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Jacob’s ladder of approximations to paraxial dynamic electron scattering
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Dynamical scattering theory describes the dominant scattering process of beam electrons at targets in the
transmission electron microscope (TEM). Hence, practically every quantitative TEM study has to consider its
ramifications, typically by some approximate modeling. Here, we elaborate on a hierarchy within the various
approximations focusing on the two principal approaches used in practice, Bloch wave and multislice. We
reveal characteristic differences in the capability of these methods to reproduce the correct local propagation of
the wave function, while convergent results are obtained over larger propagation distances. We investigate the
dependency of local variations of the wave function on the atomic number of the atomic scatterers and discuss
their significance for, e.g., inelastic scattering.
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I. INTRODUCTION

The remarkable success of transmission electron mi-
croscopy (TEM) as a characterization tool in the materials
sciences rests mainly on two pillars. First, elaborate elec-
tron sources and optics allow the production, imaging, and
detection of electron beams with ever increasing signal and
spatial resolution. Second, the strong Coulomb interaction
between the beam and the highly localized electric potentials
of the atoms results in large intensities even at large scattering
angles. The combination of these two aspects allows the
retrieval of the structure of atomic assemblies, including
its internal symmetries and composition, with sub-angstrom
spatial resolution.

However, the strong Coulomb interaction proved to be
both boon and bane, as the validity of the first-order Born
approximation is severely limited within the scope of TEM
investigations. The derivation of a target’s structure including
possible symmetries from scattering cross sections is therefore
not as straight forward as, e.g., in x-ray diffraction. This
obstacle has been appreciated since the heyday of electron
diffraction, prompting the development of the dynamical scat-
tering theory as opposed to the first-order Born approximation
(i.e., kinematic scattering). Important contributions have been
given by Bethe [1], Lamla [2], Cowley and Moodie [3],
Fujimoto [4], Howie and Wheelan [5], Fujiwara [6], Kambe
[7], Berry [8], and Gratias and Porter [9], to name just a
few (see, e.g., [10] for a more comprehensive account). By
now, it is well understood that the interpretation of atomic
resolution images acquired with a TEM has to be done using
dynamic theory. That also pertains to three-dimensional atomic
structure determination [11], spin and orbital momentum
mapping based on electron microscopic magnetic dichroism
[12], nanoscale elemental mapping [13,14], or high-angle
annular dark field scanning TEM structure mapping [15], to
give just a few examples.

Usually, there is no analytical solution to the dynamic
scattering equation. Moreover, several limitations prevent a
computationally feasible numerical solution of the complete
problem, including, e.g., effects such as backscattering from

the target. Accurate approximations are therefore required
and large and ongoing efforts have been put into the de-
velopment of such (e.g., [16–19]). Important parameters in
these computations are numerical efficiency and simplicity of
implementation, which need to be balanced against accuracy.
A quantitative understanding of the errors involved in the
approximations is therefore indispensable.

The starting point of the dynamic scattering formalism
is an approximation of the Klein-Gordon equation valid for
small-angle scattering referred to as the paraxial scattering
approximation (e.g., [20]; the nonparaxial regime is considered
in, e.g., Refs. [21,22]). This equation is mathematically
equivalent to a two-dimensional time-dependent Schrödinger
equation with the optical axis z taking the place of the
time coordinate [8] and both energy and momentum being
relativistically corrected. Consequently, similar solutions and
approximation strategies may be applied. The main difficulty
is presented by the peaked z dependency introduced by the
atomic scatterers, which would correspond to pulse-train-like
potentials in the time-dependent analog. The various approx-
imations put forward can be classified into two main lines.

One class of algorithms utilizes numerical integrators of the
paraxial equation, which are either borrowed from numerical
integration (NI) [22,23] or semianalytically computed for fixed
step sizes [3]. The latter approach, referred to as multislice
(MS), is typically used with a step size comprising one sheet of
atoms, which permits a particularly fast numerical execution.
Both integration schemes converge to the exact solution of the
paraxial equation in the limit of small integration step sizes
[24,25].

