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We introduce a set of generalized slave-particle models for extended Hubbard models that treat localized
electronic correlations using slave-boson decompositions. Our models automatically include two slave-particle
methods of recent interest, the slave-rotor and slave-spin methods, as well as a ladder of new intermediate models
where one can choose which of the electronic degrees of freedom (e.g., spin or orbital labels) are treated as
correlated degrees of freedom by the slave bosons. In addition, our method removes the aberrant behavior of
the slave-rotor model, where it systematically overestimates the importance of electronic correlation effects for
weak interaction strength, by removing the contribution of unphysical states from the bosonic Hilbert space. The
flexibility of our formalism permits one to separate and isolate the effect of correlations on the key degrees of
freedom.
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I. INTRODUCTION

One of the long-standing areas of interest in condensed
matter physics, particularly that of complex oxides, is that
of the Mott metal-insulator transition [1]. Generically, within
a Hubbard model framework, as the strength of localized
electronic repulsions is increased, the electrons prefer to be
localized on atomic sites and intersite hopping is suppressed,
and at a critical interaction strength the system becomes
an insulator. An example of the rich behavior that can
occur in such systems is the orbital selective Mott transition
(OSMT) whereby only a subset of localized orbitals become
insulating (localized), while the remainder have metallic
(extended) bands. An illustration is provided by the quasi-
two-dimensional Mott transition in the Ca2−xSrxRuO4 family,
where the Mott metal-insulator transition and its magnetic
properties [2] at the critical doping x = 0.5 show a coexistence
between a magnetic susceptibility that shows a Curie form for
S = 1/2 and a metallic state. Anisimov et al. [3] have used
DFT+DMFT to explain this situation in terms of an OSMT in
which one Ru 4d orbital is localized, while the other continues
to present metallic behavior.

The present day workhorse for ab initio materials modeling
and prediction, density functional theory (DFT), is fundamen-
tally based on band theory and is unable to describe such
transitions (without symmetry breaking of the electronic de-
grees of freedom, e.g., spin or orbital polarization). To this end,
Hubbard model based methods such as dynamical mean-field
theory (DMFT) and DFT+DMFT [4,5] have been developed
to include localized correlation effects in electronic structure
calculations. However, DMFT-based methods are computa-
tionally expensive and typical present day calculations on real
materials are generally restricted to treating a few correlated
sites. Therefore it is of significant interest to have computation-
ally inexpensive, but necessarily more approximate, methods
that include correlations and can permit one to rapidly explore
the qualitative effects of electronic correlations.

One set of such approximate methods that have been
of recent interest are slave-particle methods. Slave-boson

methods have a long background in condensed matter theory
for analytical treatments of correlations typically in the
limiting case of infinite correlation strength [6–12]. Kotliar
and Ruckenstein [11] used a slave-particle representation to
treat Hubbard-like models at finite interaction strength, which
found applications in the realm of high-temperature supercon-
ductivity [13]. Further, Kotliar and Ruckenstein’s model has
been generalized to multiband models [14–16] where, e.g., the
effects of multiple orbitals, orbital degeneracy, and the Hund’s
interaction have been studied [14,15]. However, the approach
of Kotliar and Ruckenstein, and its various extensions, require
a large number of bosonic slave particles: one needs one boson
per possible electronic configuration on a correlated site.

For this reason, more economical slave-boson represen-
tations have been of significant interest. Florens and Georges
[17,18] used a single “rotor” slave-boson per site that describes
the total electron count on each site in a computationally
economical manner. The slave-rotor method successfully
predicted a number of electronic phases of nickelate het-
erostructures [19], which was a distinct improvement over
previous studies. However, a rotorlike description is not
orbitally selective as it can only describe the total electron
count on a site and not its partitioning among inequivalent
orbitals on that site. An alternative slave-particle approach is to
treat each localized electronic state (i.e., a unique combination
of spin and orbital indices) with a slave boson: this “slave-spin”
approach automatically handles orbital symmetry breaking
and can predict OSMTs [20,21]. Recently, it has been applied
to predict key physical characteristics in iron superconductors
[22].

In this work, we introduce a generalized framework
for slave-particle descriptions. This produces a ladder of
correlated models, and the slave-rotor and slave-spin are
automatically included as two specific cases. Our approach
does not require any physical analogies to create the slave
bosons (e.g., a quantum rotor or angular variable to motivate
the slave rotor or a pseudospin to motive the slave spin) and
works directly in the occupation number representation. In
our approach, one can choose which degrees of freedom are
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treated as correlated degrees of freedom (e.g., total electron
count on a site, electron counts in each orbital, electron count
in each spin channel, etc.) so that we can isolate the effect of
correlations on the separate degrees of freedom in a systematic
manner. Section II presents our general formalism, how it
builds upon previous models, as well as gives a few examples
of models that can be built within this framework. Section III is
devoted to tests of possible models built within this formalism
in a mean-field approach at half-filling within a one-band
and a two-band model in order to compare our results with
those of previous work as well as to better understand the
role of the different terms in an extended Hubbard model
within our formalism. In Sec. IV, we conclude this paper and
discuss possible avenues for researchers to use this method
and possible developments of it in predicting properties of
correlated materials.

II. THE GENERALIZED SLAVE-PARTICLE
REPRESENTATION

In this section, we introduce our generalized slave-particle
representation. In appropriate limits, our approach reproduces
previous frameworks such as the slave-rotor and slave-spin
methods. One utility of our approach is that it allows us to
unite these two, as well as other intermediate models, into a
single slave-particle methodology. A variety of slave-particle
models can be investigated and compared so that one can
isolate which specific correlated degrees of freedom are critical
for describing a specific physical problem.

A. Extended Hubbard model

The general correlated-electron Hamiltonian we consider
is an extended Hubbard model given by

Ĥ =
∑

i

Ĥ i
int +

∑
imσ

εimσ d̂
†
imσ d̂imσ

−
∑

ii ′mm′σ

timi ′m′σ d̂
†
imσ d̂i ′m′σ . (1)

The index i ranges over the localized sites of the system
(usually atomic sites), m ranges over the localized spatial
orbitals on each site, σ denotes spin, Ĥ i

int is the local
Coulombic interaction for site i detailed further below, εimσ

is the onside energy of the orbital imσ , and timi ′m′σ is the
spin-conserving hopping element connecting orbital imσ to
i ′m′σ . The d̂ are canonical fermion annihilation operators. We
take the interaction term to have the standard Slater-Kanamori
form [23]

Ĥ i
int = Ui

2

(
n̂2

i − n̂i

) + U ′
i − Ui

2

∑
m�=m′

n̂imn̂im′

− Ji

2

∑
σ

∑
m�=m′

n̂imσ n̂im′σ

− Ji

2

∑
σ

∑
m�=m′

(d̂†
imσ d̂imσ̄ d̂

†
im′σ̄ d̂im′σ

+ d̂
†
imσ d̂

†
imσ̄ d̂im′σ d̂im′σ̄ ). (2)

The first and second term stem from Coulombic repulsion
terms between the same spatial orbital (U ) and different spatial
orbitals (U ′). The third term is Hund’s exchange between
different orbitals of the same spin with strength J . The fourth
term contains the intrasite “spin-flip” and “pair-hopping”
terms. The index σ̄ is the spin opposite to σ . The subscripts
i on the U , U ′, and J parameters denote the fact that each
correlated site can have its own set of parameters; however, to
keep indices to a minimum below, we suppress this index. The
various number operators are

n̂imσ = d̂
†
imσ d̂imσ , n̂im =

∑
σ

n̂imσ ,

n̂iσ =
∑
m

n̂imσ , n̂i =
∑
mσ

n̂imσ .

