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Layered perovskites Sr2IrO4 and Ba2IrO4 are regarded as the key materials for understanding the properties of
magnetic relativistic insulators, mediated by the strong spin-orbit (SO) coupling. One of the most fundamental
issues is to which extent these properties can be described by the superexchange (SE) model, formulated in
the limit of the large Coulomb repulsion for some appropriately selected pseudospin states, and whether these
materials themselves can be classified as Mott insulators. In this work, we address these issues by deriving
the relevant models and extracting parameters of these models from the electronic-structure calculations with
the SO coupling, based on the density functional theory. First, we construct the effective Hubbard-type model
for the magnetically active t2g bands, by recasting the problem in the language of localized Wannier orbitals.
Then, we map the obtained electron model onto the pseudospin model by applying the theory of SE interactions,
which is based on the second-order perturbation theory with respect to the transfer integrals. We discuss the
microscopic origin of anisotropic SE interactions, inherent to the compass Heisenberg model, and the appearance
of the antisymmetric Dzyaloshinskii-Moriya term, associated with the additional rotation of the IrO6 octahedra in
Sr2IrO4. In order to solve the pseudospin Hamiltonian problem and evaluate the Néel temperature (TN ), we employ
the nonlinear sigma model. We have found that, while for Sr2IrO4 our value of TN agrees with the experimental
data, for Ba2IrO4 it is overestimated by a factor of 2. We argue that this discrepancy is related to limitations of
the SE model: while for more localized t2g states in Sr2IrO4 it works reasonably well, the higher-order terms
in the perturbation theory expansion play a more important role in the more “itinerant” Ba2IrO4, giving rise to
the new type of isotropic and anisotropic exchange interactions, which are not captured by the SE model. This
conclusion is supported by unrestricted Hartree-Fock calculations for the same electron model, where in the case
of Ba2IrO4, already on the mean-field level, we were able to reproduce the experimentally observed magnetic
ground state, while for Sr2IrO4 the main results are essentially the same as in the SE model.
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I. INTRODUCTION

5d transition-metal oxides have attracted a considerable
attention as a new paradigm of relativistic magnetic materials,
whose properties are largely influenced by the strong spin-
orbit (SO) coupling, leading to the experimental realization
and a number of theoretical proposals for such fascinating
phenomena as SO interaction assisted Mott state in Sr2IrO4

[1–3], spin-liquid state in Pr2Ir2O7 (Ref. [4]), and Na4Ir3O8

(Refs. [5,6]), possible existence of topological semimetallic
states in pyrochlore iridates [7], and unusual magnetic ordering
in the honeycomb compounds Na2IrO3 and Li2IrO3 [8–11],
which may be relevant to the Kitaev model of bond-dependent
anisotropic magnetic coupling [12].

In this respect, a lot of attention is being focused on the
properties of tetravalent iridium oxides (or iridates), originat-
ing from the 5

6 -filled Ir t2g band, located near the Fermi level.
The strong SO interaction splits the atomic t2g states into the
fully occupied fourfold degenerate j = 3

2 states and twofold
(Kramers) degenerate j = 1

2 states, which accommodate one
electron. In this sense, there is a clear analogy with the spin- 1

2
systems and the problem of interatomic exchange interactions
can be formulated in terms of some appropriately selected
pseudospin states. In solids, each group of states form the
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bands, which can, however, overlap with each other. Moreover,
since j is the band quantum number in solids, there is
always a finite hybridization between these two groups of
relativistic states. The j = 1

2 electrons experience the onsite
Coulomb repulsion and can polarize the occupied j = 3

2
shell via the intraatomic exchange interactions. Moreover,
the precise division of the t2g states into the j = 3

2 and 1
2

ones depends on the crystal-field splitting, which is typically
smaller than the SO coupling. These are the main ingredients,
which predetermine the low-energy electronic properties of
iridates.

The layered perovskites Sr2IrO4 and Ba2IrO4 are typi-
cally regarded as the key materials for revealing the basic
microscopic mechanisms, which can operate in the iridates.
They are also used as the benchmark materials for testing
the new theoretical models. In this respect, the first and
one of the most successful theoretical models for iridates
was based on the Anderson theory of superexchange (SE)
between t2g electrons [13], which is valid in the limit of large
onsite Coulomb repulsion and treats the transfer integrals
between the Coulomb and SO interaction split t2g levels in
the second order of perturbation theory [6,14]. This model
indeed reveals a rich and very interesting physics, including
the bond dependence of the anisotropic exchange couplings
and emergence of large antisymmetric Dzyaloshinskii-Moriya
(DM) interactions when the inversion symmetry is broken by
the antiphase rotations of the IrO6 octahedra in Sr2IrO4.
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At the same time, there was always a question about how
far one can go in applying the SE model for the real iridates.
For the layered systems, this point was raised in Ref. [15],
where, using the dynamical mean-field theory (DMFT), the
authors have argued that the behavior of both Sr2IrO4 and
Ba2IrO4 retain many aspects of Slater insulators, whose
insulating properties are closely related to the existence of
the long-range antiferromagnetic (AFM) order. The problem
reemerged again recently after the experimental discovery of
the magnetic-ground-state structure of Ba2IrO4 [16], which
cannot be described by the SE model, at least on the mean-field
level [17]. It raises the question as to whether this magnetic
ground state can be described by considering the quantum
fluctuation effects, but within the SE model [17], or revising the
SE model itself by including to it some higher-order terms in
the perturbation theory expansion. The answer to this question
is not obvious because, in the SE formulation, the effects of the
SO coupling are included to the transfer integral. Therefore, the
second-order perturbation theory with respect to the transfer
integrals automatically means that it treats the SO coupling
also only up to the second order. If the SO interaction is
large (as in iridates), it can be a rather crude approximation
because it does not take into account several important effects,
such as the in-plane anisotropy in the uniaxial systems, which
may be relevant to the experimentally observed behavior of
Sr2IrO4 and Ba2IrO4. Another interesting point is the value
of Néel temperature (TN ), which is remarkably close in both
considered systems (about 240 K), and whether this fact can
be rationalized on the basis of the SE theory or not.

The main purpose of this work is to critically reexamine
abilities of the SE theory for the layered iridates. This
is certainly not the first attempt to derive parameters of
interatomic exchange interactions using the theory of SE
interactions and the basic ideas of this method in the case of the
strong SO coupling are well understood today, at least for the
models [14,17–21]. Nevertheless, aside from the SO coupling,
the behavior of interatomic exchange interactions strongly
depends on the number of adjustable parameters, used in the
model Hamiltonians, such as the onsite Coulomb and exchange
interactions, tetragonal crystal-field splitting, and the matrices
of transfer integrals. Therefore, we believe that, in the process
of derivation of the pseudospin model, it is very important
to reduce the number of possible ambiguities by sticking as
much as possible to the first-principles electronic-structure
calculations based on the density functional theory (DFT).

The rest of the paper is organized as follows. In Sec. II,
we will briefly discuss the main differences of the crystal
and electronic structures of Ba2IrO4 and Sr2IrO4. Then, in
Sec. III we will explain our method of the construction of
the effective low-energy electron model on the basis of DFT
calculations with the SO coupling. This model will be further
used in Sec. IV as the starting point for the derivation of
the SE Hamiltonian in the basis of the pseudospin states. In
Sec. V, we will discuss results of our calculations of the SE
interactions and their implications to the magnetic properties of
Ba2IrO4 and Sr2IrO4 using the nonlinear sigma model. Then,
in Sec. VI, we will provide a detailed comparison with the
results of unrestricted Hartree-Fock (HF) calculations, which
do not rely on the perturbation theory, and argue that while for
Sr2IrO4 the SE theory works reasonably well, for Ba2IrO4 it

misses several important interactions, which are nonetheless
captured by the HF calculations. Finally, in Sec. VII, we will
give a brief summary of our work. Details of derivation of the
nonlinear sigma model for the compass Heisenberg model will
be given in the Appendix.

II. MAIN DETAILS OF CRYSTAL AND ELECTRONIC
STRUCTURES

In this work we use the experimental structure parameters,
reported in Refs. [22,23] (at 13 K) for Ba2IrO4 and Sr2IrO4,
respectively. According to these data, Ba2IrO4 crystallizes in
the undistorted tetragonal I4/mmm structure with the Ir-O-Ir
angles in the xy plane being equal to 180◦. Sr2IrO4 exhibits
the additional rotation of IrO6 octahedra (the space group
I41/acd), which leads to the deformation of the Ir-O-Ir bonds
in the xy plane (see Fig. 1). Depending on the Ir site, this
rotation can be either clockwise (+φ) or counterclockwise
(−φ). The experimental value of the angle φ is 12◦ [23].

The corresponding electronic structure in the local-density
approximation (LDA) with the SO coupling is displayed in
Figs. 2 and 3 for Ba2IrO4 and Sr2IrO4, respectively. In this
work, we will focus on the behavior of magnetically active Ir
t2g bands, located near the Fermi level and separated relatively
well from the rest of the spectrum. There are two main
differences between Ba2IrO4 and Sr2IrO4: (i) The Ir t2g band
is narrower in Sr2IrO4 (the bandwidth is about 3 and 3.5
eV in Sr2IrO4 and Ba2IrO4, respectively). This is generally
consistent with the additional distortion in Sr2IrO4, which
leads to the deformation of the Ir-O-Ir bonds. (ii) The Ba
5d band in Ba2IrO4, which strongly hybridizes and, therefore,
has a large weight of the Ir 5d states, is much closer to the
Fermi energy than the Sr 4d band in Sr2IrO4. This is mainly
related to the larger Ba 5d bandwidth, due to the less distorted
crystal structure as well as the relativistic effects [24].

In Ba2IrO4, the relativistic j = 3
2 and 1

2 subbands are
separated by the direct gap, which allows us to construct
both six- and two-orbital models (for the entire t2g bands
and j = 1

2 subband, respectively). In Sr2IrO4, due to the

FIG. 1. (Color online) (Left) Rotations of IrO6 octahedra in the
xy plane of Sr2IrO4. The Ir atoms are indicated by the big (red) spheres
and the oxygen atoms are indicated by the small (yellow) spheres.
The sites around which the octahedra are rotated clockwise (+φ) and
counterclockwise (−φ) are denoted as 2 and 1, respectively. (Right)
The directions of axes in the I41/acd (x,y) and I4/mmm (x ′,y ′)
coordinate frames.
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FIG. 2. (Color online) Electronic structure of Ba2IrO4 in LDA with the SO coupling. (a) Total and partial densities of states. The shaded
area shows the contributions of the Ir 5d states. The positions of the main bands are indicated by symbols. (b) Band dispersion near the Fermi
level, as obtained for the full LDA Hamiltonian in comparison with the six- and two-orbital models. The high-symmetry points of the Brillouin
zone are denoted as � = (0,0,0), X = (π/a,π/a,0), N = (π/a,0,π/c), P = (π/a,π/a,π/c), and Z = (0,0,2π/c). The Fermi level is at zero
energy (shown by dotted-dashed line).

additional mixing between the j = 3
2 and 1

2 states, caused by
the I41/acd distortion, such separation does not take place.
Therefore, for Sr2IrO4, we will focus only on the six-orbital
model.

