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We find the angular Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states (or the twisted kink crystals) in which a
phase and an amplitude of a pair potential modulate simultaneously in a quasi-one-dimensional superconducting
ring with a static Zeeman magnetic field applied on the ring and static Aharonov-Bohm magnetic flux penetrating
the ring. The superconducting ring with magnetic flux produces a persistent current, whereas the Zeeman split
of Fermi energy results in the spatial modulation of the pair potential. We show that these two magnetic fields
stabilize the FFLO phase in a large parameter region of the magnetic fields. We further draw the phase diagram
with the two kinds of first-order phase transitions; one corresponds to phase slips separating the Aharonov-Bohm
magnetic flux, and the other separates the number of peaks of the pair amplitude for the Zeeman magnetic field.
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I. INTRODUCTION

Superconductivity is one of the most exotic states of
matter, appearing in a broad range of systems in nature, from
metallic superconductors to neutron stars. Superconducting
states stem from a condensation of Cooper pairs, which are
made of fermions with two different inner states with opposite
momentum near each Fermi surface. The different forms of
the Cooper pairs appear in various physical systems, such as
those with different spins of electrons for metallic supercon-
ductors, those with different chirality of quarks for a dynamical
mass generation in QCD, and those with different atomic states
for superfluids in ultracold Fermi gases. After the BCS theory
was proposed, an exotic state called a Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state was conjectured, in which the pair
potential has spatial modulation [1,2]. When a population
imbalance exists between those different inner states, the
difference of the sizes of the Fermi surfaces results in a finite
total momentum of the Cooper pairs, yielding the FFLO state.
The modulation of the pair potentials can be classified into two
classes: a phase modulation which is called the Fulde-Ferrell
(FF) state [1] and an amplitude modulation which is called the
Larkin-Ovchinnikov (LO) state [2]. When a persistent current
exists, the pair potential becomes a plane wave like � ∝ eimx

with a constant m, resulting in a FF-like state. The population
imbalance induced, for example, by a magnetic field on a
quasi-one-dimensional (quasi-1D) superconductor results in a
LO state, described by a sinelike shape, � ∝ sn(x,ν), with the
elliptic parameter ν [3]. The FFLO states have been mostly
analyzed thus far in the basis of the Ginzburg-Landau (GL)
equation in various systems, e.g., the superconductor in mag-
netic field [4–6], superconductor-ferromagnet heterostructures
[7,8]. It is, however, known that the GL equation is only
valid in the vicinity of the critical temperature. Thus the GL
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formalism is not appropriate to discuss the lowest energy state
at temperatures much lower than the critical temperature,
where one has to use the Bogoliubov–de Gennes (BdG)
formalism. Recent developments of research in cold atomic
Fermi gases have renewed interest in the FFLO state [9], and
observation of a spin-polarized superfluid state was reported
[10] in which it is expected that the FFLO state has been
achieved. However, direct observation of its oscillating order
parameter is still lacking. Besides metallic superconductors
and cold Fermi gases, these states have been attracting much
attention in QCD, because they are also expected to appear
in chiral condensates or diquark condensates of quarks at
high density and/or high temperature [11,12]. However, in
condensed matter systems, the direct confirmation of these
states has not yet been achieved for 50 years since its proposal,
in spite of tremendous efforts [13–15].

As a simple setup to realize phase and/or amplitude
modulations, we consider a superconducting ring. When a
ring is penetrated by a magnetic flux, the phase of the wave
function on the ring depends on the magnetic flux even if
magnetic field itself is not applied on the ring. This effect is
known as the Aharonov-Bohm (AB) effect and can be used to
make a persistent current for superconductors fabricated on a
ring. The resulting pair potential becomes that of a FF-like state
[1]. When the population imbalance is induced, for example,
by a magnetic field on the ring, excess particles which cannot
make a Cooper pair appear. If we consider the pair potential
as a background potential and focus on the energies of these
excess particles, a normal state, the LO state, and the BCS state
are favorable in this order. On the other hand, if we focus on
the energies of Cooper pairs, the BCS state, the LO state, and
the normal state are favorable in this order. Thus the LO state
appears between the BCS state and the normal state when
the magnetic field is increased [3]. A question arises about
the competition between the AB effect and the population
imbalance for different spins. In the presence of these two
magnetic fields, the phase transition between the FF and LO
states was reported in Ref. [16]. Another group suggested the
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existence of the half vortex state in a similar setup of ultracold
atomic gases [17].