For what follows, we keep in mind that due to the fact that
n̂2

imσ = n̂imσ , the Hund’s term in Ĥ i
int can be rewritten in an

equivalent form to give

Ĥ i
int = Ui

2

(
n̂2

i − n̂i

) + U ′
i − Ui

2

∑
m�=m′

n̂imn̂im′

− Ji

2

∑
σ

(
n̂2

iσ − n̂iσ

)2

− Ji

2

∑
σ

∑
m�=m′

(d̂†
imσ d̂imσ̄ d̂

†
im′σ̄ d̂im′σ

+ d̂
†
imσ d̂

†
imσ̄ d̂im′σ d̂im′σ̄ ).

B. Spinons and slave bosons

The interacting Hubbard Hamiltonian is impossible to solve
exactly and even difficult to solve approximately. Part of the
difficulty comes from the fact that we have interacting fermions
which have both charge and spin degrees of freedom. Fol-
lowing well-known ideas in slave-boson approaches [6–12],
one separates at each site the fermionic degrees of freedom
from the charge degrees of freedom by introducing a bosonic
“slave” particle on that site. The boson is spinless and charged,
and one also has a remaining neutral fermion with spin termed
a spinon.

With spinons denoted by f̂ operators and slave bosons by
Ô operators, we define

d̂imσ = f̂imσ Ôiα (3)

and

d̂
†
imσ = f̂

†
imσ Ô

†
iα. (4)

Requiring the f̂ to be fermionic field operators in turn requires
the Ô operators to obey bosonic commutation relations. We
note that while the f̂ spinon operators are standard fermionic
Fock field operators, the bosonic Ô operators are generic and
ad hoc: there is no assumption or requirement that the Ô be
bosonic operators for a Fock space (and in general they are not
of that variety).

The index α is part of our generalized notation that permits
us to unify many slave-particle models. The meaning of α

depends on the type of model chosen, as we will show in
detail below with a variety of examples. The index α refers
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to a subset of the complete set of mσ indices that belong to
a site i. For example, if we use an O(2) slave-rotor model for
the correlated orbitals on an site [17,18] where Ô = e−iθ̂ and
θ is the phase angle of the O(2) rotor, then α is nil: Ôiα = Ôi .
Namely, we have a single slave particle on each site i that tracks
the total number of particles on that site. At the opposite limit,
we can have a unique slave boson for each mσ (the “slave-spin”
method [20,21]), so that α = mσ .

We work directly in the number representation and in-
troduce a number operator for the slave particles (this is
a generalization of the angular momentum operator for the
slave-rotor approach or the Simσ

z quasispin of the slave-spin
representation). The minimum and maximum allowed particle
numbers are Nmin and Nmax so that

N̂iα = diag (Nmin,Nmin + 1, . . . ,Nmax − 1,Nmax). (5)

This operator simply keeps track of the number of slave
particles in each slave mode iα, and the minimum and
maximum allowed occupancies depends the slave model we
choose as discussed below.

Since we have introduced new degrees of freedom and
enlarged the Hilbert space of the problem, it is necessary to
enforce constraints so that one avoids considering “unphysical
states” that have no correspondence to those in the original
problem. The original Hilbert space is spanned by kets of the
form |{nimσ }〉 in the occupancy basis of the d̂imσ operators.
The enlarged Hilbert space is spanned by kets of the product
form |{nimσ }〉f |{Niα}〉s where the subscripts label spinon and
slave sectors. Within this enlarged space, there is a subset of
“physical states” that correspond to the original kets. The first
part of the correspondence is make the fermionic occupancies
{nimσ } of the original electron counts (d̂) and the spinon
counts (f̂ ) identical. Hence, the real question is which Niα

are physically allowed.
Equations (3) and (4) mean that the number of spinon and

slave particles on each site must track each other because they
are annihilated and created at the same time. Hence, following
ideas from prior work [17,20], we enforce constraints to ensure
the particle numbers track each other. We enforce the constraint∑

mσ∈α

f̂
†
imσ f̂imσ |φ〉 = N̂iα|φ〉 (6)

on the kets |φ〉 in the enlarged space. Only these kets are
physically allowed in the exact description of the system, and
they span the physical subspace. We note that the constraint
is on the allowed kets and not on the operators: the operators
act in the extended Hilbert space that includes physical and
unphysical unphysical states, and the f̂ or Ô operators acting
alone can move us from a physical state to an unphysical state.

Enforcing the constraints of Eq. (6) ensures that only
physical states that are in one-to-one correspondence to the
original states are considered in the extended spinon+slave-
boson Hilbert space. (This is the same idea as Ref. [17]
where the O(2) rotor angular momentum operator L̂ has
been replaced by N̂iα .) When the constraints are obeyed, only
physically allowed occupancies for the bosonic operators are
relevant which is the same as setting Nmin = 0 and Nmax to the
maximum allowed occupancy in the slave sector on the site.
For example, for a system of three spatial orbitals on a site

(i.e., three choices of m), Nmax = 6 if we only wish to count
total numbers of electrons using the slave bosons in which case
α is nil. Or, if we want to count up and down spin electrons
separately for this site, then α is the same as σ and Nmax = 3
for each choice of α. However, as explained below, when one
does approximate calculations, choosing Nmin and Nmax that
differ from these values allows for the creation of different
types of models and offers some technical advantages.

For completeness and clarity, the Appendix provides
explicit examples of the enlarged Hilbert spaces and various
choices of α and explains how the action of the d̂imσ and the
f̂imσ Ôiα operators are identical on the physical subspace of
states.

C. Slave operators and Hamiltonian

To reproduce the standard behavior of the annihilation
operator where only physical states are allowed in the spectrum
of the operator [20,21] (also see the Appendix),

d̂imσ |nimσ 〉 = √
nimσ |nimσ − 1〉, (7)

it must be that

f̂imσ |nimσ 〉f = √
nimσ |nimσ − 1〉f (8)

and

Ôiα|Niα〉s = |Niα − 1〉s . (9)

However, if nimσ = 0, then the action of f̂imσ will destroy the
total state |φ〉 regardless of what Ôα may do, so for this case
we have an undetermined situation:

Ôiα|Niα = 0〉s = undetermined. (10)

Following the same logic for the creation operators yields

Ô
†
iα|Niα〉s = |Niα + 1〉s (11)

until we reach the ceiling Niα = Nmax when we have a similar
indeterminacy

Ô
†
iα|Nmax〉s = undetermined.

Putting this all together, the slave-boson operator Ôiα in the
number basis must have the form

Ôiα =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1

Ciα 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12)

where Ciα is at this point an undetermined constant that we
are free to choose. Below, we will use this freedom to ensure
that we reproduce a desired noninteracting band structure at
zero interaction strength (when Ĥ i

int = 0).
Substituting the spinon and slave operators into the original

extended Hubbard Hamiltonian gives the following form,
which for the moment we specialize to the symmetric U ′ =
U,J = 0 case to keep the logic simple (the more general cases
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are enumerated further below):

Ĥ = U

2

∑
i

⎡
⎣(∑

α

N̂iα

)2

−
∑

α

N̂iα

⎤
⎦

+
∑
imσ

εimσ f̂
†
imσ f̂imσ

−
∑

ii ′mm′σ

timi ′m′σ Ô
†
iαÔi ′α′ f̂

†
imσ f̂i ′m′σ .

For the onsite εimσ terms, we have replaced f̂
†
imσ f̂imσ Ô

†
iαÔiα

by the simpler f̂
†
imσ f̂imσ because even though Ô

†
iαÔiα is not

necessarily identity (unless Ciα = 1), the two set of operators
act identically on all the physical states of interest due to the
fact that f̂imσ annihilates the state with zero particles.

