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Odd-frequency Cooper pairs in two-band superconductors and their magnetic response
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We discuss the appearance of odd-frequency Cooper pairs in two-band superconductors by solving the Gor’kov
equation analytically. We introduce the equal-time s-wave pair potentials as realized in MgB2 and iron pnictides.
Although the order parameter symmetry is conventional, the band degree of freedom enriches the symmetry
variety of pairing correlations. The hybridization and the asymmetry between the two conduction bands induce
odd-frequency pairs as a subdominant pairing correlation in the uniform ground state. To study the magnetic
response of odd-frequency Cooper pairs, we analyze the Meissner kernel represented by the Gor’kov Green
function. In contrast to the even-frequency pairs linked to the pair potential, the induced odd-frequency Cooper
pairs indicate a paramagnetic property. We also discuss the relation between the amplitude of the odd-frequency
pairing correlation and the stability of superconducting states in terms of the self-consistent equation for the pair
potential.
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I. INTRODUCTION

The electronic structure at the Fermi level governs such
characteristics of superconductivity as effective dimensional-
ity, anisotropy in electromagnetic properties, and the sym-
metry of the superconducting order parameter. Many of
the superconductors discovered so far have multibands at
the Fermi level. These indicate unique characteristics such
as a high-critical transition temperature in iron pnictides
[1], unconventional superconductivity in heavy fermionic
compounds [2–4], unusual vortex states [5] in MgB2 [6,7], and
topologically nontrivial superconducting states in Cu-doped
Bi2Se3 [8,9]. A microscopic understanding of the pairing
mechanism would make it possible to explain these features.

At the superconducting transition temperature Tc, a su-
perconductor chooses three discrete symmetry options for
Cooper pairing: frequency symmetry, spin configuration, and
momentum parity. In each case, there are two possibilities:
pairing can be either symmetric or antisymmetric with respect
to the interchange of the corresponding arguments, namely
the times, spins, or coordinates of the two electrons forming
a Cooper pair. Black-Schaffer and Balatsky [10] have shown
that the multiband superconducting order parameter has an
extra alternative symmetry option that originates from the
band degree of freedom, namely even-band-parity and odd-
band-parity. The Fermi-Dirac statistics of electrons require
the constraint that the pairing functions must be antisymmetric
under the permutation of the two electrons. As a consequence,
Cooper pairs can be classified into eight symmetry classes
as shown in Table I. The classification of Cooper pairs
in single-band superconductors corresponds to the top four
classes in Table I. Conventional superconductors and d-wave
high-Tc superconductors belong to the ESEE class. Spin-triplet
p-wave superconductors such as Sr2RuO4 and UPt3 belong to
the ETOE class. It is known that the spatial inhomogeneity
of the pair potential in the ETOE (ESEE) superconductors
generates Cooper pairs that belong to the OTEE (OSOE)
class [11–13]. Actually odd-frequency Cooper pairs [14]
appear at a surface of unconventional superconductors as a

subdominant pairing correlation [11–13]. The possibilities of
odd-frequency superconductivity have also been discussed
theoretically [15–21]. Recent theoretical papers studied the
mechanisms of odd-frequency superconductivity in multiband
superconductors [22,23]. The bottom four symmetry classes
have been pointed out by the authors of Ref. [10]. Indeed,
they show that the hybridization between the two conduction
bands generates Cooper pairs belonging to the OSEO class.
The appearance of odd-frequency pairs in a uniform ground
state may be a surprising conclusion when we pay attention to
a unique property of them.

Although diamagnetism is the most fundamental prop-
erty of all superconductors, a number of theoretical studies
have suggested that odd-frequency Cooper pairs have a
paramagnetic property [13,24–27]. A μSR experiment [28]
has caught a clear sign of paramagnetic Cooper pairs very
recently. In addition, a recent experimental finding of a
zero-bias anomaly in a ferromagnet/superconductor proximity
structure [29], which is also closely related to the paramagnetic
property, has suggested the existence of odd-frequency pairs
[30–32]. The paramagnetic Cooper pairs attract magnetic
fields [33,34], which implies the thermodynamic instabil-
ity of odd-frequency pairing states. (See also Appendix A
for details.) Actually, in single-band superconductors, odd-
frequency pairs always appear as a spatially localizing
subdominant pairing correlation. Thus the instability of an
odd-frequency pair does not affect the transition temperature
if the superconductor is sufficiently large. However, we have
never encountered the type of magnetic response exhibited by
induced odd-frequency pairs in multiband superconductors. If
they are paramagnetic, the superconducting condensate might
be unstable due to the presence of odd-frequency pairs. We
address these issues in the present paper.