III. CONSTRUCTION OF EFFECTIVE LOW-ENERGY
ELECTRON MODEL

In this section, we will discuss the construction of the
low-energy electron model, starting from the LDA band
structure with the SO interaction. For practical calculations,
we use the linear muffin-tin orbital (LMTO) method in the
nearly orthogonal representation [25]. The model itself has

the following form:

Ĥel =
∑
ij

∑
αβ

t
αβ

ij ĉ
†
iαĉjβ + 1

2

∑
i

∑
αβγ δ

Uαβγ δĉ
†
iαĉ

†
iγ ĉiβ ĉiδ, (1)

where ĉ
†
iα and ĉiα are, respectively, the creation and annihi-

lation operators of an electron on the Wannier orbitals wiα ,
centered at the Ir site i and specified by the index α = (m,s),
which numbers Kramers doublets m = 1, 2, or 3 (an analog of
orbital indices without SO coupling) and the states s = 1 or
2 within each such doublet (an analog of spin indices without
SO coupling).

First, we construct the Wannier functions for the magnet-
ically active bands, using the projector-operator technique
[26–28]. We consider the six-orbital model for the both

FIG. 3. (Color online) Electronic structure of Sr2IrO4 in LDA with the SO coupling. (a) Total and partial densities of states. The shaded
area shows the contributions of the Ir 5d states. The positions of the main bands are indicated by symbols. (b) Band dispersion near the Fermi
level, as obtained for the full LDA Hamiltonian in comparison the six-orbital models. The Fermi level is at zero energy (shown by dotted-dashed
line).

235109-3



I. V. SOLOVYEV, V. V. MAZURENKO, AND A. A. KATANIN PHYSICAL REVIEW B 92, 235109 (2015)

Ba2IrO4 and Sr2IrO4. Moreover, for Ba2IrO4 it is also possible
to construct the two-orbital model, by considering only two
highest degenerate bands (see Fig. 2). The trial functions,
which are used for the projection, were obtained from the
digonalization of the site-diagonal density matrix, calculated
for the magnetically active bands in the basis of the Ir 5d

orbitals [26,28]. Namely, after the diagonalization of the
density matrix, we pick up either six or two eigenstates
(depending on the dimensionality of the model) with the
largest eigenvalues and use them as the trial functions. Such
construction guarantees that the Wannier functions are well
localized in the real space: the main part of the density matrix
with the largest eigenvalues is described by the “heads” of
the Wannier functions, residing on the central site, and only a
small remaining part of this matrix is described by the “tails”
of the Wannier functions, coming from the neighboring Ir sites.
Thus, the main weight of the Wannier function is concentrated
in its “head” part, while the contribution of “tails” is relatively
small. Such procedure was extensively used in nonrelativistic
calculations without the SO coupling [26]. The new aspect
of the relativistic formulation is that the eigenstates of the
density matrix become Kramers degenerate. Therefore, the
trial functions and the Wannier functions (w1 and w2) for each
Kramers doublet can be chosen so to satisfy the conditions
|w2〉 = T̂ |w1〉 and |w1〉 = −T̂ |w2〉, where T̂ = iσ̂yK̂ is the
time-reversal operation, written in terms of the spin Pauli
matrix σ̂y and the complex-conjugation operator K̂ .

Then, the one-electron part of the model Hamiltonian (1) is
identified with the matrix elements of the LDA Hamiltonian in
the Wannier basis: tαβ

ij = 〈wiα|ĤLDA|wjβ〉. This procedure can
be also reformulated as the downfolding of the LDA Hamil-
tonian [26,28]. Then, the site-diagonal matrix elements t

αβ

i=j

describe the splitting of the atomic levels by the crystal field
and the SO interaction, while the off-diagonal elements t

αβ

i �=j

stand for interatomic transfer integrals (or kinetic hoppings).
The matrix of screened onsite interactions Û = [Uαβγ δ] has

been calculated using a simplified version of the constrained
random-phase approximation (RPA) [26]. The RPA is used
in the GW method in order to evaluate the momentum and
frequency dependence of the screened Coulomb interaction,
which is then used in calculations of the self-energy [29].
The basic idea of the constrained RPA is to switch off some
contributions to the RPA polarization function (and, therefore,
to the screening of Û ) related to the transition between the
magnetically active bands (in our case, the Ir 5d bands) [30].
The RPA is inadequate for this channel of screening (especially
when it is evaluated starting from the LDA band structure)
and should be replaced by a more rigorous method in the
process of solution of the low-energy model (1). The purpose
of additional simplifications is to replace the time-consuming
RPA for the screening, caused by the relaxation of the atomic
wave function and other (non-5d) states, by much faster and
more suitable for these purposes constrained LDA technique.
After that, we consider (within RPA) the additional and most
efficient channel of screening of the Coulomb interactions in
the Ir 5d bands by (the same) Ir 5d states, which contribute
to other parts of the electronic structure (mainly to the O 2p

and either Ba 5d or Sr 4d bands in Figs. 2 and 3) due to the
hybridization [26]. Such approximation incorporates the main
channels of screening and, thus, reproduces reasonably well

the values of static Coulomb interactions, obtained in full-scale
constrained RPA calculations. The obtained matrix elements
Uαβγ δ have the following form:

Uαβγ δ =
∫

dr
∫

dr′w†
α(r)wβ(r)vscr(r,r′)w†

γ (r′)wδ(r′), (2)

where the screened interaction vscr(r,r′) in RPA is invariant
under the time-reversal operation and does not depend on the
spin variables.

IV. PSEUDOSPIN MODEL

In this section, we will consider the mapping of the electron
model (1) onto the magnetic model, formulated in terms of
pseudospin variables S i = (Sx

i ,Sy

i ,Sz
i ):

ĤS =
∑
i>j

S i

↔
J ijSj + μB

∑
i

S i

↔
g i H, (3)

where
↔
J ij and

↔
g i are the 3 × 3 tensors, describing interactions

in the system of pseudospins and with the external magnetic
field H , respectively. The pseudospin operators are repre-
sented by the Pauli matrices Sx

i = 1
2 (0 1

1 0), S
y

i = 1
2 (0 −i

i 0 ),

and Sz
i = 1

2 (1 0
0 −1).

For each bond,
↔
J ij can be presented as the sum of its

symmetric (S) and antisymmetric (A) components:
↔
J ij =

↔
J (S)

ij +
↔
J (A)

ij , where
↔
J (S)

ij = 1
2 (

↔
J ij +

↔
JT

ij ) and
↔
J (A)

ij = 1
2 (

↔
J ij −

↔
JT

ij ).
↔
J (S)

ij incorporates all types of symmetric exchange
interactions in the bond i−j , where the isotropic exchange

interaction is defined as Jij = 1
3 Tr

↔
J (S)

ij , while
↔
J (A)

ij describes

anisotropic DM interactions.
↔
J (A)

ij has only three independent
elements, which can be viewed as the components of some
axial vectors (the so-called DM vector) dij = (dx

ij ,d
y

ij ,d
z
ij ):

↔
J

(A)

ij =

⎛
⎜⎝

0 dz
ij −d

y

ij

−dz
ij 0 dx

ij

d
y

ij −dx
ij 0

⎞
⎟⎠,

yielding the well-known identity S i

↔
J (A)

ij Sj = dij [S i × Sj ].

A. Calculation of superexchange interactions

In this work, we follow the Anderson theory of superex-
change (Ref. [13]) and apply it for the t2g electrons in Ba2IrO4

and Sr2IrO4. In order to calculate the SE interactions, we adapt
a standard procedure for the systems, where the degeneracy
of the atomic states is lifted by the crystal field and the SO
interaction. Namely, we assume that, in the atomic limit, the
single hole resides on the highest Kramers doublet, obtained
from the diagonalization of the site-diagonal part t̂ = [tαβ

i=j ]
of the one-electron Hamiltonian. The states |ϕ1〉 and |ϕ2〉
of this Kramers doublet are used for the construction of the
eigenstates |±x〉, |±y〉, and |±z〉 of the pseudospin operators
Sx , Sy , and Sz, respectively. For convenience, we choose the
phases of these states so that |ϕ2〉 = T̂ |ϕ1〉 and |ϕ1〉 = −T̂ |ϕ2〉.
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Let us first explain the construction of |±z〉. For these
purposes, one can choose any pair of states, which is obtained
by the unitary transformation of |ϕ1〉 and |ϕ2〉. Moreover, since
the states are degenerate, the transformation will not change the
total energy, and the model (3) does not contain the single-ion
anisotropy term. Then, we employ the fact that, despite
some complications caused by the SO coupling, the magnetic
moment will always have a finite spin component, and define
the pseudospin states |+z〉 and |−z〉 as those corresponding
to, respectively, the maximal and minimal projections of
the spin onto the z axis. The problem is equivalent to the
diagonalization of the 2 × 2 spin Pauli matrix σ̂z in the basis
of |ϕ1〉 and |ϕ2〉.

Then, one can readily define two other groups of states as
|±x〉 = 1√

2
|+z〉 ± 1√

2
|−z〉 and |±y〉 = ± 1−i

2 |+z〉 + 1+i
2 |−z〉.

In this construction, the phases of |±z〉 were chosen to satisfy
the condition T̂ |−z〉 = |+z〉 and T̂ |+z〉 = −|−z〉. It allows
us to define unambiguously all phases of |±z〉 but ζ , which
transforms |±z〉 to e∓iζ |±z〉. The latter phase is defined so to
satisfy the condition 〈+x|σ̂y |+x〉 = 0.

In order to find
↔
J ij , we evaluate the energy gain Tij (a,b),

caused by the virtual excitations of the hole from the ath orbital
of the site i to the bth orbital of the site j and vice versa, in the
second order of perturbation theory with respect to the transfer
integrals t

αβ

i �=j . The denominators in the SE theory are given by
the energies of charge excitations d5

i d5
j → d4

i d6
j , which are

the energies of the two-hole states. In the process of virtual
excitations, the Pauli exclusion principle was guaranteed by the
projection operators, which permit the hoppings only between
occupied and unoccupied orbitals. Moreover, for the excited
two-hole states, the problem was solved in the true many-
body fashion, by finding the eigenstates and the eigenenergies
from the diagonalization of the Coulomb interaction matrix
Û in the basis of 6×5

2 = 15 Slater determinants, constructed
from six atomic spin orbitals. This is the step beyond the
mean-field approximation. It additionally stabilizes the AFM
interactions [26]. Then, we consider all combinations of a and
b = ±x, ±y, or ±z, and map the obtained energy gains
onto the pseudospin model (3) for H = 0. This procedure was
discussed in details in Ref. [31].