In this paper, we demonstrate that a novel phase, an angular
FFLO state or the so-called twisted kink (complex kink or gray
soliton) crystal, is stabilized in which both amplitude and phase
of the pair potential are spatially modulated along a supercon-
ducting ring with the AB magnetic flux penetrating the ring
and the static Zeeman magnetic field on the ring. We draw the
phase diagram as a function of both magnetic fields by using
the BdG formalism valid at temperatures much lower than
the critical temperature (including T = 0) and find the twisted
kink crystals to be the lowest energy states in a large region
of the parameter space. We find the two kinds of first-order
phase transitions; one corresponds to phase slips separating
the Aharonov-Bohm magnetic flux and another separates the
number of peaks of the pair amplitude for the Zeeman magnetic
field. The twisted kink crystal in an infinite system was found in
high-energy physics as a self-consistent solution of the Gross-
Neveu model in 1+1 dimensions or equivalently, the BdG
equation with the Andreev approximation [18,19]. However,
only a phase modulation (the FF state) was found to appear in
the phase diagram of the Gross-Neveu model in 1+1 dimen-
sions [20]. Our work is a proposal to realize an FFLO state
with both phase and amplitude of the pair potential modulated.

II. ANALYTIC SOLUTION OF TWISTED
KINK CRYSTAL STATE

In this section, we make a brief review of the analytical
solution of twisted kink crystal state and we show that
the method used can be generalized in the presence of the
magnetic fields. We study a quasi-1D superconducting ring
under magnetic fields (Fig. 1) by the mean-field BdG equation
[21]. Here, we assume that the radius of the ring is large
enough compared to its width so that the curvature effect can
be ignored. Although the mean-field approximation is not valid
in strictly one dimension, we assume a quasi-1D system, which
is more relevant to experiments and can be well described by
the BdG equation for quasiparticles u(x) and v(x) (we adopt
the units � = 1,c = 1,e = 1):[

H↑ �(x)
�∗(x) −H ∗

↓

][
u(x)
v(x)

]
= E

[
u(x)
v(x)

]
, (1)

Hσ = 1

2M

[
−i

∂

∂x
− φ

L

]2

− μσ , (2)

where σ (=↑,↓) stands for the spin and M is the mass of
the fermion. Here we have defined the x coordinate along the

Φ

h

FIG. 1. (Color online) Schematic picture of our setup. The su-
perconducting ring is penetrated by the magnetic flux �, and the
magnetic field h is applied on the ring.

ring and thus the system must be periodic in x. We denote the
length of the circumference by L. The energy difference due
to the Zeeman splitting, which stems from the magnetic fields
h applied on the ring, is included in the chemical potential for
each spin state μσ = μ − σh. Here μ is the chemical potential
in the absence of the magnetic field. The effect from the AB
flux penetrating the ring is introduced by the vector potential
�A = (Ax,Ay,Az). For our system, the vector potential can be

written as �A = (φ/L,0,0) by using the AB phase φ. Here
the AB phase φ is defined as φ = 2π�/�0, with the AB
flux penetrating the ring � and flux quantum �0 = hc/e. For
simplicity, we restrict ourselves to the case T = 0. In this case,
the pair potential �(x) satisfies the gap equation,

�(x) = −2g2
∑
En<0

un(x)vn(x)∗, (3)

where g is the attractive interaction between fermions with
different spins and n is the index for eigenstates.

By using the transformation [u(x),v(x)]T = eiσ3φx/L

[û(x), v̂(x)]T and �(x) = e2iφx/L�̂(x) with Pauli’s matrix σ3,
the AB flux dependence of Eqs. (1) and (3) vanishes as[

Ĥ↑ �̂(x)
�̂∗(x) −Ĥ ∗

↓

][
û(x)
v̂(x)

]
= E

[
û(x)
v̂(x)

]
, (4)

Ĥσ = − 1

2M

∂2

∂x2
− μσ , (5)

and
�̂(x) = −2g2

∑
En<0

ûn(x)v̂n(x)∗. (6)

The effect of the AB phase appears only as a new boundary
condition,

�̂(x + L) = e2iφ�̂(x). (7)

If the attractive interaction is smaller than the Fermi energy
εFσ = μσ , fermions near the Fermi surfaces form Cooper pairs.
In this case, we may adopt the Andreev approximation [22]. Let
û(x) = eikF↑xû0(x) and v̂(x) = e−ikF↓x v̂0(x), where kFσ is the
Fermi momentum kFσ = √

2MεFσ . Then, û0(x) and v̂0(x) vary
much slower than the length scale of 1/kFσ . Neglecting the
second derivative terms of û0(x) and v̂0(x), the BdG equation
reduces to[−ivF↑ ∂

∂x
�̂0(x)

�̂∗
0(x) ivF↓ ∂

∂x

][
û0(x)
v̂0(x)

]
� E

[
û0(x)
v̂0(x)

]
, (8)

where vFσ = kFσ /M is the Fermi velocity and �̂0 =
e−i(kF↑+kF↓)x�̂.