In this paper, we will show the existence of odd-frequency
pairs in a two-band superconductor with the spin-orbit
interactions or the band asymmetry. Within the theoretical
model that we consider in this paper, odd-frequency Cooper
pairs always exhibit a paramagnetic property irrespective of
their generation mechanism. Since odd-frequency pairs appear
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TABLE I. Eight symmetry classes of Cooper pairs in the presence
of the band degree of freedom.

Frequency Spin Momentum parity Band parity

ESEE Even Singlet Even Even
ETOE Even Triplet Odd Even
OSOE Odd Singlet Odd Even
OTEE Odd Triplet Even Even
ESOO Even Singlet Odd Odd
ETEO Even Triplet Even Odd
OSEO Odd Singlet Even Odd
OTOO Odd Triplet Odd Odd

as a subdominant pairing correlation in a uniform ground
state, their paramagnetic instability suppresses the transition
temperature. We also find that the band hybridization generates
even-frequency Cooper pairs whose symmetry is different
from that of the order parameter. We conclude that the rich
symmetry variety of the induced pairing correlations in the
bulk state is a key feature of multiband superconductors.

This paper is organized as follows. In Sec. II, we present
a theoretical model describing two-band superconductors.
The anomalous Green functions of the Gor’kov equation are
calculated, and the magnetic property of odd-frequency pairs is
discussed for the intra- and interband pairing order parameter
in Secs. III and IV, respectively. The conclusion is provided in
Sec. V.

II. TWO-BAND MODEL

The Hamiltonian of two-band electronic states is

HN =
∑

α=↑,↓

∑
λ=1,2

∫
d rψ†

λ,α(r)ξλ(r)ψλ,α(r)

+
∑

α

∫
d r{ψ†

1,α(r)V0(r)ψ2,α(r)

+ψ
†
2,α(r)V ∗

0 (r)ψ1,α(r)}

+
∑
α,β

∫
d r{ψ†

1,α(r)(iL × ∇) · σ α,βψ2,β (r)

+ψ
†
2,α(r)(iL × ∇) · σ α,βψ1,β (r)}, (1)

where ξλ(r) = − ∇2

2mλ
− μλ, σ̂j for j = 1–3 are the Pauli

matrices in spin space, and ψ
†
λ,α(r) (ψλ,α(r)) is the creation

(annihilation) operator of an electron in band λ (1 or 2) with
spin α (↑ or ↓) and at a location r . The hybridization potential
expressed by V0 is independent of electron spin. We also
consider the hybridization caused by the spin-orbit interaction
represented by L.

Throughout this paper, we assume the equal-time s-wave
pair potential (i.e., even-frequency even-momentum-parity
class) described by

�λν;αβ = gλ,ν

∑
k

〈ψλ,α(k)ψν,β(−k)〉 = −�νλ;βα, (2)

where gλ,ν = gν,λ represents the attractive interaction and
〈· · · 〉 represents the quantum and thermal average. The last
equation is derived from the Fermi-Dirac statistics of electrons.
In this paper, we confine ourselves to the pair potentials
consisting of two electrons with opposite spin. We define the
spin-singlet intraband pair potential by

�λ ≡ �λλ;↑↓ = −�λλ;↓↑, (3)

which belongs to the ESEE class in Table I. Such intraband pair
potentials have been considered in previous literature [35–37].
There are two types of pair potentials for the interband order
parameters. The pair potential is defined by

�12 ≡ �12;↑↓ = −�21;↓↑, (4)

= −sspin�21;↑↓ = sspin�12;↓↑, (5)

where sspin is 1 for spin-triplet symmetry belonging to the
ETEO class and −1 for spin-singlet symmetry belonging to
the ESEE class.