B. Calculation of g tensor

The g tensor describes the interaction of the pseu-
dopsin with the external magnetic field [see Eq. (3)].
In the SE approximation, it can be evaluated using
Eq. (31.34) of Ref. [32], from which one can find all
nine elements of the tensor

↔
g at each site of the lat-

tice: 〈+z|(Lx + σx)|+z〉 = gxz, 〈+z|(Ly + σy)|+z〉 = gyz,
〈+z|(Lz + σz)|+z〉 = gzz, 〈−z|(Lx + σx)|+z〉 = gxx + igxy ,
〈−z|(Ly + σy)|+z〉 = gyx + igyy , and 〈−z|(Lz + σz)|+z〉 =
gzx + igzy , where Lx , Ly , and Lz are the matrices of angular
momentum operators in the Wannier basis. The basic idea
here is in the spirit of the SE model: it is assumed that
only the highest Kramers doublet is magnetically active and
all the properties can be computed using the unperturbed
wave functions of the highest doublet in the atomic limit.
More rigorous quantum chemical methods can be found in
Refs. [33,34]. It is easy to separate the spin

↔
gS and orbital

↔
gL contributions to the g tensor, by considering the matrix
elements of only σ and L, respectively.

V. RESULTS AND DISCUSSIONS

A. Two-orbital model for Ba2IrO4

The two-orbital model is the simplest model which can be
considered. In Ba2IrO4, the “j = 1

2 ” bands are separated from
the rest of the spectrum (see Fig. 2) and the construction is
rather straightforward. The form of transfer integrals in this
case is very simple. Since t̂ is Hermitian, each 2 × 2 matrix
t̂ij = [tαβ

ij ] satisfies the property t̂j i = t̂
†
ij . Then, since all Ir

sites are located in the inversion centers and connected by the
translations, it holds t̂j i = t̂ij and, therefore, t̂ij = t̂

†
ij . Finally,

since ĤLDA is invariant under the time-reversal operation, we
will have two more identities: (t11

ij )∗ = t22
ij and (t12

ij )∗ = −t21
ij ,

which can be obtained from (tαβ

ij )∗ = 〈T̂ wiα|T̂ ĤLDA|wjβ〉.
Thus, in the two-orbital model, each t̂ij is proportional to the
unity matrix t̂ij = tij 1̂ in the subspace spanned by the indices
α(β) = 1 and 2, where tij is a real constant.

The behavior of tij is explained in Fig. 4. As expected,
the strongest hopping occurs between nearest neighbors in the
xy plane. There are also finite hoppings between next-nearest
neighbors in and between the planes.

Since t̂ij = tij 1̂, all SE interactions in the two-orbital model
are isotropic. They can be easily evaluated using the formula
Jij = 4t2

ij /U [13], where U = 1.52 eV is the effective onsite
Coulomb repulsion, obtained in the constrained RPA for
the two-orbital model. Then, using the values of transfer
integrals, displayed in Fig. 4, we will obtain Jij = 122.8,
2.5, and 0.8 meV for the nearest-neighbor (NN), next-NN,
and interplane interactions, respectively. Since Jij > 0, all
interactions are antiferromagnetic.

B. Six-orbital model for Ba2IrO4

The atomic t2g states are split into three doubly degenerate
groups of levels, which in Ba2IrO4 are located at −209, −149,
and 358 meV, relative to their center of gravity. Two lowest
doublets correspond to j = 3

2 and the highest one – to j = 1
2 .

Thus, the splitting between the j = 1
2 and 3

2 states, which
measures the strength of the SO coupling is very large. This
justifies the use of the regular (nondegenerate) theory for the
SE interactions.

For the tetragonal compounds, the eigenstates |+z〉 (and
|−z〉 = −T̂ |+z〉), corresponding to the highest Kramers dou-
blet, can be decomposed in the basis of xy, yz, zx, and x2 − y2

Wannier orbitals with both projections of spins:

|+z〉 = c↑
xy |wxy,↑〉 + c↑

yz|wyz,↑〉 + c↑
zx |wzx,↑〉

+ c
↑
x2−y2 |wx2−y2,↑〉 + c↓

xy |wxy,↓〉 + c↓
yz|wyz,↓〉

+ c↓
zx |wzx,↓〉 + c

↓
x2−y2 |wx2−y2,↓〉. (4)

Due to the symmetry constraint, the 3z2 − r2 orbitals do
not contribute to |+z〉. The coefficients in this expansion
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FIG. 4. (Color online) Crystal structure and transfer integrals (in
meV) associated with different Ir-Ir bonds in the two-orbital model
for Ba2IrO4. The Ir atoms are indicated by the big (red) spheres and
the oxygen atoms are indicated by the small (yellow) spheres.

depend on the relative strength of the crystal-field splitting
and the SO interaction. They cannot be determined solely
from the symmetry considerations. For Ba2IrO4, we obtain
the following (nonvanishing) coefficients in the I4/mmm

coordinate frame: c
↓
x ′y ′ = −i0.522, c

↑
z′x ′ = −ic

↑
y ′z′ = 0.603,

and c
↓
x ′2−y ′2 = −0.004, which correspond to c

↓
xy = 0.004,

c
↑
zx = −ic

↑
yz = 0.426 + i0.426, and c

↓
x2−y2 = −i0.522 in the

I41/acd frame.
The strongest transfer integrals, operating between the

nearest neighbors in the xy plane, have the following form
(in meV):

t̂〈ij〉||x ′,y ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−283 0 0 ±60 0 −i76
0 −283 ∓60 0 −i76 0
0 ∓60 −165 0 ±i92 0

±60 0 0 −165 0 ∓i92
0 i76 ∓i92 0 −226 0

i76 0 0 ±i92 0 −226

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)

FIG. 5. (Color online) Tensors of superexchange interactions
↔
J ij

(in meV), as obtained in the six-orbital model for different Ir-Ir bonds
in the xy plane of Ba2IrO4 (top) and Sr2IrO4 (bottom). The Ir atoms are
indicated by the big (red) spheres and the oxygen atoms are indicated
by the small (yellow) spheres. For the sake of convenience, the
parameters for both structures are shown in the I41/acd coordinate
frame.

where the upper (lower) sign stands for the bonds parallel
to the x ′ (y ′) axis in the I4/mmm coordinate frame (see
Fig. 5). Here, the matrix is given in the local representation,
which diagonalizes the site-diagonal part of the one-electron
Hamiltonian [tαβ

i=j ], as described in Sec. IV A. Moreover, we
adapt the following order of the Wannier orbitals: (m,s) =
(1,1), (1,2), (2,1), (2,2), (3,1), and (3,2), where m numbers
the Kramers doublet in the increasing order of their energies
and s number the states within each doublet. Similar to the
two-orbital model, the matrix elements of t̂ij with same m

do not depend on the s indices and each such subblock is
proportional to the 2 × 2 unity matrix. However, there is a
finite coupling between states with different m’s. This coupling

gives rises to the anisotropy of
↔
J ij . Moreover, since the signs

of some of these matrix elements alternate between the bonds
parallel to the x ′ and y ′ axes, the anisotropic part of

↔
J ij

will also alternate in the x ′y ′ plane. Another important factor,

which is responsible for anisotropic properties of
↔
J ij , is the

intraatomic exchange interaction J [14]. It will be discussed
below. Other parameters of the model Hamiltonian can be
found elsewhere [35].

The form of the screened onsite interactions Uαβγ δ in the
basis of relativistic Wannier orbitals is rather complex. Never-
theless, the main details of these interactions can be understood
by considering the energies of two-hole excitations, which
contribute to the SE processes (see Fig. 6). These energies were
calculated using the matrices of screened Coulomb interac-
tions [Uαβγ δ], for which vscr(r,r′) was obtained for two types of
the electronic structures: with and without the SO coupling [see
Eq. (2)]. In order to evaluate the averaged values of screened
Coulomb and exchange interactions, we consider here only
the effect of the matrix [Uαβγ δ] and neglect the splitting of
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FIG. 6. The energies of two-hole states for Ba2IrO4 (a) and Sr2IrO4 (b), obtained using parameters of screened Coulomb interactions Uαβγ δ

for the six-orbital model with and without the spin-orbit (SO) coupling.

the two-hole states caused by the direct contributions of the
SO interaction and the tetragonal distortion. The latter two
contributions have been discussed in Ref. [19]. In the case
of perfect cubic environment and without the SO coupling,
the two-hole states are split into three groups: 3T1, degenerate
1T2 and 1E, and 1A1 with the energies (U − 3J ), (U − J ),
and (U + 2J ), respectively [36], in terms of the Kanamori
parameters of the intraorbital Coulomb interaction U and the
exchange interaction J [37]. The tetragonal environment of
the 4+Ir ions, realized in Ba2IrO4, slightly lifts the degeneracy
of the 1T2 and 1E states. The SO interaction further lifts the
degeneracy of the 3T1 states. However, in all other respects
the positions of the main energy levels are very similar with
and without the SO interactions. The (averaged) parameters
U and J can be evaluated from the centers of gravity of the
three groups of levels. This yields U = 2.86 (2.91) eV and
J = 0.48 (0.49) eV with (without) SO interaction. Thus, U is
generally larger in the six-orbital model, in comparison with
the two-orbital one, due to the additionally screened by the
j = 3

2 electrons, which is included in the two-orbital model
but not in the six-orbital one.

The parameters of the NN SE interactions in the xy

plane are explained in Fig. 5. Since J xx
ij = J

yy

ij > J zz
ij , these

parameters favor the in-plane configuration of the pseu-
dospins, in agreement with the experiment [16]. Moreover,
the phase of the off-diagonal element J

xy

ij (in the I41/acd

coordinate frame) is bond dependent, giving rise to the
quantum compass interaction term. In the more conventional

I4/mmm coordinate frame, the tensor
↔
J ij is diagonal. The

corresponding parameters are given by J x ′x ′
ij = J xx

ij ± |J xy

ij |
and J

y ′y ′
ij = J xx

ij ∓ |J xy

ij |, where the upper (lower) sign stands
for the bonds parallel to the x ′ (y ′) axis. The isotropic part
Jij = 1

3 (J xx
ij + J

yy

ij + J zz
ij ) ≡ J12 = 109.8 meV is close to the

value J12 = 123 meV, obtained in the two-orbital model. This
is mainly because of the combination of two effects: On
the one hand, U is larger in the six-orbital model, which
should lead to the smaller J12. This decrease of J12 is
partly compensated by somewhat stronger transfer integrals,
operating between orbitals belonging to the highest Kramers

doublet (−226 meV instead of −216 meV in the two-orbital
model).