The other class of algorithms seeks the solution in two
steps: first a basis of solutions is generated by diagonalizing
the paraxial Hamiltonian, and second, the initial wave is
expanded into this basis. To compute the basis function one
typically employs periodic boundary conditions. Hence, the
basis functions are Bloch waves and the algorithms are termed
Bloch wave methods. Depending on whether one includes the z

direction (optical axis, propagation direction) in the expansion,
one speaks of 2D or 3D Bloch wave methods (2D/3D-BW).
Because of the numerical scaling of the eigenvalue problem
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Bloch wave methods are typically less favorable if the basis is
very large, i.e., if a large number of scattering directions has to
be considered. A large class of scattering problems, however,
allows for a sufficient reduction of the basis, rendering Bloch
wave methods a valuable alternative to direct integration
schemes such as MS. In particular the basis truncation
along the z direction, corresponding to 2D-BWs, leads to a
simple analytic z dependency that can be favorably exploited
under various circumstances. For instance, the prominent
two-beam case [5], where only one particular scattered beam
additional to the unscattered one is dominating, can be solved
analytically. Similarly, the calculation of inelastic scattering
matrix elements for electron energy loss spectra can be
efficiently organized by exploiting analytic expansions of
the Bloch waves. Moreover, a diagrammatic technique [9]
as applied in time-dependent perturbation theory [26] uses
the analytic 2D-BW solution as zero-order approximation in
a perturbative treatment of the z dependency. Additionally,
the separability of z and the lateral x,y dimensions in the
2D-BW method allow further approximations borrowed from
band computation methods in solid state physics, notably the
channeling approximation [27].

The MS and the BW methods are the cornerstones
of various dynamic scattering simulation codes (e.g.,
[16,17,20,28,29]) used for simulating high-resolution images,
diffraction patterns, electron energy loss spectra, and other sig-
nals recorded in the TEM. The above introduction has shown
that the accuracy of the direct integration schemes and the
Bloch wave approaches are closely related to the integration
step size and the size of the Bloch wave basis, respectively.
In the following we will elaborate on a classification based on
the z dependency of the various approximations. To that end
we revisit the analytical derivation of the above methods and
perform a numerical study.

II. SCATTERING THEORY

We start off with what could be considered as the basic
equation for elastic electron scattering in the TEM operated
in the medium and high acceleration voltage regime, the
stationary Klein-Gordon equation in the high-energy (omitting
V 2) and paraxial (separating a fast and slowly oscillating wave
along the optical axis z and omitting second-order derivatives
of the latter) approximation

i∂z�(r,z) =
(

− 1

2k
� − 1

v
�

)
︸ ︷︷ ︸

Ĥ=T̂ +Û

�(r,z). (1)

Here, k denotes the wave number of the fast electron wave, v
its velocity, and � the electrostatic potential. We furthermore
employ atomic units (e = me = � = 1) and we distinguish
between the kinetic term T̂ and potential term Û in the paraxial
Hamiltonian Ĥ . A short inspection of (1) directly reveals its
similarity to the time-dependent Schrödinger equation [8]. The
full solution to the paraxial equation (1) can be symbolically
integrated according to (see, e.g., [26]) [47]

|�(z)〉 = Ẑ exp

(
−i

∫ z

0
Ĥ

(
z′)dz′

)
︸ ︷︷ ︸

K̂(z;0)

|�(0)〉, (2)

where Ẑ denotes the z-ordering operator in analogy to
Dyson’s time-ordering operator and K̂(z; z′) is the z-evolution
operator corresponding to the time-evolution operator (the
propagator). The z ordering is frequently disregarded in the
pertinent literature [20,30,31], which can lead to consider-
able misconceptions when considering certain approximations
later on.