This approximated BdG equation (8) and the gap equation
(6) are used in Refs. [23] and [24], except for the boundary
condition. Thus the method used there can be applied to the
present problem. It is known that the general solution for the
gap function �̂0(x) is

�̂0(x) = − αA
σ (Ax + iK ′ − iθ/2)

σ (Ax + iK ′)σ (iθ/2)

× exp{iAx[−iζ (iθ/2) + ins(iθ/2)] + iθη3/2},
(9)

where σ,ζ , and ns = 1/sn are, respectively, the Weierstrass σ ,
ζ functions, and Jacobi elliptic functions, characterized by the
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elliptic parameter ν and the half periods ω1 and ω3 for real and
imaginary direction, respectively. We set the half periods to
ω1 = K and ω3 = iK ′, with K(ν) = ∫ π/2

0 dt(1 − ν sin2 t)−1/2

and K ′ ≡ K(1 − ν) [18,19,23,24]. The constant η3 is defined
by ζ (iK ′). The parameter A represents the scale of the con-
densate as A = −2imsc(iθ/4)nd(iθ/4). Here sc = sn/cn and
nd = 1/dn are Jacobi elliptic functions, and m,θ are related
to the amplitude and the phase modulation, respectively. In
addition, we have introduced the imbalance parameter as
α = √

vF↑vF↓/vF (0 � α � 1) with vF = (vF↑ + vF↓)/2. This
solution has periodicity l = 2K/A for the amplitude of the
pair potential as

�(x + l) = e2iξ�(x), (10)

where

ξ = K[−iζ (iθ/2) + ins(iθ/2) − ηθ/2K], (11)

with η = ζ (K) [18,19]. Furthermore, it is known that this
solution includes several previously known solutions as spe-
cial cases, such as the constant condensation (BCS state),
the FF state, the LO state, the complex (twisted) kink,
and the real kink [25]. We again note that the effect of
AB flux enters via the uniform phase modulation �(x) =
exp(2iφx/L) exp[i(kF↑ + kF↓)x]�̂0(x). We plot typical solu-
tions for ν = 0.7,θ = 3 and ν = 0.9,θ = 3 in Fig. 2. We
also plot the phase for �̃0 = �̂0 × exp(iγ x) (dotted line),
where we chose the smallest γ > 0 which satisfies �̃0(x +
4K/A) = �̃0(x). In our ring geometry, when γL is identical
to 2φ + (kF↑ + kF↓)L (mod 2π ), �̃0(x) becomes the solution
of the BdG equation (4) and the gap equation (6). Another
important point is that the amplitude of the condensate does
not vanish in the whole region for the twisted kink crystal state.
The above solution has a possibility to be stabilized by the two
kinds of magnetic fields introduced above. In the following,

0

2.0

1.0

-1.0

argΔ0

0 10

0

1.0

x
-1.0

argΔ0
~

|Δ0|

FIG. 2. (Color online) The analytical solutions of FFLO phase
for ν = 0.5 (upper figure) and ν = 0.2 (lower figure), where m =
1 and θ = 4 in both cases. We plot the spatial profile for the
absolute value (solid line) and the phase (broken line) of the
pair potentials. We also plot the phase for �̃0 = �̂0 × exp(iγ x)
(dotted line), where we chose the smallest γ > 0 which satisfies
�̃0(x + 4K/A) = �̃0(x). The phase of the pair potential is calculated
as arg�̂0 ≡ tan−1(Im�̂0/Re�̂0), which has a range (−π/2,π/2). The
actual phase should be read by adding π/2 at discontinuous points.
For instance, in the lower panel, π/2 is added to arg�̂0 in the region
of x > 4, so one can see that arg�̂0 monotonically decreases.

we numerically calculate the pair potentials for BdG and gap
equations and the corresponding free energies in the presence
of magnetic fields.