Our value of averaged in-plane interaction Jav = 1
2 (J xx

12 +
J

yy

12 ) = 110.6 meV is substantially larger than 65 meV, ob-
tained in Ref. [17] on the basis of quantum chemical calcula-
tions. There may be several reasons for it. On the one hand,
the exchange parameters reported in Ref. [17] were derived
from the total energy difference of the states in a cluster.
This procedure may include some other effects, which are
formally beyond the SE processes and cannot be described by
the bilinear type of interactions in the pseudospin Hamiltonian.
This finding is consistent with the results of our total energy
HF calculations, which will be discussed in Sec. VI: the
effective interaction, derived from the total energies, is indeed
smaller than in the SE model. However, we believe that this
difference is actually the measure of biquadratic (or ring-type)
interactions, existing in the system, which cannot be described
properly by the SE Hamiltonian (3). On the other hand, the
quantum chemical calculations explicitly take into account all
contributions of the oxygen states, which can further decrease
the AFM coupling [38].

As was already mentioned before, there are two important

factors, which lead to the anisotropy of
↔
J ij : (i) finite transfer

integrals, connecting the states with j = 3
2 and 1

2 [see Eq. (5)]
and (ii) finite intraatomic exchange coupling J [14], which
lifts the main degeneracy of the virtual two-hole states (see
Fig. 6). For instance, using the same transfer integrals, but
simplified matrix of the screened onsite Coulomb interactions,
which was reconstructed from averaged U = 2.86 eV and

J = 0, we have obtained totally isotropic tensor
↔
J ij ≡ Jij

↔
1 ,

where
↔
1 is the 3 × 3 unity tensor and Jij = 71 meV.

C. Six-orbital model for Sr2IrO4

In the case of Sr2IrO4, the splitting of the t2g levels is −431,
−4, and 435 meV. The symmetry properties of the |+z〉 orbital
are given by the same Eq. (4) with the following (nonvan-
ishing) coefficients: c

↓
xy = −0.015 ∓ i0.087, c

↑
zx = −ic

↑
yz =
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±0.184 + i0.643, and c
↓
x2−y2 = ±0.004 − i0.311, where the

upper (lower) sign is referred to the site 1 (2), experiencing the
counterclockwise (clockwise) rotation of the IrO6 octahedra
(see Fig. 1).

In the local representation, which diagonalizes the site-
diagonal part [tαβ

i=j ] of the one-electron Hamiltonian, the
matrix of transfer integrals between NN sites in the xy planes
is given by (in meV)

t̂〈ij〉||x ′,y ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

218 + i60 0 0 ∓24 ∓ i11 0 4 − i38

0 218 − i60 ±24 ∓ i11 0 −4 − i38 0

0 ∓24 ± i11 −94 − i69 0 ±29 ∓ i68 0

±24 ± i11 0 0 −94 + i69 0 ±29 ± i68

0 −4 − i38 ∓29 ± i68 0 −144 − i7 0

4 − i38 0 0 ∓29 ∓ i68 0 −144 + i7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the upper (lower) sign stands for the bond parallel to the
x ′ (y ′) axis (see Fig. 1 for the notations). This matrix has both
Hermitian t̂h

ij = 1
2 (t̂ij + t̂j i) and anti-Hermitian t̂ah

ij = 1
2 (t̂ij −

t̂j i) parts. The Hermitian part has the same form as for Ba2IrO4

and gives rise to the symmetric anisotropic interactions
↔
J (S)

ij .
The alternation of signs of some of these matrix elements will
also lead to the alternation of anisotropic interactions in the
xy plane. The anti-Hermitian part is the new aspect, which is
related to the fact that the neighboring Ir sites in the I41/acd

structure are no longer connected by the inversion operation.
This part is responsible for the DM interactions. The transfer
integrals, involving the highest Kramers doublet, are generally
smaller in Sr2IrO4 in comparison with Ba2IrO4, mainly due to
the additional deformation of the Ir-O-Ir bonds and the more
remote location of the Sr 4d states in the high-energy part of
the spectrum (see Fig. 3). Therefore, the SE interactions are
also expected to be smaller in Sr2IrO4.

Due to the additional symmetry lowering, the matrix of the
screened Coulomb interactions [Uαβγ δ] is even more complex
than in Ba2IrO4. Nevertheless, the energies of the two-hole
states, obtained from [Uαβγ δ], have the same “three-level”
structure as in Ba2IrO4, which is only slightly deformed by
the lattice distortion and the SO interaction (see Fig. 6).
The averaged parameters U and J can be again evaluated
from the splitting between these three groups of levels as
U = 3.05 eV and J = 0.48 eV (both with and without the
SO interaction). The value of J is comparable with the one in
Ba2IrO4. However, the Coulomb repulsion U is slightly larger
in Sr2IrO4. This behavior is consistent with the change of the
electronic structure (see Figs. 2 and 3): since the unoccupied
Ba 5d states are closer to the Fermi level and strongly hybridize
with the Ir 5d states, the Coulomb U is expected to be more
screened in Ba2IrO4 than in Sr2IrO4 [26]. Moreover, it is
reasonable to expect that the additional I41/acd distortion
in the case of Sr2IrO4 will make the t2g states more localized
and, thus, the screening of U less efficient. This will further
reduce the values of the SE interactions in Sr2IrO4.

Considering only the values of interorbital Coulomb inter-
actions U ′ = U − 2J = 1.90 eV and 2.09 eV for Ba2IrO4 and
Sr2IrO4, respectively, we note a reasonable agreement with
the results full-scale constrained RPA calculations reported
in Ref. [15] (U ′ is about 1.47 and 1.77 eV for Ba2IrO4 and
Sr2IrO4, respectively). Moreover, the authors of Ref. [15]
used a simplified I4/mmm structure and theoretical lattice

parameters both for Ba2IrO4 and Sr2IrO4, which may lead to
the additional screening of U ′. A more serious discrepancy
is found for J : our value of J is close to the atomic one,
which seems to be reasonable, because J is only weakly
screened in the RPA [39]. However, the values ofJ reported in
Ref. [15] are about three times smaller, leading to the violation
of the Kanamori rule U ′ = U − 2J , presumably due to the
contribution of the oxygen states to the Wannier functions [40].
This itself is an interesting point because, according to
Ref. [14], smaller value ofJ within the spherical model, which
respects the Kanamori rule, should reduce the anisotropy of
the exchange interactions. Therefore, it is interesting to which
extent this anisotropy of the exchange interactions will be
compensated by the anisotropy of the Coulomb interactions,
which emerges in the full-scale constrained RPA calculations
and manifested in the violation of the Kanamori rule. In any
case, according to the analysis of the effective electron model
based on the dynamical mean-field theory [15], our values of
the parameters U and U ′ should correspond to the insulating
behavior for Ba2IrO4 and Sr2IrO4, thus justifying the use of
the t̂/U expansion for the analysis of interatomic exchange
interactions.

The I41/acd structure of Sr2IrO4 contains two IrO2 planes.
The behavior of NN SE interactions in one of the planes
is explained in Fig. 5. The parameters in another plane can
be obtained by the 90◦ rotation about the z axis. As was
expected, the isotropic part of the exchange interactions J12 =
1
3 (J xx

12 + J
yy

12 + J zz
12 ) = 39.0 meV is considerably smaller than

in Ba2IrO4.
It should be noted that the magnon dispersion in Sr2IrO4,

measured by the resonant inelastic x-ray scattering, can be
fitted in terms of first-, second-, and third-neighbor inter-
actions in the xy plane, which are 60, −20, and 15 meV,
respectively [41]. Recently, this finding was also confirmed
by the x-ray resonant magnetic scattering measurements [42].
The first-neighbor interaction is larger than 39 meV, obtained
in this work in the framework of the SE model. However, an
even more surprising fact is that the fit of the experimental dis-
persion requires comparable exchange interactions, spreading
up to at least third-nearest neighbors in the xy plane. It is
definitely inconsistent with the results of the SE model, where
the exchange interactions are short ranged and limited by the
nearest (first) neighbors. Moreover, as we will see in Sec. VI,
the biquadratic exchange interactions, which arise beyond the
SE approximation for the same effective electron model and
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which are expected to be small in Sr2IrO4, seem to be not
sufficient to explain such discrepancies. Thus, it is still an
open question as to which ingredients should be additionally
included to the electron model in order to describe properly the
experimental magnon dispersion. It is definitely a challenging
issue for the future studies.

Since J xx
12 = J

yy

12 > Jzz
12 , the pseudospins will favor the in-

plane configuration, similar to Ba2IrO4 and in agreement with
the experimental situation [3,43]. In Sr2IrO4, the parameter
of the easy-plane anisotropy for the NN interactions �λ =
1 − J zz

12 /J xx
12 has been recently estimated in the x-ray resonant

magnetic scattering experiments as 0.08 [42], which is close
to our theoretical value of 0.087. The symmetric anisotropic

part of
↔
J12 is |J (S)xy

12 | ≡ �J12 = 0.73 meV, which is about one
order of magnitude smaller than in Ba2IrO4. This interaction
is also bond dependent.

The antisymmetric part of
↔
J12 can be represented in terms

of the DM vector (in meV): d12 = (−0.1, − 0.1, − 3.97) (see
Fig. 1 for the notations of atomic sites). The phases of dx and
dy alternate in the four NN bonds around the site 1. Since
all NN atoms, surrounding the site 1, have the same direction
of the pseudospin, the total contribution of dx and dy to the
canting of these pseudospins will vanish. On the other hand,
the phases of dz are the same for all NN bonds. Thus, dz will
be responsible for the ferromagnetic (FM) canting, which can
be estimated as |dz

12/(2J xx
12 )| ∼ 2.8◦. This value is smaller than

the experimental estimate of 8◦ [1]. Therefore, the weak FM
moment is also expected to be smaller. Indeed, according to
the unrestricted HF calculations, which will be discussed in
Sec. VI, the weak FM moment is about 0.03 μB/Ir, while the
experimental estimates range from 0.06 μB/Ir (Ref. [44]) until
0.10 μB/Ir (Ref. [3]). Nevertheless, the negative sign of dz for
the bond 1-2 is consistent with the counterclockwise rotation
of the IrO6 octahedra [14]. This picture can be also verified
experimentally [45].