The point of introducing the slave degree of freedom is
that they track the number of electrons in the various orbitals
and spin states on each site and the interaction Hamiltonian of
Eq. (2) is essentially determined by these numbers. Hence,
one can write the most important parts of the interaction
Hamiltonian solely in terms of the bosonic slave operators.

D. Decoupling spinons and slaves

Up to this point, our considerations have been for an exact
solution of the interacting Hamiltonian which is impossible
in practice. To make progress, in slave-particle approaches
one splits the problem into two separate and simpler pieces
that are connected to each other via self-consistent averages
of the relevant operators. Specifically, the ground-state wave
function of the system is approximated by a simple, separable
product state |�f 〉|�s〉 where |�F 〉 is a spinon wave function
and |�s〉 is a slave-boson wave function. Since the spinons
and slaves are now decoupled and their number fluctuations
are no longer locked in step, the constraint of Eq. (6) can only
be satisfied on average,〈 ∑

mσ∈α

f̂
†
imσ f̂imσ

〉
f

= 〈N̂iα〉s , (13)

where the f and s subscripts denote averaging over the spinon
|�f 〉 and slave-boson |�s〉 ground-state wave functions,
respectively.

A priori, one can make only few statements about when such
a decoupling scheme is expected to be a good approximation.
First, at zero interaction strength (U = J = 0), the decoupled
approach can reproduce the noninteracting band structure since
the spinons alone can do this. Second, if number fluctuations
about the averages are small so that imposing Eq. (13) is close
to imposing Eq. (6), then we expect the decoupling to work
well in describing ground-state averages; examples of phases
with small or zero number fluctuations are narrow or Mott-like
insulating bands. Third, in infinite dimensions as well as in one
dimension, due to the similarity of the main equations (see
below) with the Gutzwiller approximation [16,18,20,24], one
can say the two approaches should succeed or fail together.
Unfortunately, in two or three dimensions—which are cases
of common interest—there is no a priori way to know whether
the approximation will be good or poor.

We note that when the decoupling approximation is per-
formed and the constraint imposed only on average in Eq. (13),
we may decide to change Nmin and Nmax to allow additional
unphysical states with negative or positive occupations. For
example, letting Nmin → −∞ and Nmax → +∞, which in
turn makes Ciα irrelevant, yields the mean-field O(2) slave-
rotor formalism used in previous work [17,18]. As noted
previously [20], allowing these unphysical states is not a
major error in the limit of strong interactions since number
fluctuations to unphysical occupancies are at any rate unlikely
due to their large Coulombic penalties; however, for small
interaction strengths, the unphysical states have significant
weight in the wave function which creates incorrect behavior,
e.g., improper behavior of the quasiparticle weight versus
interaction strength. At the other extreme, a separate slave
boson for each spin+orbital combination imσ gives Nmin =
0 and Nmax = 1, which is just the “slave-spin” formalism
[20,21].

With this separability assumption, the time-independent
Schrödinger equation for the original system separates into
two separate equations where the constraints of Eq. (13) are
enforced by Lagrange multipliers hiα appearing in the two
Hamiltonians. In the remainder of this section, we discuss
the simplest U = U ′ and J = 0 case for simplicity. Full
expressions involving U , U ′, and J for various slave-boson
choices follow after this section. The spinon Hamiltonian is

Ĥf =
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
iα

hiα

∑
mσ∈α

f̂
†
imσ f̂imσ

−
∑
ii ′αα′

〈Ô†
iαÔi ′α′ 〉s

∑
mσ∈α
m′σ∈α′

timi ′m′σ f̂
†
imσ f̂i ′m′σ . (14)

The spinons are coupled to the slave bosons via the average
〈Ô†

iαÔi ′α′ 〉s , which renormalizes spinon hoppings between
sites i and i ′. The spinon problem is one of noninteracting
fermionic particles with spin.

The slave-boson Hamiltonian takes the form

Ĥs = U

2

∑
i

⎡
⎣(∑

α

N̂iα

)2

−
∑

α

N̂iα

⎤
⎦ +

∑
α

hiαN̂iα

−
∑
ii ′αα′

⎛
⎜⎝ ∑

mσ∈α
m′σ∈α′

timi ′m′σ 〈f̂ †
imσ f̂i ′m′σ 〉f

⎞
⎟⎠Ô

†
iαÔi ′α′ (15)

where the spinon average 〈f̂ †
imσ f̂i ′m′σ 〉f renormalizes the slave-

boson hoppings. The slave-boson problem is one of interacting
charged bosons without spin.

The original problem has been reduced to a set of paired
problems that must be solved self-consistently. The spinon and
slave-boson problems only communicate (i.e., are coupled)
via averages which renormalize each other’s hoppings. At
this point, one must make some approximations in order to
solve the interacting bosonic problem. Typical approaches to
date include single-site mean-field approximations [17,18],
multiple-site mean-field [25], approximation by sigma models
to yield Gaussian integrals [17,18] as well as a combination

235117-4



GENERALIZED SLAVE-PARTICLE METHOD FOR . . . PHYSICAL REVIEW B 92, 235117 (2015)

of using tight-binding parameters obtained using Wannier
functions from DFT followed by a mean-field approximation
[19].

Separately, a procedure is needed to obtain the Ciα . To
this end, at U = U ′ = J = 0, one chooses the Ciα to ensure
that the spinon bands reproduce the original noninteracting
band structure and associated occupancies (i.e., fillings). This
means that the slave-boson expectations 〈O†

iαOi ′α′ 〉s should be
unity in order not to modify the spinon hoppings away from
the original noninteracting hoppings timi ′m′σ . The numbers Ciα

and hiα are determined by making 〈O†
iαOi ′α′ 〉s unity as well

as reproducing the noninteracting occupancies or fillings. This
actually requires us to solve the coupled slave and spinon
problems at U = U ′ = J = 0 self-consistently to obtain Ciα

and hiα . The values of Ciα are then held fixed from that
point forth when turning on U,U ′,J to nonzero values to
self-consistently solve the actual interacting problem.

Prior to solving some model problems within our new
framework, we provide more complete descriptions of a
number of potential choices for the slave-boson model (i.e.,
the choice of α) with full U , U ′, and J dependence. Differing
choices split the interaction terms Ĥ i

int of Eq. (2) in different
ways between the spinon and slave sectors. This opens the
door to systematic comparison between the different types of
treatments of correlations with the slave bosons.

1. Number slave

The simplest approach is to simply create a single slave
boson on each site i whose number operator N̂i counts all
the electrons on that site. In other words, the label α contains
all the mσ orbitals on that site: it is superfluous so we can
write Ôiα = Ôi . Description of the physically allowed states
will set Nmin = 0 while Nmax will be the maximum number of
electrons allowed on that site, e.g., 10 for d shells or 14 for f

shells.
In this case, the slave boson can only represent the U term

of the interaction in Eq. (2); all remaining interaction terms
must be treated at the mean-field level in the spinon sector.
The slave Hamiltonian in this case is

Ĥs = U

2

∑
i

(
N̂2

i − N̂i

) +
∑

i

hiN̂i

−
∑
ii ′

(∑
mm′σ

timi ′m′σ 〈f̂ †
imσ f̂i ′m′σ 〉f

)
Ô

†
i Ôi ′ , (16)

while the spinon Hamiltonian contains all the remaining
interaction terms at mean-field level:

Ĥf = U ′ − U

2

∑
i

∑
m�=m′

[
nimn̂im′ + nim′ n̂im −

∑
σσ ′

(ρim′σ ′imσ f̂
†
im′σ ′ f̂imσ + ρimσim′σ ′ f̂

†
imσ f̂im′σ ′)

]

− J

2

∑
iσ

∑
m�=m′

(nimσ n̂im′σ + nim′σ n̂imσ − ρim′σ ′imσ f̂
†
im′σ ′ f̂imσ − ρimσim′σ ′ f̂

†
imσ f̂im′σ ′)