One may now employ a multitude of numerical methods
to integrate the above equation. A straight choice consists
of choosing a numerical integrator, i.e., a step-by-step prop-
agation along z, which is well adapted to the problem
[22,23]. The error pertaining to the numerical integration
accumulates with propagation distance (crystal thickness t)
and can be reduced by decreasing the integration steps. Current
implementations of these methods still require considerable
computation time, which can be overcome by fixing the
step size and approximating the propagator by analytical
expressions. This leads to the popular MS method [3], which
consists of an alternate application of the free-space propagator

K̂T (δz) := exp(−i(z − z′)︸ ︷︷ ︸
δz

T̂ ) (3)

and the transmission operator

K̂U (z; z′) := exp

(∫ z

z′
U (z′′)dz′′

)
(4)

according to

|�(zN )〉 =
N−1∏
n=0

K̂T (δzn)K̂U (zn+1; zn)|�(z0)〉. (5)

The transmission operator diagonalizes in position space
where it is referred to as transmission function, and the
free-space propagator, referred to as Fresnel propagator,
diagonalizes in Fourier space. Accordingly, the successive
application of transmission operator and free-space propagator
can be performed very efficiently by switching between
position and Fourier space.

In the limit δz → 0 the MS algorithm converges to the
true solution [24]; however, in order to reduce computation
time, one integration step δz is typically chosen so as to
comprise an equivalent of one atomic layer (i.e., δz ≈ 1 Å)
in a crystal (referred to as atomic MS in the following).
The accuracy of this choice stems from the quasidiscrete
nature of the atomic scattering potentials within a large,
almost potential-free atomic interspace, the atomic lattice.
This particular potential structure allows for transmitting the
wave with only the transmission operator (i.e., neglecting
free-space propagation) through thin sheets containing atoms
and propagating the wave without influence of the potential in
the atomic interspace (see Fig. 1). Consequently, the atomic
MS algorithm basically consists of a particular, well-adapted
approximation of the paraxial equation (1) omitting either the
kinetic or potential term within certain z intervals. This renders
the evaluation of the z ordering trivial because we do not have
to consider the nonvanishing commutator between the kinetic
and potential operator. Similarly to other numerical integration
schemes, the difference between the (atomic) MS solution and
the exact solution grows with the propagation distance.
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FIG. 1. (Color online) Working principle of the MS approxi-
mation. The strongly localized atomic potentials exert a dominant
influence in thin sheets only, where the concomitant propagation may
be neglected therefore. In turn, the potential influence is negligible
in the atomic interspace. The depicted crystal structure pertains to
PbZrO3 oriented in the [001] direction and the periodicity in the z

direction is indicated.

The 2D-BW formalism may now be derived from the MS
method in the following way. We first note the Zassenhaus
expansion (following from the Baker-Campbell-Haussdorf
formula [32]) truncated after the third factor

et(Â+B̂) = etÂetB̂e− t2

2 [Â,B̂] · · · (6)

with some arbitrary operators Â and B̂. Consequently, if the
norm of the commutator∥∥∥∥ t2

2
[Â,B̂]

∥∥∥∥ � 1 (7)

is small, we may approximate the product of the exponentials
by the exponential of the sum of the two operators

etÂetB̂ ≈ et(Â+B̂). (8)

If we now substitute Â = K̂U , B̂ = K̂T , and t = zn+1 − zn =
az, where the slice thickness was chosen such to comprise one
unit cell with lattice parameter az, we obtain

�(r,zn+1) = exp

[
i

(
1

2k
� + 1

v
�(r)

)
az

]
�(r,zn), (9)

where the projected potential

�(r) =
∫ zn+1

zn

�(r,z)dz/az (10)

has been introduced. Because we have chosen a slice thickness
of one unit cell, the exponential in (9) does not depend on z

anymore (note the absence of the z ordering) and (9) is the
formal solution to the constituting equation of the 2D-BW
formalism [1,5,7]

i∂z�(r,z) =
[
− 1

2k
� − 1

v
�(r)

]
�(r,z), (11)

where the z dependency of the paraxial Hamiltonian has
vanished. Accordingly, the propagation diagonalizes in the
eigenspace of the Hamiltonian. 2D-BW methods exploit
that property by diagonalizing the above Hamiltonian and
expanding the 2D incoming wave at the entrance face of the
crystal into the corresponding basis (2D-BWs). The wave at
any z coordinate is then readily obtained by the analytic z

dependency of the 2D-BWs without additional effort.