The weak ferromagnetism in Sr2IrO4 is the very important
issue, which we would like to discuss more in details. Ac-
cording to the first-principles GGA + U calculations (where
GGA stands for the gradient corrected approximation), the
canted AFM ground state is highly sensitive to small structural
deformations and the use of the experimental crystal structure
in the theoretical calculations yields somewhat smaller cant-
ing [46]. This is partly consistent with our finding because all
our calculations have been also performed for the experimental
crystal structure. In order to further clarify this issue, we
have also performed the LDA + U calculations using ELK

full-potential package (and the values U = 3 eV and JH =
0.48 eV for the onsite Coulomb and exchange interaction,
respectively) [47]. We were able to reproduce the AFM ground
state, where the magnetic moments are mainly parallel to the
x axis and ferromagnetically canted along the y axis. The
corresponding values of the spin and orbital magnetic moments
at the Ir sites are 0.095 μB and 0.305 μB. By considering only
Ir sites, the canting of spin, orbital, and total moments can
be estimated as 13.9◦, 12.3◦, and 12.6◦, respectively, and the
weak net magnetic moment is 0.087 μB. All these values are
consistent with those reported in Ref. [46]. However, this is
only part of the story because there is also a contribution to
the net magnetic moment coming from the oxygen sites. In the

ELK calculations, the spin and orbital magnetic moments at the
oxygen sites are about 0.006 μB and 0.005 μB, respectively.
These moments are small. However, they are canted along the y

axis by 51.3◦ and 53.1◦, respectively. Due to such large canting,
the oxygen sites produce an appreciable contribution to the
net magnetic moment, which can be estimated as 0.018 μB

(taking into account the contributions of two oxygen sites
in the xy plane). Thus, our conclusion is that there is an
important piece of physics, related to the magnetic polarization
of the oxygen states, which is not properly captured by the
model Hamiltonian (3). Therefore, we believe that the small
value of dz

12 and, therefore, the spin canting, obtained in
our work, is partly due to internal limitations of the SE
model, which does not explicitly treat the contributions of
the oxygen states. This conclusion is partly supported by the
results of Ref. [46]. The authors of this work attempted to
derive parameters of the magnetic model using the constrained
density functional theory, where they fixed the directions of
the magnetic moments only at the Ir sites (and fully relax
the contributions of the oxygen sites), calculated the total
energy, and then mapped them onto the model Hamiltonian
of the form (3). They obtained the following values of the
isotropic exchange and DM interactions in the xy plane (in
our notations): J12 = 22.2 meV and dz = −17.4 meV. They
correspond to the FM canting of 21.4◦, which is substantially
larger than the experimental value and also the value obtained
in Ref. [46] in the direct (unconstrained) optimization of
the magnetic structure. Although the procedure, which was
employed in Ref. [46] for the construction of the magnetic
Hamiltonian, is very different from the one we use in this
work, such inconsistency also means that some important
information is missing in the process of the construction of the
model Hamiltonian and this information is probably related to
the polarization of the oxygen sites.

For Sr2IrO4, the parameters of interatomic exchange inter-
actions have been also computed in Ref. [34], by mapping
the total energies, obtained in the quantum chemical calcula-
tions, onto the pseudospin model (3). The obtained values
J12 = 47.8 meV and �J12 = 0.63 meV are in reasonable
agreement with our finding. However, the DM interaction
dz

12 = −11.9 meV is about three times larger than ours. This
difference may be also related to the effect of the oxygen
states, which are explicitly taken into account in the quantum
chemical calculations.

D. Roles of the tetragonal splitting

Without SO interaction, the tetragonal distortion splits
the t2g manifold into the nondegenerate x ′y ′ and doubly
degenerate (y ′z′,z′x ′) states. The parameter of the tetragonal
splitting �t2g

is defined as the energy difference between these
groups of levels. In our notations, �t2g

< 0 means that the x ′y ′
orbital is located higher in energy (and vice versa). �t2g

is
the very important parameter, which controls the properties
of layered perovskites. In iridates, the importance of such
control was emphasized recently in Ref. [34]. Particularly, on
the basis of quantum chemical calculations, it was predicted
that the t2g levels have different order in Ba2IrO4 and Sr2IrO4,
that is reflected in the anisotropy of the g tensor, which also
behaves differently in Ba2IrO4 (gxx = gyy > gzz) and Sr2IrO4
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FIG. 7. (Color online) Parameters of pseudospin Hamiltonian (3) versus the tetragonal splitting between t2g levels for Ba2IrO4 (left) and
Sr2IrO4 (right). Two vertical lines show the calculated splitting, which is caused by the hybridization effects alone (h), and the combined effect
of the hybridization and the nonsphericity of the Madelung potential (h+M).

(gxx = gyy < gzz). For Sr2IrO4, this finding was confirmed by
the electron spin resonance measurements. The off-diagonal
element gxy , associated with the rotation of the IrO6 octahedra
in Sr2IrO4, is small and we do not discuss it here.

Taking into account the importance of this problem, we
discuss it in this section more in details, treating �t2g

as
a parameter. The results of such calculations for the NN
exchange interactions and the g tensor are presented in Fig. 7.

The IrO6 octahedra are elongated along the z axis both
in Ba2IrO4 and Sr2IrO4 (the corresponding elongation is 7%
and 4%, respectively) [22,23]. Thus, the distortions of the
IrO6 octahedra alone will hardy explain the difference between
Ba2IrO4 and Sr2IrO4, which should be associated with more
subtle aspects of the crystal and electronic structures of these
compounds.

There are several contributions to the tetragonal level
splitting [26]. The first one is related to the hybridization (or
covalent mixing) of atomic orbitals, which affects the shape
of the Wannier functions of the x ′y ′ and (y ′z′,z′x ′) symmetry
and, thus, results in the crystal-field splitting between these two
groups of states. It can be easily evaluated in the framework
of the LMTO method [25], which relies on the spherical
symmetrization of the LDA potential within atomic spheres
and, therefore, does not produce any other contributions to
the crystal field, except the ones related to the hybridization.
The hybridization effects alone do produce the different
order of the t2g levels in the case of Ba2IrO4 and Sr2IrO4:
�h

t2g
= −107 and 67 meV, respectively. These values are

roughly consistent with those obtained by Bogdanov et al.
(note that our �t2g

is defined with the opposite sign) [34].
The corresponding matrix elements of the g tensor, gxx =
2.20 (1.83) and gzz = 1.57 (2.33) for Ba2IrO4 (Sr2IrO4), are
also in reasonable agreement with those obtained by Bogdanov
et al. [34], thus confirming the change of the anisotropy of the
g tensor from gxx = gyy > gzz in Ba2IrO4 to gxx = gyy < gzz

in Sr2IrO4. Nevertheless, the splitting of the t2g levels also
affects the behavior of interatomic exchange interactions

and their anisotropy. This point appears to be especially
important for Ba2IrO4 because for �h

t2g
= −107 meV, we

obtain the following parameters: J xx
12 = J

yy

12 = 130.7 meV
and J zz

12 = 131.6 meV, which correspond to the out-of-plane
configuration of the pseudospins (J xx

12 = J
yy

12 < Jzz
12 ), being in

total disagreement with the experimental situation [16].
This disagreement urged us, in addition to the hybridization,

to consider another contribution to the t2g level splitting,
caused by the nonsphericity of the Madelung potential [26,48].
This term plays a crucial role in reproducing the correct
magnetic ground state of 3d perovskite oxides with the
partially filled t2g shell [48,49]. It appears to be very important
also for Ba2IrO4 because it reverses the order of the t2g level
(�h+M

t2g
= 69 meV) and enforces the experimentally observed

in-plane configuration of the pseudospins (J xx
12 = J

yy

12 > Jzz
12 ).

This is the reason why throughout this work we apply this
strategy both for Ba2IrO4 and Sr2IrO4. For Ba2IrO4, it leads
to the anisotropy of the g tensor, gzz > gxx = gyy , which does
not seem to be consistent with the prediction of Bogdanov
et al. [34]. However, so far there are no experimental data
for Ba2IrO4 and this situation still needs to be checked
experimentally. As for Sr2IrO4, the anisotropy of the g tensor
(gxx = 1.12 and gzz = 3.33) appears to be of the right sign,
but, because of the large �h+M

t2g
, is substantially overestimated

in comparison with the experimental data [34]. Apparently,
this problem is related to limitations of the low-energy model,
which leads to the overestimation of the t2g level splitting.
Moreover, the numerical values can be to some extent corrected
by employing more rigorous techniques for calculations of the
g tensor [33,34], beyond the SE approximation.

We would also like to stress that, within the interval
�h

t2g
< �t2g

< �h+M
t2g

, the DM interaction dz
12 in Sr2IrO4 only

weakly depends on �t2g
. Thus, the small value of dz

12 and,
therefore, the FM canting, obtained in our work, is not related
to the t2g level splitting, that also confirms the conclusions of
Sec. V C. We also note that a smaller value of �t2g

in the case of
Sr2IrO4 would improve the agreement with the experimental
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data for the g tensor (Ref. [34]) and also the values of NN
exchange interactions in the xy plane (Refs. [41,42]) and
the Néel temperature, which will be discussed in the next
section. However, in the framework of the SE theory, it does
not produce the longer-range exchange interactions in the xy

plane, which are apparently suggested by the from of the
experimental magnon dispersion [41,42]. Thus, simple change
of the model parameters does not resolve all the problems of
the SE description for Sr2IrO4.

E. Calculations of the Néel temperature

The first-principles calculations revealed a big difference
of the magnetic models in the case of Ba2IrO4 and Sr2IrO4.
On the one hand, the leading isotropic exchange interaction
of 123 meV in Ba2IrO4 is about three times larger than that
of 39 meV in Sr2IrO4. In turn, the symmetric anisotropic
interaction J

(S)xy

12 in Ba2IrO4 is an order of magnitude larger
than in Sr2IrO4. On the other hand, there is an appreciable
DM interaction in Sr2IrO4, but not in Ba2IrO4. One of the
puzzling points is that the experimental Néel temperature is
practically the same in both systems (about 240 K). The aim of
this section is to check whether such striking similarity can be
explained using the above parameters of interatomic exchange
interactions derived in the SE approximation.

Let us first investigate the effect of the DM interaction on
the energy spectrum of the pseudospin model. In the I4/mmm

coordinate frame, the exchange interaction tensor in the bond
1-2, which is parallel to the y ′ axis, is given by

↔
J12 =

⎛
⎜⎝

J xx
12 − �J12 −dz

12 0

dz
12 J xx

12 + �J12 0

0 0 J zz
12

⎞
⎟⎠,

where for simplicity we have dropped the small contributions
of dx

12 and d
y

12. For the bonds parallel to the x ′ axis, �J12 should
be replaced by −�J12. By considering the transformation

↔
J12 →

↔
J̃12 =

↔
U 1

↔
J12

↔
UT

2

with

↔
U 1 =

↔
UT

2 =

⎛
⎜⎝

cos φ sin φ 0

− sin φ cos φ 0

0 0 1

⎞
⎟⎠

and φ = 1
2 arctan(dz

12/J
xx
12 ) minimizing the energy of DM

interactions [14,50], the tensor
↔
J12 can be transformed to

↔
J̃12 =

⎛
⎜⎝

J̃ xx
12 − �J12 0 0

0 J̃ xx
12 + �J12 0

0 0 J zz
12

⎞
⎟⎠,

where J̃ xx
12 = J xx

12

√
1 + (dz

12/J
xx
12 )2. Thus, the DM interactions

alone do not confine the pseudospins in any particular
directions [14,50]. Moreover, after such transformation to the
local coordinate frame, the effect of the DM interactions can be
combined with J xx

12 . Since in the six-orbital model for Sr2IrO4,
dz

12 = 3.97 meV while J xx
12 = 40.2 meV, the renormalization

of J̃ xx
12 due to the DM interaction is only about 0.5%. Therefore,

we conclude that the effect of the DM interaction on the energy

spectrum is small and can be neglected and, as far as the energy
spectrum is concerned, the main ingredients of the pseudospin
model are essentially the same in the case of Ba2IrO4 and
Sr2IrO4.