The BCS Hamiltonian in momentum space is represented
by

HBCS(k) = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1 0 V0 + V3 V1 − iV2 0 �1 0 �12

0 ξ1 V1 + iV2 V0 − V3 −�1 0 sspin�12 0

V ∗
0 + V3 V1 − iV2 ξ2 0 0 −sspin�12 0 �2

V1 + iV2 V ∗
0 − V3 0 ξ2 −�12 0 −�2 0

0 −�∗
1 0 −�∗

12 −ξ1 0 −V ∗
0 + V3 V1 + iV2

�∗
1 0 −sspin�

∗
12 0 0 −ξ1 V1 − iV2 −V ∗

0 − V3

0 sspin�
∗
12 0 −�∗

2 −V0 + V3 V1 + iV2 −ξ2 0

�∗
12 0 �∗

2 0 V1 − iV2 −V0 − V3 0 −ξ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where ξλ,k = k2

2mλ
− μλ, V1(k) = −L2k3 + L3k2, V2(k) =

−L3k1 + L1k3, and V3(k) = −L1k2 + L2k1. We note that
Vj (k) for j = 1–3 are odd-momentum-parity functions sat-
isfying Vj (k) = −Vj (−k). In this paper, we assume that the
hybridization potentials are much smaller than the Fermi
energy in the two conduction bands. The basic property of the

superconducting states are determined by the band structures
and the effective attractive interaction in the absence of hy-
bridization. We will discuss the effects of weak hybridizations
on superconducting states. In what follows, we calculate the
Green functions by solving the Gor’kov equation for Eq. (6).
To obtain the analytical expression of the Green function, we
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reduce the 8 × 8 particle-hole space in Eq. (6) to two 4 × 4
particle-hole spaces,N1 andN2, by selecting one hybridization
potential among Vj for j = 0–3. For practical calculations, we
often consider a simple two-band model described by

m1 = m2 = m, μ1(2) = μF + (−)δμ, (7)

with δμ 	 μF .

III. INTRABAND PAIRING ORDER

We first consider a two-band superconductor with equal-
time spin-singlet s-wave intraband pair potentials (ESEE). In
Eq. (6), we set �12 = 0.

A. Spin-independent hybridization

When spin-flip hybridization is absent (i.e., V1 = V2 = 0),
Eq. (6) can be block diagonalized. The reduced Hamiltonian
is represented by

Ȟ1(k) =

⎡
⎢⎢⎢⎣

ξ1 W s�1 0

W ∗ ξ2 0 s�2

s�∗
1 0 −ξ1 −W ∗

0 s�∗
2 −W −ξ2

⎤
⎥⎥⎥⎦, (8)

W =V0 + sV3(k). (9)

In N1, the spin of an electron is ↑ and that of a hole is ↓. While
in the other particle-hole space N2, the spin of an electron (a
hole) is ↓ (↑). We set the sign factor s as s = 1 in N1 and −1
in N2.

The Green function is defined by

[iωn1̌ − Ȟ (k)]Ǧ(k,iωn) = 1̌, (10)

Ǧ(k,iωn) =
[
Ĝ F̂
F̂ Ĝ

]
(k,iωn)

. (11)

At V3 = 0, the anomalous Green function is calculated as

F̂1(k,iωn) = s

2Z1

[{( − X1 + v2
2

)
�+ + (K + iv1v2)�−

}
ρ̂0

+{v1(ξ+�+−ξ−�−) − iv2(ξ+�− − ξ−�+)}ρ̂1

+ωn(v1�− − iv2�+)ρ̂2

+ {( − X1 + v2
1

)
�− + (K − iv1v2)�+

}
ρ̂3

]
,

(12)

with

Z1 =X2
1 − Y1, (13)

X1 = 1
2

[
ω2

n + ξ 2
+ + ξ 2

− + |�+|2 + |�−|2 + |V0|2
]
, (14)

Y1 = K2 + |V0|2ξ 2
+ + v2

1 |�−|2 + v2
2 |�+|2 − i2v1v2D−,

(15)

where we have defined

ξ+ =ξ1,k + ξ2,k

2
, ξ− = ξ1,k − ξ2,k

2
, (16)

�+ =�1 + �2

2
, �− = �1 − �2

2
, (17)

K =ξ+ξ− + D+, D± = �+�∗
− ± �∗

+�−
2

, (18)

V0 =v1 + iv2. (19)

Here ρ̂j for j = 1–3 are Pauli matrices in the two-band
space. The normal Green function is shown in Eq. (B1) in
Appendix B. The relation

F̂1(k,iωn) = F̂∗
1 (k,iωn) (20)

holds due to the symmetry of the Gor’kov equation for reduced
Hamiltonian in Eq. (8). The components of the anomalous
Green function in Eq. (12) are represented by