The above derivation contained two approximations, which
lead to the following characteristic deviations of the 2D-BW
method compared to exact solutions. First, the slice thickness
was set to one unit cell, which may be significantly smaller in
the direct integration schemes. As a consequence, the internal
structure and symmetries of the unit cell determining the
strength of systematic scattering directions into higher-order
Laue zones is absent from 2D-BW calculations. Second, the
commutator between transmission and propagation operator

− a2
z

2
[K̂U ,K̂T ] = − a2

z

4kv
[∇�(r)∇ + ��(r)]

= a2
z

4kv
[E(r)∇ + ρ(r)] (12)

may become large due to the diverging electric field E at the
site of the atomic core, which, in spite of the smallness of
the prefactor, leads to a certain violation of the approximation
(9). Given the singular nature of this peak in position space
this mainly translates into an erroneous behavior of the
2D-BW solution close to atomic sites. The large lateral spatial
frequency components of that peak will quickly disperse upon
propagation, dampening the discrepancy at larger distance to
the atom. A vivid picture of that behavior will be given in
the next section. Note that in the literature the derivation of
2D-BW method is more commonly presented in a different
way. Equation (11) is obtained directly by replacing the
three-dimensional z-dependent potential �(r) in Eq. (1) by
its two-dimensional z-projected version �̄(x,y). However, as
will be shown below, the atomic multislice is a very good
approximation and the derivation of the 2D-BW from atomic
multislice provides instructive insight about the neglected
commutator, which is implicitly also present, when the z-
projected potential is introduced.

Within the framework of Floquet theory [33], the approx-
imations leading to the 2D-BW method may be dropped as
detailed in Appendix A, which allows taking into account
periodic variations of the potential along z exactly. In practice
one commonly deviates from the Floquet solution by invoking
an expansion into a 3D Bloch wave basis, which is obtained
from diagonalizing the original nonparaxial Klein-Gordon
equation with a z-dependent periodic potential �, i.e.,

�(r) =
∑

n

C(n)eiq
(n)
z z

∑
g

u(n)
g eigr. (13)

Here g denotes reciprocal lattice vectors, the u
(n)
g are the

Fourier coefficients, and q(n)
z the Bloch vector of the nth Bloch

wave. We furthermore assumed a plane incident wave along
z (no lateral components in the Bloch vector). The expansion
coefficients C(n) are typically approximated by projecting the
unperturbed incoming (instead of the true scattered) wave �(0)

on the periodic part of the Bloch wave basis within the first
unit cell in 3D according to [34]

C(n) ≈
∫

�

u(n)∗(r)�(0)(r)d3r. (14)

Consequently, two approximations with respect to the Floquet
solution are involved in the 3D-BW approach, first the use
of the unperturbed instead of the true wave and second the
projection on the periodic instead of the full Bloch wave
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FIG. 2. (Color online) Hierarchy of numerical approximations
for the dynamic scattering problem. The order roughly scales with
the characteristic integration step size leading to a higher level of
analytic description of the propagation along z.

basis. These approximations seem to have been previously
overlooked in the pertinent literature (e.g., [34]). The error
of this 3D-BW approximation grows with increasing atomic
weight increasing the neglected modulations of the wave in the
first unit cell. This error does not accumulate as the propagation
distance grows. A second error stems from the deviations of
the computed 3D-BW basis including the Bloch vectors from
the exact ones, which leads to an increasing mismatch of the
3D-BW solution with growing propagation distance.

