagnetic chains along a

arranged in an antiferromagnetic pattern along b, as illustrated
in Fig. 6. Symmetry analysis performed using BASIREPS, part of
the FULLPROF package [38] for the propagation vector k, gives
magnetic basis vectors containing moments aligned along the
b axis (the unique twofold axis of the crystal structure) or in the
ac plane. If the transition from paramagnetic to magnetic order
is continuous, then the magnetic structure would be expected
to adopt just one of those two configurations, which can be
directly tested by the magnetic diffraction data.

The two magnetic reflections observed in the difference
diffraction data in Fig. 7 at d = 3.88 and 7.67 Å are indexed
as (−1,2,0.5) and (0,1,0.5), respectively. The peak at higher
d spacing was found to be significantly broader than that at
3.88 Å. We assign this broadening to the effects of stacking
faults, as discussed above. Without a fully quantitative model
of the stacking faults we cannot rule out the possible existence
of otherwise unobserved weak magnetic reflections close
to background levels. However, all statistically significant
reflections can be fit using a peak specific broadening model,
hence allowing for the zigzag and stripy models, and the
moment direction, to be tested.

The solid and dashed lines in Fig. 7 show the calculated
diffraction patterns for both magnetic structures. In both cases,
the relative intensity of the two observed reflections could only
be reproduced with magnetic moments oriented within the
ac plane, however, within experimental uncertainties the fit to
the data was not sufficiently sensitive to the precise moment
direction in this plane. Furthermore, one can immediately

235119-8



MONOCLINIC CRYSTAL STRUCTURE OF α-RuCl . . . PHYSICAL REVIEW B 92, 235119 (2015)

FIG. 7. (Color online) Neutron powder diffraction data measured
at 6 K, with the 20 K paramagnetic data subtracted. The diffraction
patterns for both zigzag (black solid line) and stripy (brown dashed
line) models are calculated and plotted for a moment oriented along
c∗, a similar level of agreement for the zigzag structure could be
obtained for a general moment direction in the ac plane. Inset: fit
to the (001) nuclear Bragg reflection, unaffected by stacking faults,
used for calibrating the magnetic diffraction intensities.

rule out the stripy model (dashed line), which predicts strong
magnetic reflections for any moment direction at d-spacing
positions where no such reflections are observed in the data,
beyond any ambiguity inherent to peak broadening effects.
To estimate the ordered Ru magnetic moment magnitude, we
calibrate the magnetic diffraction intensities against the (001)
nuclear reflection (Fig. 7 inset), which is unaffected by stacking
faults (see Sec. III), and fit the Ru moment magnitude within
the zigzag model (black line in Fig. 7). In the fit to the reference
(001) structural peak only an intensity scale factor was varied
with all the internal crystal structure parameters kept fixed
to the values at 80 K (Table I), only adjusting for the effect
of the lower temperature in the neutron measurements by a
slight reduction in the lattice parameters, estimated by fitting
the nuclear peak positions observed in the neutron diffraction
data at low d spacing (not shown). Using this procedure, we
find the lower limit for the magnetic moment to be 0.64(4)μB,
with the actual value being dependent on the precise moment
direction, which the present data only constrain to be in the
ac plane. Despite not knowing the exact moment direction, the
symmetry of the ground-state magnetic structure is now well
established as zigzag in-plane order with antiferromagnetic
stacking along c, in qualitative agreement with previous stud-
ies [17,18]. In monoclinic symmetry, the magnetic structure
is described by the magnetic super-space group Cc2/m, with
basis transformation [[1,0,2],[0,−1,0],[0,0,−2]] and origin
shift (− 1

2 ,0,− 1
2 ) with respect to the parent C2/m unit cell.

C. Implications of monoclinic symmetry for the magnetic
exchange interactions

Here, we discuss possible implications of the mono-
clinic crystal structure for the low-energy spin excitations
in the magnetically ordered phase. Recent inelastic powder

neutron scattering measurements have reported [18] dispersive
magnetic excitations above a gap of ≈1.7 meV and it was
proposed that features observed in the inelastic spectrum at in-
termediate energies above this gap could be understood based
on a minimal Kitaev-Heisenberg model on the honeycomb
lattice, with an antiferromagnetic Kitaev exchange K and a
ferromagnetic Heisenberg term J . However, it was pointed out
that this minimal model could not account for the observed spin
gap, as for a honeycomb lattice with full threefold symmetry
(as expected in the trigonal P 3112 structural model) the
exchanges along the three bonds meeting at each lattice site
are symmetry equivalent, and in this case linear spin-wave
theory predicts a gapless spectrum [18], contrary to that
observed experimentally. We note that the C2/m monoclinic
structure breaks the symmetry between the three bonds in
the honeycomb planes, making the b-axis bond nonequivalent
to the other two bonds, which remain symmetry equivalent;
this opens the possibility that the magnitude of the anisotropic
exchange could be different between the two families of bonds.
By repeating the linear spin-wave calculations reported in
Ref. [18], we find that an anisotropy of order 10% in the
magnitude of the Kitaev term between the two families of
bonds (larger in magnitude for the b-axis bond) would be
sufficient to account for the magnitude of the observed spin
gap, suggesting that nonequivalence between the different
bonds in the honeycomb plane induced by the underlying
monoclinic distortions may provide a natural mechanism to
explain the observed spin gap.

