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Two-dimensional Chern semimetals on the Lieb lattice

Giandomenico Palumbo and Konstantinos Meichanetzidis
School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom

(Received 11 July 2015; revised manuscript received 11 November 2015; published 4 December 2015)

In this work we propose a simple model that supports Chern semimetals. These gapless topological phases
share several properties with the Chern insulators like a well-defined Chern number associated with each band,
topologically protected edge states and topological phase transitions that occur when the bands touch each,
with linear dispersion around the contact points. The tight-binding model, defined on the Lieb lattice with
intra-unit-cell and suitable nearest-neighbor hopping terms between three different species of spinless fermions,
supports a single Dirac-like point. The dispersion relation around this point is fully relativistic and the 3 × 3
matrices in the corresponding effective Hamiltonian satisfy the Duffin-Kemmer-Petiau algebra. We show the
robustness of the topologically protected edge states by employing the entanglement spectrum. Moreover, we
prove that the Chern number of the lowest band is robust with respect to weak disorder. For its simplicity, our
model can be naturally implemented in real physical systems like cold atoms in optical lattices.

DOI: 10.1103/PhysRevB.92.235106 PACS number(s): 71.10.Pm, 03.65.Vf, 71.10.Fd, 71.20.Gj

I. INTRODUCTION

Topological phases represent one of the most exciting and
interesting fields of condensed matter physics. Topological
insulators and superconductors are well-known examples of
free-fermion systems defined by a gapped bulk that supports
robust gapless edge states [1]. All these systems described
by noninteracting Hamiltonians fit in the periodic table
of fermionic topological phases and the topological phase
transitions occur when the bulk gap closes. In particular,
two-dimensional chiral topological systems like the Haldane
model [2] and p-wave superconductors [3] are characterized
by the topological Chern number that fixes the number of
topologically protected edge modes. The former is an example
of a topological insulator in class A, called also Chern insu-
lator, where both time-reversal and particle-hole symmetries
are broken while the latter is a topological superconductor
living in class D, where particle-hole symmetry is instead
preserved.

In the last few years, part of the research of new topological
phases has focused on gapless bulk systems like three-
dimensional Weyl [4] and Dirac semimetals [5] that represent
three-dimensional versions of graphene. In these systems, the
bands touch each other in a discrete set of points that can be
seen as pointlike defects in momentum space. These Weyl and
Dirac points are topologically protected by well-defined Berry
phases and the boundaries support suitable gapless modes.
Clearly, when the time-reversal symmetry is broken in two
dimensions, the Chern number can characterize the bands of
the semimetals only when those bands do not touch each other,
i.e., when there are no Dirac or Weyl cones. Some extended
Haldane models with these characteristics have recently been
analyzed [6,7].

The goal of this work is to present a simple model that
supports two-dimensional Chern semimetallic phases, which
share several properties with the Chern insulators. Our tight-
binding model is defined on a Lieb lattice with intra-unit-cell
and suitable nearest-neighbor hopping terms between three
species of free spinless fermions. The model supports only a
Dirac-like cone due to the presence of a zero-energy flat band in
the middle. In fact, it is possible to avoid the fermion doubling

in the lattice if a flat band is present. At this point, it is possible
to deform the bands by introducing a further hopping term
between nonadjacent fermions in the unit cell. In this case, as
we show in the next section, the lower band is characterized
by a nonzero Chern number ν = ±1 and the model supports
robust edge states. We analyze the edge modes by employing
the entanglement spectrum and we demonstrate the robustness
of the Chern number with respect to the presence of weak
disorder. Moreover, we show that the corresponding effective
Hamiltonian heff is fully relativistic but different with respect
to a Dirac Hamiltonian, because the 3 × 3 matrices in heff

satisfy the Duffin-Kemmer-Petiau algebra [8]. This implies
that our model does not fit in any already known periodic table
of topological gapless phases based on K theory and Clifford
algebra [9]. Finally, due to the presence of only intra-unit-cell
and suitable nearest-neighbor hopping terms, our model can
be easily implemented in real physical systems like cold atoms
in optical lattices.