Summing up the above analytical considerations, we end
up with a Jacob’s ladder of approximations applied to the
dynamic scattering problem depicted in Fig. 2. An “exact”
solution is obtained by integrating the paraxial scattering
equation with some numerical or semianalytical integration
algorithm such as Runge-Kutta or MS with sufficiently small
step size. In the case of z-periodic potentials, the same
level of approximation is obtained by the Floquet solution,
invoking direct integration schemes for the first unit cell.
In practice, the accurate reproduction of the z dependency
is sacrificed to obtain acceptable computation times and/or
analytical simplicity. The most radical approximation, i.e., the
2D Bloch wave method, completely neglects the z-dependent
potential structure, which allows for a full analytic description
of the z propagation within the eigenspace of the 2D-BW
Hamiltonian. The region in between the exact solutions and
that of 2D-BWs is filled by atomic MS integrating over atomic
sheets, diagrammatic perturbation schemes, and the 3D-BW
method.

III. NUMERICAL STUDIES

To supplement and detail the above analytical arguments
we have performed numerical scattering simulations based
on numerically integrating Eq. (1) with very small step sizes
(the NI solution), solving Eq. (5) with atomic step size (the
MS solution), and computing the 3D- and 2D-BW solutions.
In order to allow for a maximal comparability (in terms
of sampling, algorithms, etc.), we use the same numerical

integration algorithm (Adams-Bashforth-Moulton PECE [35]
as implemented in the ode113 routine of Matlab) for the NI
and the 2D-BW solution instead of performing the (expensive)
diagonalization of the BW Hamiltonian with a large number of
beams (96 × 96 = 9216 in our case). We applied the Laplace
operator in Fourier space in order to avoid any discretization
error involved when using a real space approximation [23]. The
3D-BW solution is obtained on a truncated basis consisting of g
vectors, for which the dimensionless product wg of excitation
error sg with extinction distance ξg fulfills wg < 104. This
results in a basis size is 3649. Into the final summation we only
included terms for which the product of Bloch coefficients was
above 5 × 10−7. The procedure follows the first steps of the
MATS algorithm introduced in Ref. [36] for inelastic scattering
calculations.

As test target we used the high-temperature cubic perovskite
phase of PbZrO3 (space group Pm3m, a = 4.18 Å, orientation
[1,0,0]; see Fig. 1), because it represents a relatively simple
test structure combining light and heavy elements thereby
covering different scattering regimes. The maximal thickness
was set to t = 24 a ≈ 10 nm in order to cover the typical
thickness range used in high-resolution TEM studies [37].
The crystal potential was assembled from neutral independent
atoms parametrized according to Ref. [38] (see Refs. [20,39]
for alternative ones). Further simulation parameters are 200 kV
acceleration voltage and a spatial sampling of 4.4 pm. Note
that the ramifications of the thermal motion of the lattice have
been completely ignored. They may be taken into account
by performing an expensive frozen lattice summation of the
results corresponding to the imaging conditions [40], which
represents a further level of complexity and is beyond the
scope of this study. For the same reasons aberrations of the
microscope as well as the ramifications of partial coherence
have been completely ignored.

The main results of the scattering simulations are depicted
in Fig. 3. The full propagation from z = 0 nm to z = t depicted
in the left column for different x-z cross sections exhibits the
typical channeling effect of the electron beam along atomic
columns, with the periodicity depending on the atomic weight
of the column. This effect is present in all four solutions. Both
the x-z cross sections as well as the x-y takeouts furthermore
reveal a substantially larger amount of high-spatial frequency
data in the NI, MS, and 3D-BW data compared to the 2D-BW
solution. This originates mainly from the missing higher order
Laue zones in the 2D-BW solution (see also Fig. 5).