We will concentrate on two mechanisms of the magnetic
ordering in iridates: the first one is due to the in-plane
anisotropy, which emerges in the six-orbital model, and the
second one is due to the interlayer exchange coupling, which
is relevant to the two-orbital model of Ba2IrO4. Thus, we
consider the following general compass Heisenberg model:

ĤS = Jz

2

∑
〈ij〉 in plane

Sz
i Sz

j + 1

2

∑
〈ij〉‖x

(
J‖Sx

i Sx
j + J⊥Sy

i S
y

j

)

+ 1

2

∑
〈ij〉‖y

(
J‖Sy

i S
y

j + J⊥Sx
i Sx

j

) + J ′

2

∑
〈ij〉 interplane

S iSj ,

(6)

where it is convenient to introduce the shorthand notations
Jz ≡ J zz

12 , J‖ ≡ J xx
12 + �J12, J⊥ ≡ J xx

12 − �J12, and J ′ is the
coupling between the atoms, which belong to different planes,
separated by the primitive translation c along the z axis. The
magnon spectrum of this model for J ′ = 0 was calculated in
Ref. [51]. It reads as

E(1)
q = ζS

√
(4Jav + Bq − Aq)(4Jav + Bq + Aq + Javg),

(7)
E(2)

q = ζS
√

(4Jav − Bq − Aq + Javg)(4Jav − Bq + Aq),

where Jav = (J‖ + J⊥)/2 = J xx
12 ,

Aq = (J⊥ + Jz) cos qx + (J‖ + Jz) cos qy,
(8)

Bq = (J⊥ − Jz) cos qx + (J‖ − Jz) cos qy,

and

g = 0.16(J‖ − J⊥)2
/(

J 2
avS

) = 0.64
(
�J12/J

xx
12

)2/
S (9)

is the quantum gap. Moreover, we have introduced the
renormalization factor ζ = 1 + 0.0785/S, which is taken
equal to its value in the two-dimensional Heisenberg model.
Then, for small q we obtain

4Jav − Bq − Aq → J⊥q2
x + J‖q2

y ,

4Jav − Bq + Aq → 4(Jav + Jz),
(10)

4Jav + Bq − Aq → 4(Jav − Jz) + Jzq
2 = Jz(q

2 + f ),

4Jav + Bq + Aq → 8Jav,

where the parameter f , describing the in-plane symmetric
anisotropy, is defined as

f = 4(Jav − Jz)/Jz. (11)

Therefore, we have

E(1)
q � Sζ

√
8JavJz

(
q2 + f

)
,

(12)
E(2)

q � Sζ

√
4(Jav + Jz)

(
J⊥q2

x + J‖q2
y + Javg

)
.

The first mode is related to the out-of-plane pseudospin
rotation, while the second corresponds to the in-plane rotation.

To obtain magnetic transition temperatures, we map the
Heisenberg model (6) onto the nonlinear sigma model, having
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TABLE I. Parameters used in Eqs. (13) and (14) for the transition temperature and the calculated TN in different regimes (the values of Jav,
J‖ − J⊥, and Jz are in meV, TN is in Kelvin, and other parameters are dimensionless).

Jav J‖ − J⊥ Jz f g α cop cip T
α=0,g=0
N TN

Ba2IrO4 (2-orb.) 122.8 0 122.8 0 0 1.4 × 10−4 200.9 200.9 239
Ba2IrO4 (6-orb.) 110.6 15 108.1 0.09 6 × 10−3 1.3 × 10−4 178.9 179.9 371 414
Sr2IrO4 (6-orb.) 40.2 1.5 36.7 0.38 4 × 10−4 1.5 × 10−5 62.8 64.3 181 216

the same excitation spectrum [Eq. (12)]. The details are given
in the Appendix. Treating the magnetic excitations, as slightly
different from the case of the XY anisotropy [52], we obtain in
the regime f � max(α,g), α = 2J ′/J , the following equation
for the Néel temperature (see Appendix):

TN = 4πρs

{
ln

T 2
N

copcipfr

+ 4 ln
4πρs

TN

− 2A2

ln2[f/ max(α,g)]

}−1

,

(13)

where A � 3.5, cop = √
8JavJzSζ , and cip =√

4Jav(Jav + Jz)Sζ are the out-of-plane and in-plane
spin-wave velocities, ρs = 2(1/ρz + 1/ρav)−1 is the effective
spin stiffness (ρz,av = Jz,avζSS0), fr = f (S0/S)2 is the
renormalized anisotropy parameter, S0 = 0.303 for S = 1

2 is
the ground-state magnetization. In the absence of compass
anisotropy, f = g = 0, we obtain instead [53]

TN = 4πρs

{
ln

2T 2
N

copcipαr

+ 3 ln
4πρs

TN

− 0.06

}−1

, (14)

where αr = α(S0/S) is the renormalized interlayer coupling
parameter.

The parameters and the resulting magnetic transition
temperatures are listed in Table I. Let us first discuss the
results of the six-orbital models for the Ba2IrO4 and Sr2IrO4.
Judging by the ratio between the anisotropy parameters f,g

and interlayer isotropic parameter α, we have the relation
f � g � α, which holds for both compounds. Thus, the
in-plane anisotropy is expected to be mainly responsible for
the magnetic ordering. The differences between in-plane and
out-of-plane components of the symmetric anisotropy tensor
(Jav − Jz) are close to each other and equal to 2.5 meV (in
Ba2IrO4) and 3.5 meV (in Sr2IrO4). However, due to the
difference in the absolute value of Jz, we obtain completely
different anisotropy parameters f,g and, therefore, the transi-
tion temperatures. For Sr2IrO4, the calculated temperature of
216 K is in the good agreement with the experimental value
of 240 K. This is consistent with the finding of Jackeli and
Khaliullin [14], who used the experimental TN in order to
estimate the values of the exchange interactions and these
values are close to ours. However, the situation is different in
the case of Ba2IrO4, where the theoretical TN is overestimated
by a factor of 2.

Interestingly, in the case of the two-orbital model for
Ba2IrO4, which, in analogy with the cuprates [53], contains
only in-plane and interplane isotropic exchange interactions,
we observe a good agreement between theory and experiment.
However, this agreement is probably fortuitous.

VI. BEYOND SUPEREXCHANGE

The main purpose of this section is to discuss the effects,
which are not included to the regular SE model. Our main
concern is the following: Since the SE model is based on the
second-order perturbation theory for the transfer integrals, it
implies that all effects of the SO coupling, which are included
to these transfer integrals, are also automatically treated only
up to the second order. Since the SO coupling is large in
iridates, this may be a rather crude approximation, which does
not take into account some important anisotropic interactions.
For instance, in the mean-field approximation for the SE
model, all pseudospins in the single xy plane of Ba2IrO4

and Sr2IrO4 can rotate rigidly at no energy cost. Aside from
quantum effects, considered in the previous section (see also
Ref. [17]), this may be related to the lack of the in-plane
anisotropy, which typically appears only in the fourth order of
the SO coupling.

If we wanted to include these effects in the pseudospin
model, our strategy would be to go beyond the second-order
perturbation theory for the transfer integrals and consider
higher-order terms, which give rise to the new type of interac-
tions, such as the biquadratic or ring exchange [54,55]. They
will affect both anisotropic and isotropic parts of the exchange
interactions. Therefore, in the pseudospin formulation, based
on the strong SO coupling, these two types of the effects
are connected with each other: if we want to consider the
higher-order anisotropic interactions, we have to deal with
the biquadratic and ring exchange terms, which will affect all
other exchange interactions, including the isotropic ones. Such
pseudopsin Hamiltonian is no longer presented in the bilinear
form (3).

Nevertheless, in this work we take a different strategy and in
order to evaluate the higher-order contributions (and, therefore,
check the validity of the SE model) in Ba2IrO4 and Sr2IrO4,
we solve the original electron model (1) in the mean-field HF
approximation, where we also apply the staggered external
magnetic field, which controls the directions of the spin and
orbital moments. We have found that the field of μBH =
0.68 meV is generally sufficient for these purposes.

The weak point of the HF approach is that it treats all
onsite electron-electron interactions on the mean-field level,
whereas in the SE theory such processes are treated rigorously
by solving the exact eigenstates problem for the virtual
two-hole states. However, in this particular case, we do not
expect large error caused by the mean-field approximation
(some comparison for transition-metal perovskite oxides can
be found in Ref. [26]). On the other hand, the HF method
does not employ any additional approximations regarding the
relative strength of transfer integrals and the onsite Coulomb
repulsion and, in this sense, is the more superior approach in
comparison with the SE theory.
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FIG. 8. (Color online) Results of constrained unrestricted
Hartree-Fock calculations for Ba2IrO4 in the staggered
“antiferromagnetic” field μBH = 0.68 meV. The direction of
the magnetic field in the planes z = 0 and 1

2 is specified by azimuthal
angles (φ + �φ) and (φ − �φ), respectively (in the I41/acd

coordinate frame). (a) The total energy dependence on φ for �φ = 0.
(b) The total energy dependence on �φ for φ = 0. (c), (d) The
geometry of the staggered magnetic field for (a) and (b), respectively.

Let us start with Ba2IrO4. The geometry of the constraining
field in this case is explained in Fig. 8. First, let us consider the
case where the fields in the two adjacent planes z = 0 and 1

2 are
rotated in phase. Then, the total energy exhibits the minimum
at φ = 0 (modulo π , in the I41/acd coordinate frame). This
effect can be actually included in the SE model and is related to
the anisotropy of the exchange interactions between adjacent
planes [17]. The behavior of these interactions is explained
in Fig. 9. Then, the mean-field energy of the magnetic order,
depicted in Fig. 8(c), is given by E(φ) = −�Jout cos 2φ (per
one Ir site), where �Jout = |J xx

out − J
yy
out|.