III. EXISTENCE OF THE FFLO STATE

In order to show that the above FFLO phase is stabilized in
the presence of the magnetic fields, we numerically calculate
the free energy in our system for small finite temperature. In
our numerical calculations, we discretize Eq. (1) and solve it
self-consistently together with Eq. (3). The discretized BdG
equation becomes

∑
j

[
Hi,j,σ �iδi,j

�∗
i δi,j −H ∗

i,j,σ̄

][
uν

jσ

vν
jσ̄

]
= Eν

[
uν

iσ

vν
iσ̄

]
, (12)

where Hi,j,σ = −ti,j − μδi,j + σhδi,j , and i, σ,ν label the
site, the spin of the particle, and eigenenergy, respectively.
We treat the effect of the AB flux penetrating the ring by using
the Peierls phase, ti,i+1 = t exp(iφ/N), ti+1,i = t exp(−iφ/N)
with transfer integral t and the total site number N , where we
only consider the nearest-neighbor hopping. The gap equation
is almost identical to Eq. (3), except that we consider the finite
temperature T here:

�i = g2
2N∑
ν=1

uν
i↑vν∗

i↓ tanh
Eν

2T
. (13)

The iterative calculations of Eqs. (12) and (13) yield the
pair potentials, eigenspinors, and eigenenergies. In order to
find the lowest energy state, we calculate the total free energy

F = −T
∑

ν

ln(1 + e−Eν/T ) +
∑

i

|�i |2
2g2

−
∑

i

(μ + h).

(14)
We set the chemical potential, the attractive potential, and the
temperature to be μ = −0.5,g = 1.0,T = 0.005, respectively,
in the unit of the transfer integral. Here the temperature is
chosen to be much smaller than the critical temperature. The
size of the ring is N = 50, which is supposed to be sufficiently
large to reach the thermodynamic limit [16]. We have prepared
the 30 initial configurations and compared the free energies.

The ground states are categorized as follows. If there is no
amplitude modulation for the pair potential, the state is the BCS
state or FF state, depending on if there is finite supercurrent
(FF) or not (BCS). Here the supercurrent is defined by

J = 1

2i
(�∗∂x� − �∂x�

∗) − 2
φ

L
|�|2. (15)

Here the last term on the right-hand side of Eq. (15) ensures
the gauge invariance of supercurrent. If the amplitude of the
pair potential modulates, the states are again categorized by
the supercurrent; if the supercurrent is zero, the state is the LO
state and otherwise the FFLO state.

We can show that the LO state only appears in the absence
of the supercurrent (see Appendix). If there is no pair potential
� = 0, the state is the normal state.

The corresponding model has been already used in
Refs. [16] and [17]. In Ref. [16], the phase transition between
the LO phase and the FF phase was discussed. The existence of
an additional phase called the half vortex phase was mentioned
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FIG. 3. (Color online) Typical profile of the pair potential of the
FF state (φ/2π = 0.3,h = 0). The amplitude of the pair potential
is measured in the unit of the transfer integral. In this phase the
amplitude of the pair potential is a constant and phase modulates.

in Ref. [17]. The pair potential of the half vortex state proposed
in Ref. [17] has the form � ∝ cos(mπx/L) × exp(iπnx/L),
with half integers m,n. We show that this competing state
between the LO and FF states are not the half vortex state
but the FFLO state. We plot typical profiles of a FF state, LO
states, and a FFLO state in Figs. 3, 4, and 5, respectively. In
the case of the FFLO state, both the amplitude and the phase
of the pair potential have spatial modulation. Moreover, the
amplitude does not vanish in the whole region.

IV. PHASE DIAGRAM

Here we also show the phase diagram in Fig. 6 [26]. The
magnetic fields are measured in the unit of the transfer integral.
We show the first-order transition lines by the solid lines. We
can see that the LO and FF phases are realized for φ = 0
and h > 0.2, and for h = 0 and φ �= 0,π,2π , respectively.
These results verify the naive discussion made above; the pair
potential tends to rotate if the AB flux penetrates the ring,

0  10  20  30  40  50i
0

 0.2

 0.4

0

 0.2

 0.4

0

 0.2

 0.4

|Δ|

I

II

III

FIG. 4. Typical profiles of the pair potential of the LO (FFLO)
states. The top, middle, and bottom figures are the absolute value of
order parameters which are most stable in the case of (φ/2π,h) =
(0,0.2), (0.25,0.2), and (0.25,0.3), respectively.