We now zoom into the propagation along z to reveal the
second characteristic feature of the 2D-BW approximation
(right column in Fig. 3). In the NI, MS, and 3D-BW solutions
we observe a characteristic beating stemming from the pulse
train of atomic potentials in the z direction. It consists of a
sharp ramp in the phase (due to the projected potential of the
atom) followed by a rapid interference effect in the amplitude.
This effect is completely absent in the 2D-BW calculation.
Note, however, that after each beat the NI, MS, and 3D-BW
solutions converge to the 2D-BW solution as the localized
effect behind the atoms quickly disperses. One could vividly
rephrase this behavior as the difference between a staccato and
legato interpretation of the same melody. The deviations of the
2D-BW solution agree well with the theoretic predictions of
Sec. II, where we identified a nonvanishing strongly peaked
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FIG. 3. (Color online) Results of the scattering simulations using
the numerical integration (NI), the atomic multislice (MS), and the
3D-BW and 2D-BW formalism at various thicknesses. The visually
prominent differences are mainly due to the absence of the higher
order Laue zones in the 2D-BW calculations. The zoom-ins in the
right column additionally reveal a beating structure of the NI, MS,
and 3D-BW solution imprinted by the localized atomic potentials.
Depending on the atomic weight of the scatterer the local variations
can reach 1 rad in the phase and 1 in the normalized amplitude (see
Pb column).

commutator as the main source of difference between the MS
and 2D-BW approximation. Accordingly, the deviations are
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FIG. 4. (Color online) Relative error of the atomic MS, 3D-BW,
and 2D-BW relative to the NI reference solution.

predicted to be more pronounced at the strongly scattering
Pb column, which is confirmed by the numerical results.
Moreover, we observe a significant difference between the
3D-BW solution on the one side and the NI and MS solution on
the other side when focusing on the first part of the crystal (in
particular the Pb column). This deviation is the consequence of
the approximate computation of the 3D-BW expansion based
on an unperturbed incoming wave within the first unit cell
discussed previously.

The condensation of the above discussion is to be found
in the evolution of the relative error of the three lower level
approximations (MS, 3D, and 2D-BW) with respect to the NI
solution considered as reference,

ε(z) =
√∑

n |�(rn,z) − �NI(rn,z)|2∑
n |�NI(rn,z)|2 , (15)

in dependence on the propagation distance depicted in Fig. 4.
The error of the 2D-BW solution is the largest and one clearly
observes the periodically peaked discrepancies at the atomic
sites. These peaked deviations are less pronounced in the 3D-
BW and the MS solution in that order. They originate from
the abrupt modulations of the wave function at the atomic
potentials, which is best approximated by the MS algorithm as
the order of the z expansion of the 3D-BW solution is typically
limited. The MS and 2D-BW error grows with propagation
distance as both solutions feature an accumulating numerical
error in the course of the numerical integration. The 3D-BW
solution is comparable to MS in the achieved accuracy in the
beginning before deviating more strongly at larger propagation
distances. Note, however, that this behavior strongly depends
on the size of the basis used in the 3D-BW calculations.

To gain further insight into the deviations between the four
algorithms, we compute the 3D Fourier transform of the NI,
MS, and BW solutions. The results are depicted in Fig. 5. One
observes an extended maximum at the center of reciprocal
space, corresponding to the zeroth-order Laue zone, with
an intensity distribution similar between all approximations.
Outside of the center the intensity is quickly fading in the
case of the 2D-BW approximation. The other approximations
show intensity at reciprocal lattice points close to the Ewald
sphere [48], which in contrast to kinematic scattering at thick
crystals do not have to be exactly on the Ewald sphere. The
characteristic rings at multiples of reciprocal lattice vectors
1/az hallmark the higher order Laue zones. Interestingly, the
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FIG. 5. (Color online) (a) 3D Isosurface from the Fourier spec-
trum of the NI solution illustrating the appearance of higher order
Laue zones. (b) Cross sections of the 3D Fourier decomposition of
the wave functions obtained from the NI, atomic MS, 3D-BW, and
2D-BW algorithms in that order.