V. ELECTRONIC STRUCTURE

Here, we discuss the implications of the monoclinic crystal
structure for the electronic band structure and the magnetic
ground state of the Ru ions. Within a honeycomb layer, the
difference in the atomic positions in the trigonal P 3112 [27]
compared to the monoclinic C2/m models is on visual inspec-
tion minimal. However, subtleties of the crystal structure in
fact have profound implications for the nature of the electronic
structure. The trigonal crystal structure features shorter Ru-Ru
bonds, and as a result the calculated electronic structure is
dominated by Ru-Ru direct hopping. On the other hand, in the
present monoclinic structure the dominant hopping process
is one via Cl p states, which, as discussed in Refs. [44–46]
for Na2IrO3, leads to the formation of quasimolecular orbitals
(QMO) that consist of a linear combination of t2g states of the
six Ru atoms in a hexagon.

In Fig. 8, we show the nonrelativistic density of states
within GGA projected onto the QMO basis for α-RuCl3 in
the C2/m and P 3112 crystal structures, as well as that for
Na2IrO3 for comparison. While α-RuCl3 (C2/m) and Na2IrO3

are predominantly diagonal in the QMO basis, this is not the
case for α-RuCl3 (P 3112) as can be observed from the strong
mixing of QMO states.

To analyze spin orbit and correlation effects, we present in
Fig. 9 the electronic structure of α-RuCl3 (C2/m) in the GGA,
GGA + SO (GGA plus inclusion of spin-orbit effects), and
GGA + SO + U (GGA plus inclusion of spin-orbit effects and
onsite Coulomb repulsion U ) approximations as implemented
in WIEN2K [35]. Here, an insightful comparison with Na2IrO3

may be drawn, as follows. In Na2IrO3 [44,45], the combination
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FIG. 8. (Color online) GGA density of states projected onto the
quasimolecular orbital basis of (a) α-RuCl3 in the C2/m structure,
(b) α-RuCl3 in the P 3112 structure [27], and (c) Na2IrO3.

of accidental degeneracy of the two highest QMOs, A1g

and E2u, combined with strong spin-orbit coupling, largely
destroys the QMO and leads instead to the formation of
relativistic jeff = 1

2 orbitals (the QMOs are still relevant as
they generate unexpectedly large second- and third-neighbor
magnetic interactions [11,14]). Adding the Hubbard U in
Na2IrO3 increases the band gap, but does not affect the
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FIG. 9. (Color online) Band structure and density of states
of α-RuCl3 in the C2/m structure obtained within (a) GGA,
(b) GGA + SO, and (c) GGA + SO + U (Ueff = 3 eV). The right
panel shows the projected nonmagnetic GGA and GGA + SO
density of states onto the quasimolecular orbital basis [44,45] and
the GGA + SO + U density of states onto the relativistic jeff basis.

electronic structure in any qualitative way. However, given
that the spin-orbit coupling on Ru is much smaller than
on Ir, turning on the spin-orbit coupling leaves the QMO
picture in α-RuCl3 (C2/m) almost intact [Fig. 9(b)]. Interest-
ingly, adding U dramatically changes the electronic structure
[Fig. 9(c)]. Such an addition effectively renormalizes the one-
electron hopping by a factor of t/U and increases the effect
of spin-orbit coupling that now becomes an important player.
Eventually, the electronic structure with both spin orbit and U

looks surprisingly similar to that of Na2IrO3 (Refs. [44–46]).
We emphasize that the physics leading to the formation

of this electronic structure in the two systems is qualitatively
different, which needs to be kept in mind when comparing
physical properties of the two compounds. While without spin
orbit and Hubbard correlation both systems are molecular-
orbital solids, and with inclusion of both effects the spin-orbit
interaction takes control, in Na2IrO3 this happens because
the spin-orbit coupling is initially strong, and correlations
play a secondary role, in α-RuCl3 (C2/m) the much stronger
correlation conspires with spin orbit, which otherwise is too
weak to overcome the one-electron hopping effects.

The GGA + SO + U band structure for α-RuCl3 (C2/m)
can be projected onto the jeff = 1

2 , 3
2 basis as shown in

the density of states in Fig. 9(c). While there is some
mixing between the two projections, jeff = 1

2 has the dominant
contribution at the Fermi level. Therefore, a description of this
system in terms of jeff = 1

2 orbitals may still be valid. This
is in qualitative agreement with GGA + SO + U calculations
reported for α-RuCl3 in the P 3112 structure [16], although the
two electronic structures differ quantitatively.

VI. CONCLUSIONS

We have proposed a revised three-dimensional crystal struc-
ture for the layered honeycomb magnet α-RuCl3 based on x-
ray diffraction on untwinned crystals combined with ab initio
structural relaxation calculations. In contrast with the currently
assumed three-layer stacking periodicity, we have found a
single-layer stacking periodicity with a monoclinic unit cell,
isostructural to Na2IrO3, with occasional faults in the stacking
sequence. In powder neutron diffraction and in susceptibility
measurements on both powders and single crystals we have
observed a single magnetic transition near 13 K, and through
analysis of the magnetic diffraction pattern we have confirmed
that this phase has zigzag antiferromagnetic order. Using both
static and pulsed magnetic field experiments, we have observed
that the zigzag phase is suppressed by relatively small magnetic
fields (≈8 T) applied in the honeycomb layers, whereas it
is robust in fields applied perpendicular to the honeycomb
layers. We have discussed how the monoclinic crystal structure
could provide a natural mechanism to explain the spin gap
observed in inelastic neutron scattering experiments and how
the asymptotic shape of the magnetization curve at high
fields near saturation is consistent with proposals for strongly
anisotropic (non-Heisenberg) magnetic interactions.
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