-π/2

-π/4

0

π/4

π/2

arg Δ
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ReΔ
ImΔ
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FIG. 5. (Color online) The pair potentials of the FFLO phase
for φ/2π = 0.90,h = 0.35. The upper figure shows that both the
amplitude (|�|) and phase (arg�) of the pair potential spatially
modulate with the different periodicity. The lower figure shows that
the real part of the pair potential and the imaginary part of the pair
potential never touch to zero at the same point and thus |�| �= 0 for
a whole region.

whereas it tends to have a spatial modulation in the presence
of Zeeman field.

The most remarkable result is that the FFLO phase appears
in a wide range of the parameters. In addition to this, we
also see other characteristics. First, the phase diagram has
periodicity π in the φ direction. Second, the phase diagram
has reflection symmetry with respect to φ = π/2. Third, the
BCS states and LO states also appear in the case of φ = nπ

with an arbitrary integer n. These facts can be understood by
using �̂(x) = e−2iφx/L�(x) defined in Sec. II. The boundary
condition for �̂ becomes �̂(x + L) = e2iφ�̂(x), as we have
seen in Sec. II. By using �̂, the supercurrent (15) is rewritten
as J = (�̂∗∂x�̂ − �̂∂x�̂

∗)/2i [27]. Thus the magnetic flux

0

 0.5

1

 1.5

0 π/2 π 3π/2 2π

BCS
FF
LO
FFLO
NORMAL

φ

h

FIG. 6. (Color online) Phase diagram in the φ − h plane. The
FFLO phase is represented by the circle. The first-order transition
lines are represented by the solid lines. The BCS phase and LO phase
appears only on φ = nπ (n is integer) lines. The phase diagram has
periodicity π in φ direction and reflection symmetry with respect to
the φ = π/2 line, which corresponds to the change in the direction
of supercurrent.
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FIG. 7. (Color online) The magnetic flux dependence of free
energies in the case of h = 0. The periodic structure appears in φ

direction. The branch B+m and B−n has +m or −n flux, respectively,
inside the ring relative to branch B0. The phase structures of FF states
have π/2 periodicity, whereas the normal states have π periodicity,
which reflects the 2e charge of the condensates in FF states and e

charge for normal states, respectively.

appears only in the boundary condition. This causes the
periodic structure of the phase diagram in φ, namely, the π

translation symmetry and reflection symmetry with respect to
φ = π/2. These are the consequences of the AB effect with an
effective charge 2e for Cooper pairs. The change φ ↔ π − φ

corresponds to the change of the direction of supercurrent. The
boundary condition for �̂ also suggests that the states without
phase modulation can appear only in the case of φ = nπ with
an integer n.

In Fig. 7, we plot the free energy as a function of φ in
the case of h = 0. This clearly shows the periodic structure of
the FF states. This phenomenon is known as the Little-Parks
effect [28]. The branch B+m and B−n has +mπ or −nπ flux,
respectively, inside the ring relative to branch B0. At φ = π/2
(or equivalently, the number of the vortex is 2φ/2π = 1/2),
two states degenerate: the state with supercurrent flowing to the
positive direction in branch B0 and that with the supercurrent
flowing to the opposite direction in branch B+1. If we increase
the flux from φ = 0 to φ = π/2 + 0, then one more quantum
of flux is captured in the ring (phase slip) and the direction
of the supercurrent changes. Thus the first-order transition
occurs at φ = π/2. This first-order transition line continues to
the boundary of FFLO and the normal state. We can also see
the reflection symmetry with respect to φ = π for the normal
states. This period is twice larger than that of the FF states.
This difference comes from the fact that the charge is not 2e

but e for the particles in normal states.
In Fig. 6, we present the first-order transition lines separat-

ing BCS (FF) states and (FF)LO states and those separating
(FF)LO states and normal states. In addition to these first-order
transition lines phase, we find several first-order transition lines
inside the (FF)LO regions. In Fig. 4, we plot the magnitude
of the order parameter for LO or FFLO states for various
parameters. The labels I, II, and III correspond to the number
of the peaks in |�|. We plot the free energies as a function of

BCS
LO II
LO IV

Linear (BCS)
Linear (LO II)
Linear (LO IV)

F
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FIG. 8. (Color online) The free energies as a function of h for
φ = 0. The LO II and LO IV are the LO phase with two peaks
and four peaks for |�|, respectively. The free energies have different
slopes, and thus there are first-order transitions between BCS, LO II,
and LO IV.

h in Fig. 8, and we show the value of the free energies near
the transition point in the table. The slopes of the free energies
are different from each other, clearly showing the first-order
phase transitions.