NI, MS, and 3D-BW solution additionally contain significant
intensity around k = (0,0,na−1

z ) for positive and negative
integers n, which confirms previous numerical studies on
optimal BW basis sets for inelastic scattering simulations
leading to the development of the MATS algorithm [36]. Their
occurrence can be analytically explained partly by treating the
scattering on z-dependent potentials within the second-order
Born approximation (see Appendix B). Note furthermore that
these on-axis reflections are most pronounced in the MS
solution, which can be traced back to the abrupt z modulation
of the wave function, when applying the transmission function
in the MS algorithm.

IV. DISCUSSION

The above results raise the question of under which
circumstances the observed deviations become important in
practice. Two scenarios seem to be affected. The first is
very accurate high-resolution studies aiming at 3D atomic
structure reconstruction (e.g., [11]) or atomic charge density
exploration. Owing to the higher order of approximation, direct
integration schemes such as MS should be employed here. The
second is investigations requiring a very accurate consideration
of the z propagation around the atoms. Such a situation can
occur when studying core loss or phonon losses [41,42],
where the z dependency enters in the calculation of inelastic
scattering matrices or mixed dynamic form factors [43]. A
typical approximation employed in these computations is to
approximate the z dependency of the electron wave function
by the smooth analytic behavior of the 2D-BW solution [44]
or to completely disregard any z modulation other than the one
given by the carrier frequency (typical when using MS for the
elastic scattering [13,45]). Notable exceptions are the 3D-BW
computations reported, e.g., in Refs. [12,36]. In the light of
the above findings these approximations leads to a small error
at light elements producing a weak local modulation only. For
medium and heavy elements, however, the local wave function
modulation at the atomic sites comprises phase shifts up to
one radian and corresponding relative amplitude variations of
100%. These modulations may significantly affect the inelastic
transition probability depending on the transition considered.

Numerical studies on bcc iron confirm the importance of
these 3D effects for the computation of inelastic scattering
[36]. Moreover, a recent comparison on electron magnetic
dichroism in bcc Fe invoking a comparison between 3D-BW
and MS methods corroborates the consistent error level of the
latter methods up to medium light elements [46]. We note,
however, that the situation may change if heavier elements
are invoked, rendering the error due to the 3D-BW expansion
more significant.

V. SUMMARY

We have revealed an order in the most prominent ap-
proximations to dynamic scattering, which roughly follows
the integration step size involved. The most accurate ap-
proximation to the paraxial scattering equation (1) employs
a numerical integrator adapting the variable step size to the
required accuracy. The atomic multislice algorithm predefines
the step size in the integration utilizing the sparse nature of the
atomic crystal potential. It correctly reproduces the beating
nature of the scattering at the atomic scatterers. The latter is
also contained in 3D Bloch wave solutions, which, however,
contain an error due to an approximate expansion into the
3D Bloch wave basis, which can lead to problems, when
considering heavy scatterers. The 2D Bloch wave method is
based on averaging the potential within one unit cell allowing
for a complete analytical description of the scattered wave. It
correctly reproduces the scattering averaged within one unit
cell along z, but completely misses the beat. This hierarchy
reveals the significance of the z dependency of the potential.

The results indicate that multislice and, with some restric-
tions pertaining to heavy elements, 3D Bloch wave simulations
should be favored over 2D Bloch wave simulations if high
accuracy is required, in particular in the vicinity of the
atoms. The most important case pertains to inelastic scattering
computations, where the precise shape of the electron wave
functions enters in the computations of EELS or EDX spectra
including resonance effects, such as white lines. A detailed
study on the magnitude of this effect will be addressed in a
future publication.
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APPENDIX A: FLOQUET THEORY

In this Appendix we briefly illustrate the basics of Floquet
theory and its significance for paraxial electron scattering. Let
�(z) be a fundamental matrix of linearly independent solutions
to the paraxial equation

i∂z�(r,z) = Ĥ�(r,z) (A1)

with a periodic potential, i.e.,

Ĥ (r,z + az) = Ĥ (r,z). (A2)
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According to Floquet’s theorem we then have