−J

2

∑
iσ

∑
m�=m′

(ρimσ̄ imσ f̂
†
im′σ̄ f̂im′σ + ρim′σ im′σ̄ f̂

†
imσ f̂imσ̄ − ρim′σ imσ f̂

†
im′σ̄ f̂imσ̄ − ρimσ̄ im′σ̄ f̂

†
imσ f̂im′σ

+ ρim′σ̄ imσ f̂
†
imσ̄ f̂im′σ + ρim′σ imσ̄ f̂

†
imσ f̂im′σ̄ − ρim′σ imσ f̂

†
imσ̄ f̂im′σ̄ − ρim′σ̄ imσ̄ f̂

†
imσ f̂im′σ )

+
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
i

hi n̂i −
∑
ii ′

〈Ô†
i Ôi ′ 〉s

∑
mm′σ

timi ′m′σ f̂
†
imσ f̂i ′m′σ . (17)

In the derivation of the expression for the above spinon
Hamiltonian Ĥf , we have used the definition of the one-
particle density matrix

ρba = 〈f̂ †
a f̂b〉f ,

the standard mean-field contraction of four-particle operators
into two-particle operators weighed by averages

f̂ †
a f̂

†
b f̂cf̂d ≈ ρdaf̂

†
b f̂c − ρcaf̂

†
b f̂d + ρcbf̂

†
a f̂d − ρdbf̂

†
a f̂c,

and the average occupations

nimσ = ρimσimσ , nim =
∑

σ

nimσ .

This approach has the simplest slave Hamiltonian and the most
complex spinon Hamiltonian. This is because the number-
only slave boson can only describe the simplest U part of
the interaction; the remaining terms involving U ′ and J must

be handled at mean-field level by the spinons. As mentioned
above, the physical range for the occupation numbers of the
number slave N̂i is from zero to the physically allowed Nmax

for that site. However, we can decrease Nmin below zero and
Nmax above the physical value if desired: in the limit where the
range of occupancies allowed is very large, we automatically
recover the O(2) slave-rotor method.

2. Orbital slave

A more fine-grained model is to count the number of
electrons in each spatial orbital m separately with a slave
boson. We call this the orbital slave method. Here, the index α

labels a specific spatial orbital m and ranges over the two spin
directions for that orbital: we have Ôim for the raising/lowering
operator and N̂im for the particle count slave operators. The
slave sector can now directly describe more of the interaction
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terms:

Ĥs = U

2

∑
i

⎡
⎣

(∑
m

N̂im

)2

−
∑
m

N̂im

⎤
⎦ + U ′ − U

2

∑
i

∑
m�=m′

N̂imN̂im′

+
∑

i

∑
m

himN̂im −
∑

ii ′mm′

(∑
σ

timi ′m′σ 〈f̂ †
imσ f̂i ′m′σ 〉f

)
Ô

†
imÔi ′m′ (18)

and the spinon Hamiltonian is less complex than the previous case as it only has the J terms at mean-field level:

Ĥf = −J

2

∑
iσ

∑
m�=m′

(nimσ n̂im′σ + nim′σ n̂imσ − ρim′σ ′imσ f̂
†
im′σ ′ f̂imσ − ρimσim′σ ′ f̂

†
imσ f̂im′σ ′)

− J

2

∑
iσ

∑
m�=m′

(ρimσ̄ imσ f̂
†
im′σ̄ f̂im′σ + ρim′σ im′σ̄ f̂

†
imσ f̂imσ̄ − ρim′σ imσ f̂

†
im′σ̄ f̂imσ̄ − ρimσ̄ im′σ̄ f̂

†
imσ f̂im′σ + ρim′σ̄ imσ f̂

†
imσ̄ f̂im′σ

+ ρim′σ imσ̄ f̂
†
imσ f̂im′σ̄ − ρim′σ imσ f̂

†
imσ̄ f̂im′σ̄ − ρim′σ̄ imσ̄ f̂

†
imσ f̂im′σ )

+
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
i

∑
m

himn̂im −
∑

ii ′mm′
〈Ô†

imÔi ′m′ 〉s
∑

σ

timi ′m′σ f̂
†
imσ f̂i ′m′σ . (19)

3. Spin slave

An alternative fine-graining is to have two slave bosons per site that count spin-up and spin-down electrons separately but
with no orbital differentiation. Namely, α labels a spin state σ but ranges over all spatial orbitals. Hence we have Ôiσ and N̂iσ

for our slave operators. The slave-boson Hamiltonian is

Ĥs = U

2

∑
i

⎡
⎣(∑

σ

N̂iσ

)2

−
∑

σ

N̂iσ

⎤
⎦ − J

2

∑
σ

(
N̂2

iσ − N̂iσ

) +
∑

i

∑
σ

hiσ N̂iσ −
∑
ii ′σ

(∑
mm′

timi ′m′σ 〈f̂ †
imσ f̂i ′m′σ 〉f

)
Ô

†
iσ Ôi ′σ ,

(20)

while the spinon Hamiltonian is

Ĥf = U ′ − U

2

∑
i

∑
m�=m′

[
nimn̂im′ + nim′ n̂im −

∑
σσ ′

(ρim′σ ′imσ f̂
†
im′σ ′ f̂imσ + ρimσim′σ ′ f̂

†
imσ f̂im′σ ′)

]

− J

2

∑
iσ

∑
m�=m′

(ρimσ̄ imσ f̂
†
im′σ̄ f̂im′σ + ρim′σ im′σ̄ f̂

†
imσ f̂imσ̄ − ρim′σ imσ f̂

†
im′σ̄ f̂imσ̄ − ρimσ̄ im′σ̄ f̂

†
imσ f̂im′σ + ρim′σ̄ imσ f̂

†
imσ̄ f̂im′σ

+ ρim′σ imσ̄ f̂
†
imσ f̂im′σ̄ − ρim′σ imσ f̂

†
imσ̄ f̂im′σ̄ − ρim′σ̄ imσ̄ f̂

†
imσ f̂im′σ )

+
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
i

∑
m

himn̂im −
∑

ii ′mm′
〈Ô†

imÔi ′m′ 〉s
∑

σ

timi ′m′σ f̂
†
imσ f̂i ′m′σ . (21)

4. Spin+orbital slave

This approach represents maximum fine-graining whereby we use a slave boson for each spin+orbital combination. Thus the
index α now represents a full set of quantum numbers mσ so we have Ôimσ and N̂imσ for the slave operators. The physically
allowed occupancies are 0 and 1 which is isomorphic to a pseudospin. For this reason, the name used for this approach in the
literature is the “slave-spin” method [20,21]. However, given the possible confusion this term creates between the real electron
spin as well as the difficulty of using such a name unambiguously in our generalized formalism, we prefer the more explicit name
“spin+orbital-slave” where the spin refers to the physical electron spin.