In Fig. 9, we show the phase diagram that separates the
(FF)LO states with different number of peaks by the first-order
transitions. This rich phase structure stems from the existence
of two contributions to the free energy that compete with each
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FIG. 9. (Color online) The phase diagram near the phase bound-
ary between BCS (FF) and LO (FFLO). Inside the LO or FFLO
region in Fig. 6, there are additional phase boundaries between the
states with different numbers of nodes in |�|. Here we classify states
by the number of peaks in |�|. The states I, II, and III correspond to
those in Fig. 4.
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other: the energy of the excess spins and the condensation
energy.

It is shown that only the states with an even number of peaks
in |�| appear for φ = 0, whereas only the states with an odd
number of peaks in |�| appear for φ = π/2. In the intermediate
region of 0 � φ � π/2, there is an odd-even phase transition.
As an example, if we increase h from h = 0 for φ = 2π/5, the
number of the peaks changes to 1, 3, 4 in the order.

V. SUMMARY AND DISCUSSION

In conclusion, we generalized the method to obtain the
analytical solutions for the BdG equation and the gap equation
to the case with magnetic fields. By using this method, we
showed that the novel FFLO solutions proposed recently are
also the solutions for the superconducting ring threaded by
the AB flux and with the Zeeman field on the ring. We have
demonstrated that this FFLO phase can be realized as the
lowest energy state of our system instead of the half vortex
state. We have shown the phase diagram as a function of the
AB flux and the Zeeman field. The FFLO states, which enjoy
an analytical description involving only a few parameters,
together with the excess spin contribution result in a nontrivial
phase structure.

While our phase diagram is calculated by taking the
number of sites equal to 50, we have also confirmed that
the configurations remain qualitatively the same even if we
increase the number of sites to 59, 73, and 100 for some choices
of the parameters. This supports the fact that our results are
free from finite-size artifacts.

In Refs. [29] and [30], exact self-consistent solutions were
found in quasi-1D, in which twisted kinks with arbitrary phase
shifts are separated at arbitrary distances. A ring version of this
case may be stabilized by nonuniform magnetic fields.

It was shown in Ref. [31] that the Gross-Neveu model
in 1+1 dimensions appears as a low-energy effective theory
in 3+1 dimensions under a strong uniform magnetic field.
Therefore our setup may be realized in a certain region of the
QCD phase diagram [11,12].
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APPENDIX: BASIC PROPERTIES OF
ORDER PARAMETERS

Here we briefly summarize the basic properties of the order
parameters. One can derive the nonlinear Schrödinger equation
(NLSE) from the BdG equation and the gap equation as

�̂′′ + i(b − 2E)�̂′ − 2(a − Eb)�̂ − 2�̂|�̂|2 = 0. (A1)

All the solutions known before, including BCS, FF, LO, and
the twisted kink crystal state, obey the above equation with
suitable real parameters a, b.

First, we can show that the divergence of the supercurrent
can be calculated as

1

2i
(�̂∗�̂′ − �̂∗′�̂)′ = −b − 2E

2
(|�̂|2)′. (A2)

This equality is easily verified by calculating NLSE × �̂∗ −
(NLSE)∗ × �̂.

Second, we can show that b = 2E for the LO phase. In
the case of the LO phase, the order parameter can be written
as �̂ = f (x)eiδ , with the real function f (x) and a constant δ.
Thus the NLSE becomes

f ′′ + i(b − 2E)f ′ − 2(a − Eb)f − 2f 3 = 0. (A3)

The imaginary part of the above equation leads to

i(b − 2E)f ′ = 0. (A4)

This equation requires b to be 2E for the LO phase.
We can also show that if b = 2E, the order parameter �̂ =

f (x)eiδ(x) with real functions f (x) and δ(x) must satisfy that
δ(x) is constant or f (x) = 0. By substituting �̂ = f (x)eiδ(x)

into NLSE with b = 2E, we obtain

f ′′ − δ′2f + 2iδ′f − 2(a − Eb)f − 2f 2 = 0. (A5)

Thus the imaginary part of the above equation requires δ′ = 0
or f = 0. The contraposition of this shows that if f (x) �= 0
nor δ′(x) �= 0, b must not be 2E.
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