�(z + az) = �(z)B for ∀z, (A3)

where the monodromy matrix

B = �−1(0)�(az) (A4)

does not depend on z. The eigenvalues ρ(n) of B, called the
characteristic multipliers, do not depend on the particular
choice of the fundamental matrix. They define the (Floquet)
exponents μ(n) through the relations ρ(n) = exp (μ(n)z). As a
consequence of Floquet’s theorem we then have a solution
�(n)(r,z) = exp (μ(n)z)u(n)(r,z) with periodic u(n)(r,z). Con-
sequently, the Floquet exponents play the role of the Bloch
vector encountered when solving the stationary Schrödinger
equation in periodic potentials.

The significance of Floquet’s theorem for solving the
paraxial scattering equation is the following. It permits the
computation of the fundamental matrix �(z) and thus any
wave function at any z provided that �(z) is known in the
interval zε[0,az] by following the subsequent procedure. First,
one has to compute a fundamental matrix of a sufficiently large
number of linearly independent solutions within the first unit
cell, e.g., by numerically integrating differently tilted plane
waves through the first unit cell. Subsequently the fundamental
matrix at any z may be obtained by virtue of (A3). The latter
permits the computation of any solution to a given incoming
wave because we can expand that wave into the particular
set of linearly independent solutions forming the fundamental
matrix. A numerical implementation of the above paraxial
scattering algorithm has not been realized previously to our
best knowledge.

APPENDIX B: SECOND-ORDER BORN APPROXIMATION

Here we provide an analytic argument for the observed
shapes of the dynamically scattered wave’s 3D Fourier
spectrum, including in particular the existence of significant
intensity around k = (0,0,na−1

z ) with nεN. We start with
writing the Green’s function G0 and the propagator KT of
the free paraxial equation

G0(r,z; r′,z′) = −i�(z − z′)KT (r,z; r′,z′)

= −�(z − z′)
λ(z − z′)

e
i k

2(z−z′ ) (r−r′)2

(B1)

as a solution to the inhomogeneous equation(
i∂z + 1

2k
�

)
G0(r,z; r′,z′) = δ(r − r′)δ(z − z′). (B2)

We now expand the solution of the full paraxial equation into
a Born series

|�〉 = |�0〉 + Ĝ0Û |�0〉 + [Ĝ0Û ]2|�0〉 + · · · .

Here the second term is the well-known first-order Born
approximation and the third corresponds to the second-order
Born approximation, accordingly. In the lateral 2D Fourier
space the above symbolic expression reads

�(k,z) ≈ 2πδ(k) + i

v

∫
�(z − z′)ei z−z′

2k
k2

�(k,z′)dz′

− 1

v2

∫
�(z − z′)�(z′ − z′′)ei z−z′

2k
k2

�(k,z′)

⊗k ei z′−z′′
2k

k2
�(k,z′′)dz′dz′′. (B3)

Performing a Fourier transformation along z we finally obtain
the following 3D Fourier space expression

�(k) ≈
√

2π
3
δ(k)δ(kz)

+ i

v

[√
π

2
δ

(
kz − k2

2k

)
+ i√

2π
(
kz − k2

2k

)
]
�(k,kz)

− 1

v2

[√
π

2
δ

(
kz − k2

2k

)
+ i√

2π
(
kz − k2

2k

)
]
�(k,kz)

⊗
[√

π

2
δ

(
kz − k2

2k

)
+ i√

2π
(
kz − k2

2k

)
]
�(k,kz).

(B4)

The delta function δ(kz − k2

2k
) occurring in the first-order Born

approximation on the first line leads to the appearance of higher
order Laue zones (HOLZ) lying on a parabolic (paraxial)
Ewald “sphere.” It is smeared out due to the second term
occurring within the brackets of the first-order term. The
second-order Born approximation explains the appearance of
intensity at k = (0,0,na−1

z ) at the center of the HOLZ. It
originates from the convolution in reciprocal space producing
a pronounced maximum in the middle of a HOLZ ring.
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