II. LATTICE MODEL AND CHERN NUMBER

To begin with, we introduce our tight-binding model. We
consider three species of spinless fermions on a Lieb lattice as
shown in Fig. 1, described by the following Hamiltonian:

H =
∑

i

[J (a†
i bi + b

†
i ci ) + K(a†

i bi+x̂ + b
†
i ci+ŷ) + Mc

†
i ai ]

+ H.c., (1)

where i is the site index, x̂ = (1,0), ŷ = (0,1), and a, b, and
c are the three species of fermions represented in Fig. 1 in
terms of triangles, circles, and squares, respectively. Here the
tunneling coefficients J and K are taken real, while M = m eiθ

is complex. By imposing periodic boundary conditions we in-
troduce the Fourier transformation ak,i = ∑

p ei p·iak, p, where

k = 1,2,3 is the species index, to obtain H = ∑
p ψ

†
ph( p)ψ p,

where ψ p = (a p,b p,c p)T , p ∈ BZ = [−π,π ) × [−π,π ), and
the kernel h( p) is a 3 × 3 Hermitian matrix. It is straightfor-
ward to see that the time-reversal symmetry is broken, namely
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FIG. 1. (Color online) (Top) This picture shows a square lattice
with three species of fermions represented by triangles, circles,
and squares. The dashed circle encloses the unit cell. Intra-unit-cell
hopping terms are represented by red lines and the nearest-neighbor
ones with blue lines. The dashed green line identifies the hopping
between nonadjacent fermions. (Bottom left) Dispersion energy for
K = −J = 1 and M = 0. (Bottom right) Projection of dispersion
energy for M = 0.5i.

h( p) �= h∗(− p), but is restored when M is real. In particular,
when M = 0, the system supports a single Dirac-like cone
and a zero-energy flat band as shown in Fig. 1. First of all,
the presence of the flat band allows us to avoid the fermion
doubling problem as shown in [10]. In this case, our model
behaves similarly to other three-band models defined on Lieb
and Kagome lattices [11–16]. However, a crucial difference
emerges with respect to the latter, when a nonzero complex M

is switched on. In this case, the complex hopping term with a
small m < 1 opens an indirect gap of value zero between the
lower and upper bands and deforms the middle bands such that
the systems remains gapless as shown in Fig. 1. Interestingly,
the vanishing band gap associated with the topological gapless
phases is firm for a large set of values of parameters in (1).
A three-band Chern insulator can be built on the lattice only
by adding suitable next-nearest-neighbor hoppings. We now
show that in the semimetallic phase, our model behaves as
a nontrivial topological semimetal, where each band has a
well-defined Chern number ν. This is indeed possible because
the time-reversal symmetry is broken and the bands do not
touch each other at any point in the BZ like for example in
graphene and Weyl semimetals. The Chern number related to
the nth band with normalized Bloch wave function |n( p)〉 is
defined by

νn = 1

2π i

∫
BZ

d2p Fxy, (2)

FIG. 2. (Color online) (Top) Chern number phase diagram in
function of J and m with K = 1 and θ = π/2 when the lowest band
is completely filled. (Bottom) Phase diagram in function of m and θ

with K = −J = 1.

where the Berry connection Aα (α = x,y) and the correspond-
ing curvature tensor Fxy are given by Aα = 〈n( p)| ∂

∂pα
|n( p)〉

and Fxy = ∂xAy − ∂yAx . Here we are assuming that there is
no degeneracy for the nth state and we obtain a Chern number
ν = ±1 by integrating the Berry curvature on the lower band.
For our numerical calculations, we use the discretized version
of (2) derived in [17]. From a geometric point of view, the
presence of the Chern number is connected to the presence
of a nonzero flux passing through the triangles defined by the
hoppings J and M inside the unit cell when M is complex.
Figure 2 reproduces the phase diagram of this topological
phase for K = 1 and θ = π/2 and displays how the chirality
depends on the sign of m and J . Importantly, topological phase
transitions occur when the bands touch each other, with linear
dispersion around the contact points. Moreover, as we show in
the next section, topologically edge states are associated with
the nonzero Chern number. Thus, this topological semimetal
shares several properties with the Haldane model but there
are also several differences. First, in the momentum space
there appears only a Dirac-like point. This property is due
to the presence of a zero-energy flat band for M = 0 and is
shared with some three-band realizations of Chern insulators,
even if in these last cases, the topological phases are obtained
only by introducing spin-orbit interactions [11–15]. Second,
in the low-energy regime, the corresponding effective kernel
Hamiltonian heff is not defined by any Dirac or Dirac-Weyl
Hamiltonian even if there is a single Dirac-like point. This
is possible because heff is a fully relativistic first-order
Hamiltonian, given by

heff = K[βx,β0] px + K[βy,β0] py + Mβ0, (3)
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where we have fixed J = −K . Here the 3 × 3 βμ matrices

β0 =
⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠, βx =

⎛
⎝0 0 0

0 0 i

0 −i 0

⎞
⎠,

βy =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ (4)

satisfy the following conditions:

βμβνβσ + βσ βνβμ = βμηνσ + βσ ηνμ, (5)

where ημν is the the relativistic Minkowski metric such that
diag ημν = (−1,1,1). The above relations identify a general-
ized Clifford algebra, called the Duffin-Kemmer-Petiau (DKP)
algebra [8]. This algebra is associated with the DKP theory that
describes relativistic spin-0 and spin-1 particles by employing
the same formalism used by Dirac for spin-1/2 particles. In
particular, the effective Hamiltonian in (3) formally describes
spin-0 quasiparticles in two dimensions and the corresponding
spinor field satisfies the Klein-Gordon equations. Moreover,
we remark the fact that the DKP algebra is very different
with respect to the angular momentum algebra employed
in [11,15]. In the latter case, the effective Hamiltonians
describe spin-1 quasiparticles and a masslike term is necessary
to achieve gapped Chern phases, while there are no gapless
ones. Importantly, the representation of DKP algebra exists in
every dimension and this allows us to build higher-dimensional
generalizations of the two-dimensional Chern semimetallic
phases as will be shown in a future work.