In this approach, we can describe the maximum number of interaction terms in the slave Hamiltonian:

Ĥs = U

2

∑
i

⎡
⎣

(∑
mσ

N̂imσ

)2

−
∑
mσ

N̂imσ

⎤
⎦ + U ′ − U

2

∑
m�=m′

(∑
σ

N̂imσ

)(∑
σ ′

N̂im′σ ′

)
− J

2

∑
σ

∑
m�=m′

N̂imσ N̂im′σ

+
∑

i

∑
mσ

himσ N̂imσ −
∑

ii ′mm′σ

timi ′m′σ 〈f̂ †
imσ f̂i ′m′σ 〉f Ô

†
imσ Ôi ′m′σ . (22)
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The corresponding spinon Hamiltonian still contains the spin-flip and pair-hopping terms:

Ĥf = −J

2

∑
iσ

∑
m�=m′

(ρimσ̄ imσ f̂
†
im′σ̄ f̂im′σ + ρim′σ im′σ̄ f̂

†
imσ f̂imσ̄ − ρim′σ imσ f̂

†
im′σ̄ f̂imσ̄ − ρimσ̄ im′σ̄ f̂

†
imσ f̂im′σ + ρim′σ̄ imσ f̂

†
imσ̄ f̂im′σ

+ ρim′σ imσ̄ f̂
†
imσ f̂im′σ̄ − ρim′σ imσ f̂

†
imσ̄ f̂im′σ̄ − ρim′σ̄ imσ̄ f̂

†
imσ f̂im′σ )

+
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
i

∑
m

himn̂im −
∑

ii ′mm′
〈Ô†

imÔi ′m′ 〉s
∑

σ

timi ′m′σ f̂
†
imσ f̂i ′m′σ . (23)

We mention that in prior work [21], the spin-flip and pair-
hopping terms were argued to be well treated in the slave-
particle sector instead. Namely, they were removed from the
spinon Hamiltonian and the following terms were added to the
spin+orbital-slave Hamiltonian:

− J
∑
m�=m′

(Ŝ+
im↑Ŝ−

im↓Ŝ+
im′↓Ŝ−

im′↑ + Ŝ+
im↑Ŝ+

im↓Ŝ−
im′↑Ŝ−

im′↓ + H.c.)

(24)

where the Ŝ operators in the number basis are

Ŝ+ =
(

0 0
1 0

)
, Ŝ− =

(
0 1
0 0

)
. (25)

While such an ad hoc approach is not the strictly theoretically
consistent way to split operators between the spinon and
slave boson sectors, in practice it does reproduce the desired
behavior of the spin-flip and pair-hopping terms in the
slave-boson sector and does not introduce any numerical
difficulties.

Our approach provides some insights into this inconsistency
issue while simultaneously easing some technical problems
that can arise in the spin+orbital-slave approach. Part of the
inconsistency is that the ad hoc Ŝ± slave operators are not the
same as the Ô operators (the only way to make them the same
is the extreme choice Cimσ = 0). For example, at half-filling
when Cimσ = 1, Ô and Ô† are the same operator and equal
the Ŝx Pauli matrix, so one can not use Ô and Ô† to represent
any sensible representation of the spin-flip or pair-hopping
interaction terms. If we choose to include some unphysical
states, however, things become different. For example, if we
widen the range of the spin+orbital slave-boson occupancies
from {0,1} to {−1,0,1,2} then Ô and Ô become different. One
can then write a more natural interaction term of the form

−J
∑
m�=m′

(Ô†
im↑Ôim↓Ô

†
im′↓Ôim′↑

+ Ô
†
im↑Ô

†
im↓Ôim′↑Ôim′↓ + H.c.) (26)

that only uses the slave-boson Ô operators.
Separately, enlarging the set of occupancies beyond {0,1}

has some technical advantages. When the occupancies are
limited to {0,1}, then we have the analytical form [26] given
by Cimσ = [nimσ (1 − nimσ )]−1/2. For occupancies nearing the
extremes (nimσ → 0 or 1), the Cimσ become very large,
the Oimσ matrices become ill-behaved, and the numerical
algorithm using them becomes difficult to stabilize. Permitting
a wider range of occupancies such as {−1,0,1,2} makes the
Cimσ have reasonable values and the numerical procedure is
well behaved. In the large interaction limit, the addition of the

unphysical states (e.g., occupancies −1 and 2 in this case) is
not a major error since number fluctuations are suppressed;
the main problem is in the weak interaction regime where
this enlargement of the occupancy basis provides numerical
stability but can produce quantitative errors.

III. MEAN-FIELD TESTS

We now proceed to describe computational results based on
a simple single-site, paramagnetic, nearest-neighbor, mean-
field solution of the slave Hamiltonian at half-filling. This
will permit us to both reproduce prior literature as well as to
compare various slave Hamiltonians to each other.

To do so, we shift the local interaction energies so that they
are zero at half-filling, i.e., when nimσ = 1/2. We also make
the standard choice U ′ = U − 2J . The local interaction term
(ignoring for the moment the spin-flip and pair-hopping terms)
takes the form from prior work [20]:

Ĥ i
int = U − 2J

2

(
n̂i − ni

orb

)2 + J
∑
m

(n̂im − 1)2

−J

2

∑
σ

(
n̂iσ − ni

orb/2
)2

, (27)

where ni
orb is the number of localized correlated spatial orbitals

on site i.
In the single-site mean-field approximation, we will be

solving for a single-site self-consistently coupled to an
averaged bath of bosons on the nearest-neighbor sites. Our
assumptions ensure that all sites are identical with no spin
polarization. Furthermore, to connect to the literature, we
further assume that in the multiorbital case there are only
nonzero hoppings between nearest-neighbor orbitals with the
same m index. With all these assumptions, it is easy to see
that Ciα = 1 is the choice that gives half-filling for the slave
problem at U = U ′ = J = 0. In addition, we can set the
Lagrange multipliers hiα = 0 since we have set the half-filling
energy to be zero. The density matrix elements 〈f̂ †

imσ f̂i ′m′σ 〉f
that renormalize the slave-boson hoppings will be spin and
site independent and will be nonzero only when m = m’.
Hence they can be absorbed into the definition of the hopping
elements timi ′m′σ . The density of states for a spinon band is
taken to be the standard semicircular one

D(E) =
{
c

√
4t2−E2

2πt2 if |E| < 2|t |
0 else

.
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We begin with J = 0. The slave Hamiltonian is

Hs = U

2

∑
i

(∑
α

N̂iα − norb

)2

−
∑
iα

∑
m∈α

(
Ôiαteff

m + Ô
†
iαteff

m

)
, (28)

where the effective hoping for spatial orbital m is

teff
m =

∑
i ′α′

∑
m′σ∈α′

timi ′m′σ 〈Ôα′ 〉s . (29)

The simple form of this Hamiltonian makes it easy to directly
read off the quasiparticle weight renormalization Zα , which
narrows the spinon bands:

Zα = 〈Ôα〉2
s . (30)

When Zα = 0, a Mott insulator is realized in such a simple
single-site model [27]. We solve the problem self-consistently
for different slave models. Since at half-filling the Lagrange
multipliers hiα = 0, all that is required to solve the spinon
problem is to renormalize each spinon bandwidth (i.e.,
hopping) by the appropriate Zα factor.

A. Single-band Mott transition

We begin with a single-band model where there is one
spatial orbital per site. Figure 1 compares various slave models
based on the dependence of Z on U . Specifically, we compare
the slave-rotor model (allowed occupancies from −∞ to
+∞), the orbital slave model (allowed occupancies 0, 1, or

FIG. 1. (Color online) Quasiparticle weight Z as a function of
U/Uc for different slave-particle models for the paramagnetic single-
band Hubbard at half-filling. Uc is the critical value of U when
Z = 0, i.e., the Mott transition, for each model. The black squares
show slave-rotor results, the blue line is the Gutzwiller approximation
results which for this model are the same as the spin+orbital-slave
(“slave-spin”) results in blue squares, and the red circles show the
orbital-slave results (identical to the number slave). We note that the
orbital-slave Hilbert space is very small, so that it does not agree with
the rotor, unlike the two-band slave number.

2) which here is identical to the number-slave model, the
spin+orbital-slave (“slave-spin”) model (allowed occupancies
0 or 1) and the Gutzwiller approximation where ZGutzwiller =
1 − (U/Uc)2.

For this system, the Gutzwiller and spin+orbital-slave
methods predict exactly the same results, as noted previously
[20]. In fact, the spin+orbital-slave model, at half-filling for
a single orbital per site at the single-site mean-field level, can
be shown to be isomorphic to the Gutzwiller approximation
as well as to the Kotliar-Ruckenstein model as described
by Bunemann [16]. This shows that, beyond their utility as
mathematical models, such slave-boson methods can parallel
and help understand other approaches that originate from
apparently different sets of many-body approximations.