Furthermore, in the SE approximation, the energy should
remain invariant with respect to the antiphase rotations of the
pseudospin [Fig. 8(d)]. In other words, if we fix φ and consider
the configurations, where the directions of the pseudospins in
the adjacent planes z = 0 and 1

2 are specified by the azimuthal
angles (φ + �φ) and (φ − �φ), respectively, the mean-field
energy of such configurations should not depend on �φ [17].
This property is indeed strictly observed when we use the
exchange parameters, derived in the SE model. Because of
this degeneracy, the authors of Ref. [17] had to go beyond
the mean-field theory and consider the effect of the quantum
fluctuations in order to explain the experimentally observed
magnetic ground-state structure of Ba2IrO4 (corresponding to
φ = �φ = 0 in the I41/acd coordinate frame) [16]. The most
interesting aspect of our analysis is that this degeneracy can

FIG. 9. (Color online) Tensors of superexchange interactions
↔
J ij

(in meV and in the I41/acd coordinate frame), associated with
different Ir-Ir bonds between adjacent planes in Ba2IrO4. The Ir
atoms are indicated by the big (red) spheres and the oxygen atoms
are indicated by the small (yellow) spheres.

be lifted even on the mean-field level if one goes beyond
the SE model and consider more rigorously the higher-order
contributions of the transfer integrals in the framework of the
unrestricted HF calculations. The dependence of the HF total
energy on �φ is shown in Fig. 8(b) (for φ = 0). It clearly
shows that the higher-order anisotropic interactions, which
are included in the HF calculations, lift the degeneracy and
stabilize the experimentally observed magnetic ground state.
The energy barrier, caused by these interactions, is about
4.5 μeV, which is at least comparable with the effect of
quantum fluctuations considered in Ref. [17]. Thus, the effect
is robust and cannot be neglected in the realistic analysis of
the magnetic properties of Ba2IrO4.

Next, we evaluate the effect of biquadratic exchange on
the NN interaction J zz

12 in the xy plane of Ba2IrO4. If the
magnetic properties of some material were indeed described
by the bilinear Hamiltonian (3), the values of the exchange
parameters would not depend on the method, which is used
for their calculations. For instance, in the mean-field HF
method, one could evaluate J zz

12 from the total energy difference
between FM and AFM states, by aligning the magnetic
moments parallel to the z axis: J zz

12 = E↑↑ − E↑↓. Then, if the
bilinear parametrization (3) for the magnetic Hamiltonian were
indeed appropriate, this value of J zz

12 should be close to the one
obtained in the SE model. Nevertheless, the straightforward
HF calculations yield E↑↑ − E↑↓ = 83.8 meV, which is 22%
smaller than J zz

12 = 108.1 meV, obtained in the SE model.
This deviation is the measure of biquadratic (or ring-type)
exchange interactions, existing in the system. Thus, as
expected from the discussion in the beginning of this section,
the higher-order anisotropic effects in Ba2IrO4 coexist with
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appreciable biquadratic contributions to the isotropic exchange
interaction. In this sense, we obtain very consistent description
for Ba2IrO4. Unfortunately, we could not obtain a stable
in-plane FM solution in the HF method and, thus, evaluate the
in-plane elements of the exchange tensor from the total energy
difference. Generally, one can expect similar contribution
of biquadratic interactions to the in-plane and out-of-plane
components of the exchange tensor.

The behavior of Sr2IrO4 appears to be rather different
from Ba2IrO4. Since the transfer integrals are smaller in
Sr2IrO4, while the Coulomb interactions are slightly larger, it
is reasonable to expect that the t2g states are more localized in
Sr2IrO4, which additionally justifies the use of the SE model.
This is indeed what we have obtained by comparing results
of HF calculations and the SE model. The fact that Ba2IrO4

appears to be “more itinerant” than Sr2IrO4 can be seen already
from the comparison of the band gap, obtained in the HF
method for the AFM ground state, which is substantially
smaller in Ba2IrO4 (1.3 eV, against 1.8 eV in Sr2IrO4). It
should be noted, however, that the HF gap is considerably
larger than the experimental one, due to the lack of quantum
and thermal fluctuations, as was confirmed by the DMFT
calculations [15].

First, we consider the HF solutions for the FM and AFM
states, where all magnetic moments are parallel to the z

axis. The exchange coupling obtained from the total energy
difference between these states is 31.7 meV, which is much
closer to the value J zz

12 = 36.7 meV, obtained in the SE
model (the difference is about 14%, which can be again
regarded as the measure of biquadratic interactions in the
system). In Sr2IrO4, it is practically impossible to evaluate
the in-plane elements of the exchange tensor from the total
energy difference: because of the DM interaction, the in-plane
FM state is unstable and converges to the AFM state (with the
small FM canting of the magnetic moments).

Next, we consider the higher-order anisotropy effects in
Sr2IrO4. For these purposes we take the weakly FM state and
rotate magnetic moments by the external magnetic field of
μBH = 0.68 meV, which couples to the weak FM moment in
the xy plane. The results of such constrained HF calculations
are summarized in Fig. 10. We note the following: (i) The total
energy depends on the direction of the magnetic moments in
the xy plane. However, this dependence is very weak (the
characteristic energy barrier is about 0.25 meV, which is an
order of magnitude smaller than in Ba2IrO4). (ii) The angle
(�φ) between magnetic moments of the sites 2 and 1 (see
Fig. 1 for the notations) is nearly constant, meaning that it
is mainly controlled by the DM interaction dz

12, while the
effect of other anisotropic interactions (that are not taken
into account in the SE model) are relatively small. Since the
energy gain caused by the DM interaction is proportional to
dz

12 sin �φ, the obtained values of −270◦ < �φ < −180◦ are
well consistent with the sign dz

12 < 0 of DM interactions for
the counterclockwise rotation of the IrO6 octahedra around the
site 1 (see Fig. 1). Yet, one interesting aspect of the HF analysis
is that the angle �φ is different between, separately, spin and
orbital magnetic moments. Without external field (H = 0), �φ

is about −185.2◦. It corresponds to the FM canting of 2.6◦,
which is close to 2.8◦, obtained in the SE model. The values of
spin and orbital magnetic moments, obtained for the in-plane

FIG. 10. (Color online) Results of constrained unrestricted
Hartree-Fock calculations for Sr2IrO4 in the magnetic field μBH =
0.68 meV, which couples to the weak ferromagnetic moment in the
xy plane. The direction of the field is specified by the azimuthal
angle φ. The upper panel displays the behavior of the total energy:
the symbols show calculated points, while the solid line is the result
of interpolation E(φ) = A + B cos 4φ. The lower panel shows the
angle between spin (�φS), orbital (�φL), and total (�φ) magnetic
moments of the sites 2 and 1 in Fig. 1.

(out-of-plane) magnetic alignment are 0.13 and 0.48 μB (0.71
and 0.83 μB), respectively.

Thus, we obtain a very consistent description also for
Sr2IrO4: (i) To a good approximation, the magnetic Hamil-
tonian has the bilinear form (3), inherent to the SE model.
(ii) The higher-order anisotropy effects, beyond the SE model,
are negligibly small. This makes the main difference from
Ba2IrO4, where (i) the deviations from the bilinear form
are significant and (ii) the higher-order anisotropic exchange
interactions are important.

VII. SUMMARY AND CONCLUSIONS

The main purpose of this work was to critically evaluate
the abilities of the SE model for the analysis of magnetic
properties of the layered iridates Ba2IrO4 and Sr2IrO4. Being
based on the DFT calculations with the SO coupling, we
have first derived the effective low-energy electron model for
the t2g bands, which are located near the Fermi level and
primarily responsible for the magnetic properties of Ba2IrO4

and Sr2IrO4. This electron model was further mapped on the
pseudospin model using the theory of SE interactions in the
limit of large onsite Coulomb repulsion. We have studied
the microscopic origin of the bond-dependent anisotropic
exchange interactions, as well as the antisymmetric DM
interactions, caused by the antiphase rotations of the IrO6
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octahedra in Sr2IrO4. The pseudospin Hamiltonian problem
has been solved by means of the nonlinear sigma model, that
has finally allowed us to evaluate the Néel temperature. We
have demonstrated that while for Sr2IrO4 the theoretical Néel
temperature is in good agreement with the experimental data,
for Ba2IrO4 it is overestimated by factor of 2. We have argued
that this discrepancy is consistent with the limitations of the
SE model for Ba2IrO4, which is the more “itinerant” system
than Sr2IrO4. Such “itineracy” is directly related to the details
of the electronic structure of Ba2IrO4: the lack of rotations
of the IrO6 octahedra and the proximity of the Ba 5d states
to the Fermi level make the t2g bandwidth increase and more
efficiently screen the Coulomb interactions in this band. Thus,
the t̂/U expansion for the magnetic energy converges slower,
and higher-order terms, beyond the SE contributions, start to
play an important role. Since the effect of SO interaction

in the SE formulation is included to the transfer integrals,
the higher-order terms automatically improve the description
also for the anisotropic exchange interactions. In fact, by
solving the low-energy electron model for Ba2IrO4 in the HF
approximation, we were able to reproduce the experimental
magnetic-ground-state structure of this compound even on the
mean-field level, without invoking quantum effects. Another
important problem, which deserves further consideration,
is the contribution of the oxygen states to the interatomic
exchange interactions.
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APPENDIX: DERIVATION OF THE NONLINEAR SIGMA MODEL FOR COMPASS HEISENBERG MODEL
AND ITS RENORMALIZATION

1. Nonlinear sigma model

To obtain the action of the continuum model we pass to the coherent state representation for spin operators and represent the
corresponding vectors of spin directions following the standard procedure

S i = (−1)iSni

√
1 − (Li/S)2 + Li , (A1)

where Li · ni = 0, n2
i = 1, and the fields ni and Li represent the staggered and uniform component. Substituting Eq. (A1) into (6)

we obtain the Lagrangian

L[n,L] = −JzS
2

2

∑
i,δ

nz
i n

z
i+δ − S2

2

∑
i,δx

(
J‖nx

i n
x
i+δx

+ J⊥n
y

i n
y

i+δx

) − S2

2

∑
i,δy

(
J‖n

y

i n
y

i+δy
+ J⊥nx

i n
x
i+δy

)

+ 1

2

∑
i,δ

(
JzL

z
i L

z
i+δ + (

Jzn
2
z + J‖n2

δ + J⊥n2
δ̃

)L2
i + L2

i+δ

2

)
+ 1

2

∑
i,δx

(
J‖Lx

i L
x
i+δx

+ J⊥L
y

i L
y

i+δx

)

+ 1

2

∑
i,δy

(
J‖L

y

i L
y

i+δy
+ J⊥Lx

i L
x
i+δy

) + i
∑

i

Li ·[ni×∂τ ni], (A2)

where δx,y correspond to nearest neighbours along x and y directions, nδx,y
= nx,y, nδ̃x,y

= ny,x, and we keep only terms, which
give the leading contribution in the continuum limit. Expanding

ni+δ = ni + (δ∇)ni + 1
2 (δaδb∂a∂b)ni + . . . (A3)

and similarly for Li+δ, we obtain

L[n,L] = S2

2

∫
d2x

[
Jz(∇nz)

2 + J‖(∂xnx)2 + J‖(∂yny)2 + J⊥(∂xny)2 + J⊥(∂ynx)2 + Jzf n2
z

]
+ 1

2

∫
d2x

{
2
[
4Jz + (J‖ + J⊥ − 2Jz)

(
n2

x + n2
y

)]
L2

i +2(J‖ + J⊥ − 2Jz)
(
L2

x + L2
y

)} + iL · [n × ∂τ n], (A4)

where we have defined f according to (11). Performing the integration over L, we find

L[n] = S2

2

∫
d2x

[
Jz(∇nz)

2 + J‖(∂xnx)2 + J‖(∂yny)2 + J⊥(∂xny)2 + J⊥(∂ynx)2 + Jzf n2
z

]
+ 1

2

∫
d2x

1

2
[
4Jz + (J‖ + J⊥ − 2Jz)

(
n2

x + n2
y

)] [n × ∂τ n]2
z + 1

2

∫
d2x

1

2
[
4Jz + (J‖ + J⊥ − 2Jz)

(
1 + n2

x + n2
y

)]
× [n × ∂τ n]2

x + 1

2

∫
d2x

1

2
[
4Jz + (J‖ + J⊥ − 2Jz)

(
1 + n2

x + n2
y

)] [n × ∂τ n]2
y. (A5)
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In the following, we assume the preferable direction of magnetic order along the y axis. Representing

ny =
√

1 − n2
x − n2

z (A6)

and expanding in nx,z we obtain two branches of the magnon spectrum

E2
z = 4S2Jz(J‖ + J⊥)(q2 + f ),

E2
x = 2S2(2Jz + J‖ + J⊥)

(
J‖q2

x + J⊥q2
y

)
, (A7)

which coincides with small-q expansion of the results of Sec. V E and Ref. [51].