III. EDGE STATES AND ENTANGLEMENT SPECTRUM

As is well known, one of the main properties of topological
phases concerns the existence of robust edge states. In
particular, in two-dimensional time-reversal broken phases,
the number of chiral edge modes coincides with the value
of the Chern number. This is well established when the
systems have a gapped bulk but still an open question for
Chern semimetals. In order to show the edge state energy
dispersion we impose open boundary conditions in the y

direction and periodic in the x direction. We perform a
Fourier transformation that decomposes our two-dimensional
Hamiltonian into decoupled one-dimensional Hamiltonians
describing chains of length Ly parametrized by px . In Fig. 3
it is clear that edge states appear and cross between bands
with nontrivial Chern numbers of opposite sign. Here we
show that Chern semimetals have topologically protected edge
modes by employing the entanglement spectrum [18]. Let us
briefly summarize the main properties of the entanglement
spectrum for free-fermion systems. First of all, we divide our
model, which is placed on a cylinder, in two nonoverlapping
subregions through a cut that runs along x, the periodic
dimension [19]. The reduced density matrix of the ground state
ρ̂ of the subsystem is related to the entanglement Hamiltonian
Ĥ , i.e., ρ̂ = e−Ĥ , and the corresponding eigenvalues ξi contain
the main information about topological phases. However, in
the case of free-fermion Hamiltonians, it is possible to prove
that ξi are in one-to-one correspondence with the eigenvalues
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FIG. 3. (Color online) Energy bands for K = −J = 1 on cylin-
der of length Ly = 80 as a function of momentum px . (Top left)
M = 0. A single Dirac-like cone and a zero-flat band appear in the
system. (Top right) m = 0.5 and θ = π/2. Upper and lower bands
have nonzero Chern number and the crossing red lines represent the
edge modes between them. (Bottom left) m = 1.3 and θ = π/4. The
upper gap opens and the Chern number is acquired by the middle band
after a topological phase transition when the bands touch. (Bottom
right) When even the lower gap opens, the system becomes a trivial
insulator.

λi of the correlation matrix [20]

Cnm = tr(ρ̂ h†
nhm) = 〈gs|h†

nhm|gs〉, (6)

where |gs〉 is the ground state, the labels m,n are restricted to be
within the subsystem, and in our case, hn represent the fermion
operators an, bn, and cn. Thus, the entanglement spectrum in
the model is the spectrum of the correlation matrix. Since our
cut runs along the periodic direction x we plot the eigenvalues
λ(px) of the correlation matrix C(px) of each of the decoupled
chains as shown in Fig. 4, where the ground state used to con-
struct the correlation matrix is built by filling the lower band,
and the entanglement cut is placed in the middle of each chain.
In this figure the virtual mode in the entanglement spectrum
in the plot on the left represented by a gap-crossing line is
the signature of the presence of a physical dispersing edge
mode that will appear in the energy spectrum when a physical
boundary is introduced in the place of the entanglement cut.
This edge state is associated with the completely filled lower
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FIG. 4. (Left) The gap-crossing line for K = −J = 1, m = 0.5,
and θ = π/2 shows the presence of an edge mode in the entanglement
spectrum on the cylinder that represents the signature of the physical
edge state. (Right) The absence of the crossing line for K = −J = 1,
m � 1, and θ = π/2 is due to the absence of edge states in the
topologically trivial insulating phase.
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band which shows ν = 1. Instead, on the plot on the right,
clearly the gap-crossing line disappears in the topologically
trivial insulating phase when the band has ν = 0.