The slave-rotor method has an aberrant behavior for small
U . Specifically, Z for the slave-rotor method has the small U

expansion

Zrotor = 1 − O(
√

U/teff). (31)

The reason for this behavior is due to the unbounded number
states permitted in the slave-rotor model. Specifically, in the
number basis the slave-rotor problem corresponds to an infinite
one dimensional lattice labeled by Ni , with hoppings teff

between neighboring sites, and with a quadratic potential
UN2

i /2. For small U , the ground state of this problem will
be spread over many sites so that we can take the continuum
limit. The problem turns into the textbook one-dimensional
harmonic oscillator with mass 1/(2teff) and spring constant
U . The ground-state wave function ψ(Ni) is a Gaussian, and
〈O〉s = ∑

n ψ(n)ψ(n − 1) can be computed. Expansion in U

then gives the above form.
In reality, however, perturbation theory guarantees that

quasiparticle weights are modified starting at second order
in the interaction strength:

Z = 1 − O
(
U 2/t2

eff

)
. (32)

The slave rotor fails since for small U it spreads the wave
function over a large number of unphysical states. What
this means is that one would incorrectly overestimate the
importance of electronic correlations at weak interaction
strengths when using the slave-rotor method. In this view, our
orbital and number-slave methods may be viewed as corrected
rotors which are restricted to the appropriate finite set of
physical states. Finally, Fig. 1 illustrates that slave methods
employing finite slave Hilbert spaces all automatically correct
the small U behavior.

B. Isotropic two-band Mott transition

Next, we consider a two-band degenerate Hubbard model.
Figure 2 displays the results. We note that the two band eg

model is of physical relevance as the slave rotor has shown
itself to be of use in eg nickelate systems within a pd model
[19]. For this particular degenerate case with high symmetry,
the spin-slave and orbital-slave models turn out to be identical
since each posits two slave particles each with the allowed
occupations 0, 1, or 2. We note that, in this case, the slave
rotor and number slave become very similar for large U : once
slave number fluctuations of Ni are small, the size of the slave
Hilbert space becomes irrelevant.
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FIG. 2. (Color online) Quasiparticle weight Z as a function of
U/Uc for different slave-particle models for a degenerate paramag-
netic two-band Hubbard model at half-filling.

C. Anisotropic orbital-selective Mott transition

We present mean-field calculations exemplifying the
orbital-selective Mott transition in an anisotropic two band
model with paramagnetic solution and at half-filling. We take
spatial orbital m = 1 to have the larger hopping t1 while m = 2
has the smaller hopping t2. Hence, t2/t1 specifies the degree
of anisotropy.

The first slave model for this system is the spin+orbital
method, which has been used previously [20,21]: each slave
boson has allowed occupancies 0 or 1. The second model
is to forgo the explicit spin degree of freedom in the slave
description and to employ the orbital slave model where
each slave boson has allowed occupancies 0, 1, and 2. The
comparison tests the importance of explicit treatment of spin in
the electronic correlations for such a system. We will focus on
the orbital-selective Mott transition (OSMT) when one orbital
has a finite bandwidth and is metallic while the other has
undergone a Mott insulating transition and is localized.

We begin with J = 0. Figure 3 illustrates the behavior of
the renormalization factor Z for both bands versus U for three
different t2/t1 ratios within the two slave particle models. An
OSMT occurs for small enough t2/t1 ratio but the critical
value depends on the type of slave model. For the orbital-slave
model, we find that OSMT occurs when t2/t1 < 0.25, while
for spin+orbital slave, we must have a slightly smaller value
of t2/t1 < 0.2.

We now consider J > 0. We continue to treat the spinon
problem as that of a simple, paramagnetic, half-filled tight-
binding model with two separate bands with each hopping
renormalized by the appropriate 〈Ôα〉s . For the orbital-slave
model, we can only include the first two terms of Eq. (27) due
to the lack of an explicit spin label in the slave description.
Thus we will compare the orbital slave and spin+orbital slave
using the same interaction term

Ĥ i
int = U − 2J

2
(N̂i − 2)2 + J

∑
m

(N̂im − 1)2. (33)

FIG. 3. (Color online) Quasiparticle weights for the paramag-
netic anisotropic two-band single-site Hubbard model at half-filling
as predicted by the orbital+spin-slave model (blue squares) and the
orbital-slave model (red circles) at J = 0 for three t2/t1 ratios. In
each plot, the Z value for the first orbital with larger hopping t1 is
denoted by symbols and a continuous line while for the second orbital
symbols and a dashed line are used. An OSMT occurs when the two
Z do not go to zero at the same U value: orbital slave (red circles) in
the center plot and both slave models in the lower plot.

It is clear from the above two interaction terms that, for fixed U ,
J > 0 permits larger orbital independent number fluctuations
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FIG. 4. (Color online) Phase diagram for the anisotropic two-
band single-site Hubbard model at half-filling as a function of the
anisotropy ratio t2/t1 and J . Two slave-boson methods are used:
orbital slave (red circles) and spin+orbital slave (blue squares). In
each case, the boundary curve demarcates the possible existence
of an orbital-selective Mott Transition when U is ramped up from
U = 0. Regions above the boundary display OSMT, while regions
below it present a standard Mott transition where both bands become
insulating at the same critical Uc value.

(i.e., it reduces the correlation effect of this mode) since
U ′ = U − 2J becomes smaller in the first term. However, the
second +J term simultaneously punishes intra-orbital number
fluctuations and thus enhances intra-orbital correlation effects
which in turn favors an OSMT.

The phase diagram as a function of t2/t1 and J for
this system in shown in Fig. 4. The boundaries shown
separate regions where OSMT occurs (above the boundaries)
from where a standard Mott transition occurs (below the
boundaries). The figure confirms the fact that increasing J

favors OSMT. Qualitatively, the orbital slave and spin+orbital
slave show very similar behavior: they have a critical t2/t1 at
J = 0 between 0.2 − 0.25 for OSMT to occur, and then with
increasing J the critical t2/t1 becomes larger so less anisotropy
is needed to drive an OSMT, as observed previously in DMFT
[28] and spin+orbital slave calculations [20].

We have also considered the case where we permit the
orbital-slave model to have unlimited occupations: namely,
we have a two rotor model (one for each orbital occupation).
In this case, we find that no OSMT is possible when J = 0
for any bandwidth ratio t2/t1. This result is similar to previous
DMFT [20,28], which found that a finite J is needed in order
to have an OSMT. However, it disagrees with the results
of previous orbital+spin-slave results [20] as well as our
results above where we find that a small enough bandwidth
ratio t2/t1 makes an OSMT possible even for J = 0. These
differences further illustrate the need for multiple models
and cross verification when describing a possible OSMT for
real materials which have complex band structures (e.g., the
three-band Ca2−xSrxRuO4 system [3]).

Prior work [20] has shown that the presence of the Hund’s
term

− J

2

∑
σ

∑
m�=m′

(n̂mσ − 1/2)(n̂m′σ − 1/2) = −J

2

∑
σ

(n̂iσ − 1)2

(34)

makes OSMT slightly more difficult to achieve as it increases
interorbital m �= m′ correlations by favoring spin pairing
between different orbitals but does not aid intraorbital correla-
tions. Separately, adding the spin-flip and pair-hopping terms
makes OSMT easier to achieve [20].