2. Perturbation theory

In the following, we concentrate on the classical part of the Lagrangian (A5), renormalized by the quantum fluctuations

Lcl[n] = 1

2

∫
d2x

{
ρr

[
(∇nz)

2 + frn
2
z

] + ρ‖
[
(∂xnx)2 + (∂yny)2] + ρ⊥

[
(∂xny)2 + (∂ynx)2]}. (A8)

In Eq. (A8), we use the quantum-renormalized spin stiffnesses ρr = JzSS0ζ and ρ‖,⊥ = J‖,⊥SS0ζ, where S0 = S − 0.197
is the ground-state magnetization of the square-lattice Heisenberg model, ζ = 1 + 0.157/(2S) is the exchange parameter

renormalization factor, the bare spin stiffnesses anisotropy, and the renormalized easy-plane anisotropy fr = f S
2
0/(Sζ )2.

Following the standard procedure [52,56], we assume that the excitations, described by Lcl[n] are cut on the ultraviolet at the
momentum �uv = T/c, where c = √

8JSζ is the renormalized spin-wave velocity; the remaining (nonuniversal) contribution
of the other part of momentum space yields the above-mentioned quantum renormalizations.

Assuming again the long-range order along the y axis, introducing π = (nx,nz), and using Eq. (A6), we obtain

Lcl[n] = 1

2

∫
d2x

{
ρr

[
(∇πz)

2 + frπ
2
z

] + ρ‖(∂xπx)2 + ρ⊥(∂yπx)2 + ρ‖
1 − π2

(π∂yπ )2 + ρ⊥
1 − π2

(π∂xπ )2

}

+ T

2

∫
d2x ln(1 − π2) − h

∫
d2x

√
1 − π2, (A9)

where the first term in the second line comes from the integration measure and in the last term we have introduced external
magnetic field along the y axis, which will be set to 0 in the end. To perform renormalization of Eq. (A9), we decouple the
interactions via the Wick theorem

Lcl[n] =1

2

∫
d2x

{
ρr

[
(∇πz)

2 + frπ
2
z

] + ρ‖(∂xπx)2 + ρ⊥(∂yπx)2 + ρ‖
〈
π2

a

〉
(∂yπa)2 + ρ⊥

〈
π2

a

〉
(∂xπa)2 + ρ‖〈(∂yπa)2〉π2

a

+ ρ⊥〈(∂xπa)2〉π2
a

]} + 1

2

∫
d2x

[
hπ2 + h

2

(
3
〈
π2

x

〉 + 〈
π2

z

〉)
π2

x + h

2

(
3
〈
π2

z

〉 + 〈
π2

x

〉)
π2

z − T π2

]
. (A10)

Rescaling the fields

πx → Zxπx, πz → Zzπz,

we obtain renormalized parameters

ρR = Z2
z

[
ρr + ρxy

〈
π2

z

〉]
,

ρ‖R = Z2
x

[
ρ‖ + ρ⊥

〈
π2

x

〉]
,

ρ⊥R = Z2
x

[
ρ⊥ + ρ‖

〈
π2

x

〉]
, (A11)

ρRfR + hR = Z2
z

[
h + ρrfr + T

∫
d2q

(2π )2

ρ‖q2
y + ρ⊥q2

x

ρr (q2 + fr ) + h
− T + h

2

(
3
〈
π2

z

〉 + 〈
π2

x

〉
)
]
,

ρxy,RgR + hR = Z2
x

[
h + T

∫
d2q

(2π )2

ρ‖q2
y + ρ⊥q2

x

ρ‖q2
x + ρ⊥q2

y + ρxyg + h
− T + h

2

(
3
〈
π2

x

〉 + 〈
π2

z

〉)]
,

where ρxy = (ρ‖ + ρ⊥)/2,

〈
πz

2〉 = T

∫
d2q

(2π )2

1

ρr (q2 + fr ) + h
,

(A12)〈
πx

2
〉 = T

∫
d2q

(2π )2

1

ρ‖q2
x + ρ⊥q2

y + ρxyg + h
,
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and gR is the gap, generated for πx mode, which also contains the nonuniversal bare value g, determined by Eq. (9). From
Eqs. (A11) we obtain

Zx = Zz = Z,

hR = Z2h
[
1 + 1

2

(〈
π2

z

〉 + 〈
π2

x

〉)]
,

(A13)
ρRfR = ρrZ

2fr

[
1 − 〈

π2
z

〉]
,

ρxy,RgR = ρxy,rZ
2g

[
1 − 〈

π2
x

〉]
.

Finally, Z is fixed by the condition that πy renormalizes the same way, as πx, which is due to 90◦ rotation symmetry in the plane.
This implies hR = Zh, such that

Z = 1 − 1
2

(〈
π2

z

〉 + 〈
π2

x

〉)
,

ρR ≈ ρr

[
1 − 〈

π2
x

〉]
,

fR ≈ fr

[
1 − 2

〈
π2

z

〉]
, (A14)

ρxy,R/ρxy = 1 − 〈
π2

z

〉
,

γR/γ = gR/g = 1 − 2
〈
π2

x

〉
,

where we have introduced γ = (ρ‖ − ρ⊥)/(2ρxy) and neglected small anisotropy terms in the second and third lines. Being
rewritten through these quantities, the effective Lagrangian reads as

LR[n] =1

2

∫
d2x

{
ρR

[
(∇πz)

2 + frπ
2
z

] + ρxy,R[(∇πx)2 + gR + γR(∂xπx)2 − γR(∂yπx)2] + ρxy,R

1 − π2
(π∇π)2

+ ρxy,RγR

1 − π2
[(π∂xπ )2 − (π∂yπ)2]

}
. (A15)

3. Renormalization group

To perform renormalization group (RG) analysis, we introduce sharp momentum cutoff at scale � and vary � from �uv to
the smallest possible scale; in the following, we replace accordingly the index R at the renormalized quantities by �, denoting
explicitly at which infrared scale they are evaluated. We also assume in the following that f > g > α. According to the obtained
expressions, we perform renormalization group procedure in two steps. At the first step, we integrate degrees of freedom at
momenta scales f

1/2
� < � < �uv. In this range we can neglect small difference between x and z modes in Eqs. (A14) and obtain

the standard flow equations of the O(3) nonlinear sigma model with small easy-plane anisotropy

dt�

d ln(1/�)
= t2

� + t3
�,

d ln Z�

d ln(1/�)
= −t�, (A16)

d ln g�

d ln(1/�)
= d ln γ�

d ln(1/�)
= d ln f�

d ln(1/�)
= −2t�,

where t� = T/(2πρ�). In the first equation of (A16) we have added the two-loop term of the O(3) model. The solution of
Eqs. (A16) is well known:

t� = tr

1 − tr ln
(

�uvt�
�tr

) ,

Z� = tr

t�
= 1 − tr ln

(
�uvt�

�tr

)
, (A17)

g�

gr

= γ�

γ
= f�

fr

=
(

tr

t�

)2

=
[

1 − tr ln

(
�uvt�

�tr

)]2

,

where we have introduced tr = T/(2πρr ). The scaling is stopped at � = �f , which fulfills f�f
= �2

f . The condition t�f
= 1

determines the Kosterlitz-Thouless temperature in the absence of the in-plane anisotropy. At the scales g
1/2
� < � < f

1/2
� , the z
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mode is fully gapped, and we obtain behavior of the coupling constants

dtxy,�

d ln(1/�)
= d ln f�

d ln(1/�)
= 0,

d ln Z�

d ln(1/�)
= −txy,�/2,

d ln g�

d ln(1/�)
= d ln γ�

d ln(1/�)
= −2txy,�, (A18)

which is in the XY universality class. The consideration of this regime is similar to the case of quasi-two-dimensional easy-plane
model [52] and yields the result for the Néel temperature in Eq. (13) of the main text.

[1] G. Cao, J. Bolivar, S. McCall, J. E. Crow, and R. P. Guertin,
Phys. Rev. B 57, R11039 (1998).

[2] B. J. Kim, H. Jin, S. J. Moon, J.-Y. Kim, B.-G. Park, C. S. Leem,
J. Yu, T. W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G.
Cao, and E. Rotenberg, Phys. Rev. Lett. 101, 076402 (2008).

[3] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi,
and T. Arima, Science 323, 1329 (2009).

[4] S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara,
J. van Duijn, L. Balicas, J. N. Millican, R. T. Macaluso, and
J. Y. Chan, Phys. Rev. Lett. 96, 087204 (2006).

[5] Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys.
Rev. Lett. 99, 137207 (2007).

[6] G. Chen and L. Balents, Phys. Rev. B 78, 094403 (2008).
[7] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.

Rev. B 83, 205101 (2011).
[8] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J. Kim, H.

Gretarsson, Y. Singh, P. Gegenwart, and J. P. Hill, Phys. Rev. B
83, 220403(R) (2011).

[9] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I.
Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P. Gegenwart,
K. R. Choi, S.-W. Cheong, P. J. Baker, C. Stock, and J. Taylor,
Phys. Rev. Lett. 108, 127204 (2012).

[10] A. Biffin, R. D. Johnson, S. Choi, F. Freund, S. Manni, A.
Bombardi, P. Manuel, P. Gegenwart, and R. Coldea, Phys. Rev.
B 90, 205116 (2014).

[11] T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Kono, L. S. I.
Veiga, G. Fabbris, D. Haskel, and H. Takagi, Phys. Rev. Lett.
114, 077202 (2015).

[12] A. Kitaev, Ann. Phys. (NY) 321, 2 (2006).
[13] P. W. Anderson, Phys. Rev. 115, 2 (1959).
[14] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205

(2009).
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