IV. DISORDER

In this section we show that the Chern semimetals are even
robust phases in the presence of disorder, which would at
least weakly appear in the case of experimentally realizing
the model with cold atoms in an optical lattice. We impose
periodic boundary conditions and divide the systems into four
regions: three nonoverlapping regions X,Y,Z with common
boundaries that form a triple point which are all surrounded
by the fourth region. We then numerically calculate the Chern
number in real space [21,22]

ν = 12πi
∑
j∈X

∑
k∈Y

∑
l∈Z

(CjkCklClj − CjlClkCkj ), (7)

which gives the same value as Eq. (2) in the translationally
invariant case. Numerically we are restricted to finite system
sizes. However, we use system-size scaling in order to see
that the real space Chern number converges to an integer as
the system size is increased and thus choose an acceptable
system size in order to perform our computation. Disorder is
introduced in all of the hopping amplitudes T = K,J,m in the
form T (1 ± Jd ), where Jd is the disorder amplitude. For each
value of Jd we compute the Chern number for a number of
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FIG. 5. (Color online) (Top) Real space Chern number ν against
θ and Jd for K = −J = 1 and m = 0.5. Here a system size of 20 × 20
unit cells is chosen and the particle filling is what corresponds to
filling the lowest band in the clean case. Each disorder realization was
averaged 20 times, enough to discern the topological regions from
the trivial ones. For weak disorder Jd < 0.5 the topological phase is
robust and for strong disorder the Chern number vanishes. (Bottom)
Density of states ρ(E) for disorder amplitudes 0 < Jd < 0.5 (inset)
where we averaged 103 disorder realizations on 26 × 26 unit cells
for each Jd . The two minima correspond to the zero indirect gap.
The density of states profile does not change around the zero indirect
gaps. Here K = −J = 1, m = 0.5, and θ = π/2.

disorder realizations and average ν over them. The result as a
function of θ and Jd is shown in Fig. 5 (top).

For weak disorder, Jd < 1 the topological phase is robust
showing a nontrivial value of the Chern number. Since there
is no energy gap in the semimetallic phase, we look at the
density of states in order to identify the zero indirect gaps,
where we have averaged a number of disorder realizations
for each disorder amplitude Fig. 5 (bottom). In the clean case
the density of states shows minima at the energies where the
zero indirect gaps are located. The minima remain for weak
disorder and we only notice a spread in the extreme energies
away from the zero indirect gaps. This behavior agrees with the
Chern number remaining |ν| ≈ 1 for weak disorder showing
the robustness of the Chern semimetallic phase. It can be shown
that the robustness of our model against disorder is comparable
to that one of the Haldane model.

V. CONCLUSIONS

Summarizing, we have shown that a simple tight-binding
model on the Lieb lattice with only intra-unit-cell and nearest-
neighbor hopping terms supports Chern semimetallic phases.
These topological semimetals are characterized by a nonzero
Chern number in the bulk and topologically protected gapless
edge states. We have proved the existence of the latter by
studying the entanglement spectrum on the cylinder. Moreover,
we have shown that the Chern semimetal is robust also in the
presence of weak disorder by calculating the Chern number in
the real space. Finally, for its simplicity, our Lieb lattice model
can be experimentally realized with cold atoms in an optical
lattice [14,23].
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APPENDIX

In this Appendix we analyze the semimetal behavior of our
system in terms of phase transitions. In order to simplify the
calculations but without losing generality, we fix K = −J = 1
and θ = π/2 in our original tight-binding model, as shown in
Fig. 1. In this way, the kernel Hamiltonian h in the momentum
space is written as follows:

h =
⎛
⎝ 0 e−ipx − 1 −im

eipx − 1 0 e−ipy − 1
im eipy − 1 0

⎞
⎠. (A1)

First, because the Hamiltonian is traceless, its three eigen-
values E1(px,py,m), E2(px,py,m), and E3(px,py,m) satisfy
the following conditions:

E1(px,py,m) + E2(px,py,m) + E3(px,py,m) = 0. (A2)

Because only two bands are independent, below we are
going to analyze only the higher and middle bands, i.e., E1

and E2.
Second, we notice that the extrema of the higher and middle

bands occur on momenta that live on the diagonal of the
Brillouin zone. This implies that we can set px = py in our
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calculations of the extrema. In particular, the minimum of the
higher band Emin

1 is unique and located at px = 0 for any value
of m < mc. At the same time, the maximum of middle band
Emax

2 is located at px ≈ 1.583 for any value of m � mc, see
Fig. 6. We determine the value of the critical m numerically to
be mc ≈ 1.4 as shown in Fig. 6.

When a phase transition occurs for m = mc, the bands
touch each other. In this critical case, Emin

1 becomes doubly
degenerate, i.e., at another momentum px ≈ 1.583 the higher
band comes down to the same value as the value it has for
px = 0. The value of the minimum of the higher band which
coincides with the maximum of the middle band is a function
of m for m � mc, given by

Emin
1 = Emax

2 =
√

3

2
m. (A3)
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FIG. 6. (Color online) Left: Opening of the indirect gap �E =
E1 − E2 of the model when mc is reached. Right: The momentum
pmax

x ,pmax
y where the maximum of the middle band occurs. As the

parameter m is varied and as long as m � mc, the position of the
maximum does not move. The lines are degenerate because the
extrema of the bands occur on the diagonal of the Brillouin zone.
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