Although not directly relevant to our main focus, for
completeness we include a final comparison based on a fixed
slave model with various combination of interaction terms.
We choose the spin+orbital orbital model and then choose
to include different interaction terms in the slave-particle
Hamiltonian. The first choice is the interaction terms used
above in Eq. (33). The second choice is to add the Hund’s term

Ĥ i
int = U − 2J

2

(
N̂i − ni

orb

)2 + J
∑
m

(N̂im − 1)2

− J

2

∑
σ

(N̂iσ − 1)2. (35)

Prior work [20] has shown that the presence of the Hund’s
term makes OSMT more difficult to achieve as it increases
interorbital correlations by favoring spin-pairing among dif-
ferent orbitals but does not enhance intraorbital correlations.

The third choice is to add the spin-flip and pair-hopping
terms as per the ad hoc method of Eq. (24):

Ĥ i
int = U − 2J

2
(N̂i − 2)2 + J

∑
m

(N̂im − 1)2

− J

2

∑
σ

(N̂iσ − 1)2

− J
∑
m�=m′

(Ŝ+
im↑Ŝ−

im↓Ŝ+
im′↓Ŝ−

im′↑

+ Ŝ+
im↑Ŝ+

im↓Ŝ−
im′↑Ŝ−

im′↓ + H.c.). (36)

Adding these spin-flip and pair-hopping terms makes OSMT
easier to achieve [20].

Phase diagrams for the second and third choices above are
available in the literature [20] and are reproduced in Fig. 5,
which also includes the results of the first choice as well. We
note that only including the intraorbital terms (first choice)
or all terms (third choice) leads to essentially the same phase
diagram. However, excluding the spin-flip and pair-hopping
terms (second choice) makes it harder to achieve an OSMT
phase: one can not achieve an OSMT for any reasonable J

once the bandwidth ratio t2/t1 exceeds ≈0.6. The physics
behind this progression is as follows. Starting with J = 0 and
a relatively large U , the ground-state basically contains only
states that are half-filled and have a total of two electrons per
site (there are six such states). Adding the intraorbital term
(first choice) with J > 0 then further restricts us to the four
states with only one electron per orbital (but with no preference
for spin states). Such a ground state can suffer an OSMT
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FIG. 5. (Color online) Phase diagram for the anisotropic two-
band single-site Hubbard model at half-filling as a function of the
anisotropy ratio t2/t1 and J for the spin+orbital-slave model. Three
different interaction terms are used: intraorbital term only [Eq. (33)],
intraorbital plus Hund’s [Eq. (35)], and all terms included [Eq. (36)].

when further increasing U since the narrower band (more
localized orbital) can become fully localized. Next, adding
the Hund’s term (second choice) creates a preference for the
two spin-aligned states in this four dimensional subspace by
lowering their energy: this enhances interorbital correlations
at the expense of intraorbital correlations which favor an
OSMT phase. Third, adding the spin-flip and pair-hopping
(third choice) terms essentially cancels the effect of the Hund’s
term. This is explained by a straightforward computation of
the matrix elements of this interaction in the four dimensional
subspace. One finds that the spin-flip term couples the two
states where electrons have opposite spins with a strength
that is precisely such that their symmetric combination has
the same energy lowering as the Hund’s term induces for
the spin-aligned states. Thus we are essentially back to the
four states we had when only operating with the intraorbital
interaction (first choice). Our final comment is that these
differences are not very dramatic once the hopping ratio t2/t1
is below ≈0.5. As Fig. 5 shows, in all cases only a modest
value for J is sufficient to stabilize the OSMT phase instead
of a standard Mott transition.

D. Ground-state energies

A final and most stringent test for the slave models is to
compare their total energies. In the interest of space, we will
focus on the simplest case of degenerate orbitals, isotropic
hopping, and phases that are paramagnetic and paraorbital
(no orbital differentiation) to make some general comments.
In a fully self-consistent model with more parameters and
nondegenerate bands, we may expect more complexity to
be revealed. Previous work [29] has shown that ground-
state calculations can reveal competition between the orbital-
selective Mott state (due to very large crystal-field splitting)
and an antiferromagnetic Mott insulating state (due to a large
J ), a transition which is likely first order [29].

FIG. 6. (Color online) Ground-state energy per site (Eg/t) of a
single-band Hubbard model at J = 0 in the paramagnetic phase
at half-filling for a variety of slave representations as well as for
the Hartree-Fock approximation. D = 2t is the band width of the
noninteracting system. For this model, the orbital slave is identical to
the number slave and the spin slave is the same as the spin+orbital
slave.

With J = 0, the ground-state energy per site of the
paramagnetic and paraorbital phase is

Eg = −
∑

α

∑
m∈α

teff
m 〈Ôα〉s + U

2

〈[∑
α

N̂α − norb

]2〉
. (37)

We compute the ground-state energy as a function of U for
one-band and two-band isotropic models at half-filling (same
systems that are in the above sections) and also include the
Hartree-Fock total energy. Figures 6 and 7 display the energies
versus U for the one-band and two-band cases, respectively.
The plots employ the half-band width D = 2t .

FIG. 7. (Color online) Ground-state energy per site (Eg/t) for an
isotropic two-band Hubbard model at half-filling for J = 0 in the
paramagnetic and paraorbital phase.

235117-11



ALEXANDRU B. GEORGESCU AND SOHRAB ISMAIL-BEIGI PHYSICAL REVIEW B 92, 235117 (2015)

In all cases, for large enough U , the slave models produce
an insulating phase (i.e., isolated atomic-like sites), which has
zero hopping and zero number fluctuation and thus zero energy
in this model. The Hartree-Fock total energy necessarily has
a linear dependence on U for the high degree of spin and
orbital symmetry since the Hartree-Fock Slater determinant
wave function will be unchanged versus U and always predicts
a metallic system.

The next observation is that for small U , some of the
slave models do worse than Hartree-Fock. However, as U

is increased their total energies eventually drop below the
Hartree-Fock one. Furthermore, increasing the number of
bands from one to two improves the total energies of all slave
methods compared to Hartree-Fock. For a given number of
bands, increasing the fine-grainedness of the slave model (i.e.,
having more slave modes per site) also lowers the total energy.
Hence the slave-rotor is generally the worst performer.

A final observation is that only the fully fine-grained
spin+orbital-slave method always predicts a total energy
below that of Hartree-Fock. It also has the correct linear slope
of Eg versus U matching the Hartree-Fock one. The other
slave methods have higher slopes of Eg versus U at the origin
so that they can only outperform Hartree-Fock beyond some
finite value of U . The slope matching of the spin+orbital
slave is a natural expression of its accounting in detail for all
the quantum numbers on each site and in being forced (like all
slave models) to reproduce the noninteracting state at U = 0.
The fact that the other slave models have higher slopes is a
reflection of their larger (and quantitatively incorrect) number
fluctuations at U = 0. Namely, the interaction Hamiltonian
Ĥ int is a quadratic function of the occupancy numbers so that
its expectation value (the interaction energy) depends directly
on the fluctuations of these occupancies; at fixed U , the larger
the set of allowed occupancies in a slave model, the larger this
quadratic fluctuation and the higher the interaction energy. In
fact, the number fluctuations of the slave-rotor model are so
large at U = 0 that they lead to a pathological infinite slope
of Eg versus U at U = 0. By comparison, the number-slave
method, which can be viewed as a corrected rotor, has a much
more reasonable behavior.

As a side note, it is interesting that for the single-band
case, one has the following analytical results based on the
coincidence of the of the spin+orbital-slave and Gutzwiller
approximations. In the metallic phase, where U < Uc, the
quasiparticle weight Z is given by

Z = 1 − U 2/U 2
c (38)

and from perturbation theory at small Z [18],

Uc = 8D. (39)

Using the definition

t0 = t〈f †
imσ fimσ 〉U=0, (40)

the ground-state energy is given by

Eg = −2t0 + U

4
− U 2

128t2
0

. (41)

For the insulating state (U � Uc), we have Eg = 0.

Our calculations in this section permit us to say that
while our generalized approach permits us to easily compare
different slave models and isolate different degrees of freedom
simply, total energy comparisons are much more challenging.
First, one should do energy comparisons of different phases
within a single slave model since the differing models can
produce differing total energies with dependence on the details
of the system. Second, after understanding the relevant degrees
of freedom and how they influence the physical behavior,
the total energy calculation should be most accurate with the
most fine-grained model, which is in the spin+orbital-slave
representation (“slave spin” in the literature).

IV. CONCLUSIONS

We have developed a generalized formalism that reproduces
previous slave-particle formalisms in appropriate limits but
also allows us to define and explore intermediate models and
to compare them systematically. Our formalism moves beyond
the analogy with angular momentum behind the slave-rotor
formalism, and instead works directly in the physically correct
finite-sized number representation permitting new models to
be developed in a more natural way. As an example, we have
shown how the standard Mott transition as well as the orbital
selective Mott transition appear in different slave models for
single-band and two-band Hubbard models.

We believe it is useful to have a variety of slave-particle
methods on hand as they provide computationally inexpensive
methods for exploring the role of electronic correlations
in materials and interfaces with broken symmetries (e.g.,
orbital symmetry breaking). The cheap computational load
is particularly advantageous for interfacial systems where
translational symmetry is lost in one direction and simulation
cells that capture the region near the interface must contain at
least tens to hundreds of atoms. As such, these simpler slave-
particle models are useful for exploratory research where more
accurate and expensive Hubbard-model solvers such as DMFT
[4,30] would be prohibitive to apply routinely. The ability to
isolate potentially interesting correlated degrees of freedom
from each other by choosing different slave approaches may
illuminate which degrees of freedom are the most critical to
model accurately.
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APPENDIX

In this appendix, we provide some detailed examples of how
the physical subspace is isolated from the extended Hilbert
space of spinon+slave-boson states and how the operators
act in the physical subspace. In the process, we also provide
explicit examples for various choices of the slave labels α. We
focus on a single site i and hence suppress the site label i below.

The original Hilbert space, i.e., the Fock space of the
fermionic d̂mσ field operators, is spanned by basis kets in
the occupancy number representation for the field operators
and have the form |{nmσ }〉 where nmσ ∈ {0,1}. The enlarged
Hilbert space for spinons and slave particles is spanned by
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product kets in the number occupancy basis of the form

|{nmσ }〉f |{Nα}〉s ,
where, again, nmσ ∈ {0,1} are the fermionic spinon occupan-
cies, while Nα are the bosonic particle counts. The f and s

subscripts label the spinon and slave-boson kets.
The constraint of Eq. (6) on the physical allowed states

translates to the numerical constraint

Nα =
∑
mσ∈α

nmσ . (A1)

We remember that we choose the {nmσ } to match exactly
between the original electron and spinon kets.

We begin with the simplest example of a single spatial
orbital on the site where the kets look like |n↑,n↓〉

f
|{Nα}〉s .

There are two states for electrons and thus a total of four
possible configurations: no electrons, one spin-up electron,
one spin-down electron, and a pair of spin-up and spin-down
electrons. If we have a single slave boson per site to simply
count the number of electrons so the α label is nil (i.e., the
number-slave representation), then our four physically allowed
kets are

|0,0〉f |0〉s , |1,0〉f |1〉s , |0,1〉f |1〉s , |1,1〉f |2〉s .
We note that the number of slave particles is constrained by
Eq. (6) to the total number of spinons.

Next, if we have this single orbital but instead we choose to
have a slave mode per spin channel (i.e., the spin+orbital-slave
representation), then we have two sets of slave bosons since
now α = σ . The four physical states are now

|0,0〉f |0,0〉s , |1,0〉f |1,0〉s , |0,1〉f |0,1〉s , |1,1〉f |1,1〉s .
A more complex set of examples has two spatial orbitals per

site. Here, we have four choices of spinon label mσ which we
order as 1↑, 1↓, 2↑, 2↓. For the number-slave representation,
we have the 16 physical kets

|0,0,0,0〉f |0〉s , |1,0,0,0〉f |1〉s , |0,1,0,0〉f |1〉s ,
|0,0,1,0〉f |1〉s , |0,0,0,1〉f |1〉s , |1,1,0,0〉f |2〉s ,
|1,0,1,0〉f |2〉s , |1,0,0,1〉f |2〉s , |0,1,1,0〉f |2〉s ,
|0,1,0,1〉f |2〉s , |0,0,1,1〉f |2〉s , |1,1,1,0〉f |3〉s ,
|1,1,0,1〉f |3〉s , |1,0,1,1〉f |3〉s , |0,1,1,1〉f |3〉s ,

|1,1,1,1〉f |4〉s .

An orbital-slave representation has slave bosons counting the
number of electrons in each spatial orbital, so α = m. The 16
allowed kets are

|0,0,0,0〉f |0,0〉s , |1,0,0,0〉f |1,0〉s , |0,1,0,0〉f |1,0〉s ,
|0,0,1,0〉f |0,1〉s , |0,0,0,1〉f |0,1〉s , |1,1,0,0〉f |2,0〉s ,
|1,0,1,0〉f |1,1〉s , |1,0,0,1〉f |1,1〉s , |0,1,1,0〉f |1,1〉s ,
|0,1,0,1〉f |1,1〉s , |0,0,1,1〉f |0,2〉s , |1,1,1,0〉f |2,1〉s ,
|1,1,0,1〉f |2,1〉s , |1,0,1,1〉f |1,2〉s , |0,1,1,1〉f |1,2〉s ,

|1,1,1,1〉f |2,2〉s .
Alternatively, one can use the spin-slave representation where
the bosons count the number of electrons of each spin, so
α = σ . The allowed kets are

|0,0,0,0〉f |0,0〉s , |1,0,0,0〉f |1,0〉s , |0,1,0,0〉f |0,1〉s ,
|0,0,1,0〉f |1,0〉s , |0,0,0,1〉f |0,1〉s , |1,1,0,0〉f |1,1〉s ,
|1,0,1,0〉f |2,0〉s , |1,0,0,1〉f |1,1〉s , |0,1,1,0〉f |1,1〉s ,
|0,1,0,1〉f |0,2〉s , |0,0,1,1〉f |1,1〉s , |1,1,1,0〉f |2,1〉s ,
|1,1,0,1〉f |1,2〉s , |1,0,1,1〉f |2,1〉s , |0,1,1,1〉f |1,2〉s ,

|1,1,1,1〉f |2,2〉s .
The final point is to check that the original electron

operators d̂mσ have the same effect as the combination of
spinon and slave f̂mσ Ôα in the physical subspace. That this
is in fact true follows directly from the defining Eqs. (7)–(9)
along with the constraint on Nα in Eq. (A1). It is easy to check
that the matrix elements of d̂mσ and f̂mσ Ôα must match:

〈n′
mσ |d̂mσ |nmσ 〉 = f 〈n′

mσ |f̂mσ |nmσ 〉f · s〈N ′
α|Ôα|Nα〉s .

The matching of the d̂ and f̂ matrix elements is clear because
the occupancies nmσ and n′

mσ match by definition on both sides
and both operators have identical behavior on the occupancies
as per Eqs. (7) and (8). Thus both sides are nonzero only
if the n′ occupancy set has one fewer total count than the
n occupancy set. As long as Nα > 0, the matrix element of
Ôα is unity because N ′

α = Nα − 1 must be true due to the
occupancy matching of Eq. (A1). If Nα = 0, it must be that
nmσ = 0, so that the matrix element of Ôα is irrelevant because
the fermionic matrix elements (of d̂ and f̂ ) are both zero.
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