F̂N1
1 =

[
F11,↑↓ F12,↑↓
F21,↑↓ F22,↑↓

]
, F̂N2

1 =
[
F11,↓↑ F12,↓↑
F21,↓↑ F22,↓↑

]
,

in N1 and N2, respectively. The Fermi-Dirac statistics of
electrons requires

Fλλ′;σσ ′(k,iωn) = −Fλ′λ;σ ′σ (−k, − iωn). (21)

The intraband components are represented as

F11,↑↓(k,iωn)

= −F11,↓↑(k,iωn)

= 1

2Z1

[ − (X1 − K)(�+ + �−) + v2
2�+ + v2

1�−

− iv1v2(�+ − �−)
]
, (22)

F22,↑↓(k,iωn)

= −F22,↓↑(k,iωn)

= 1

2Z1

[ − (X1 + K)(�+ − �−) + v2
2�+ − v2

1�−

+ iv1v2(�+ + �−)
]
. (23)

These components are linked to the pair potential belonging
to the ESEE class. The hybridization generates two types
of interband pairing correlations. The interband components
result in

F12,↑↓(k,iωn) = −F12,↓↑(k,iωn) = P1e − P1o, (24)

F21,↑↓(k,iωn) = −F21,↓↑(k,iωn) = P1e + P1o, (25)

P1e = v1(ξ+�+ − ξ−�−) − iv2(ξ+�− − ξ−�+)

2Z1
, (26)

P1o = 1

2Z1
[iωn(v1�− − iv2�+)]. (27)

We find that the component

F12,↑↓ − F12,↓↑ + F21,↑↓ − F21,↓↑ = 4P1e (28)
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TABLE II. The symmetry classification of Cooper pairs with the equal-time spin-singlet even-
momentum-parity intraband (even-band-parity) pair potential.

Frequency Spin Momentum parity Band parity Magnetic response

Pair potential Even Singlet Even Even (intra) Diamagnetic
Induced by V0 Even Singlet Even Even (inter) Diamagnetic

Odd Singlet Even Odd Paramagnetic
Induced by V1, V2, V3 Even Triplet Odd Even (inter) Diamagnetic

Odd Triplet Odd Odd Paramagnetic

belongs to the ESEE class, and

F12,↑↓ − F12,↓↑ − F21,↑↓ + F21,↓↑ = −4P1o (29)

has the odd-frequency spin-singlet odd-band parity symmetry
(OSEO). The symmetry classification results are summarized
in Table II. In Ref. [10], the authors assume that V0 is a real
potential. In such a case, the odd-frequency pairing correlation
appears only for �− �= 0 because v2 = 0. In the normal state, it
is possible to eliminate the phase of the hybridization potential.
Namely the phase factor eiφ in∑

α

∫
d r[ψ†

1α(r)|V0|eiφψ2α(r) + H.c.] (30)

is eliminated by choosing ψ1α → ψ1αeiφ/2 and ψ2α →
ψ2αe−iφ/2. The phase φ does not affect the physics in the nor-
mal state. When we consider more than one superconducting
order parameter, however, such a gauge transformation affects
the relative phase difference between the order parameters.
This is why we keep the phase degree of freedom of the
hybridization potential. Actually, the phase also plays an
important role in the gap equations as discussed later.

The magnetic property of Cooper pairs can be discussed
using the relationship between the electric current and the
vector potential j = − nee

2

mc
QA. Within the linear response

regime [38,39], the dimensionless pair density Q for a uniform
magnetic field is calculated to be

Q =1

2
T

∑
ωn

∫
dξ Tr{ĜĜ + F̂F̂ − ĜN ĜN }(ξ,iωn) (31)

for the simple two-band model in Eq. (7), where GN is
the Green function in the normal state, and Tr means the
summation over band degree of freedom. When we decompose
the anomalous Green functions into

F̂ =
3∑

ν=0

fνρ̂ν, F̂ =
3∑

ν=0

f
ν
ρ̂ν, (32)

the contribution of the νth component of the anomalous Green
function to the pair density becomes

Qf (ν) = T
∑
ωn

∫
dξ fνf

ν
. (33)

The component of fν is diamagnetic as usual for Qf (ν) > 0.
On the other hand, fν is paramagnetic for Qf (ν) < 0. As
shown in Eq. (12) and the relation in Eq. (20), Qf (2) is
negative. Therefore the odd-frequency pairing correlation is
paramagnetic. It is easy to confirm that all the even-frequency

pairing correlations are diamagnetic. The pair density for the
simple model in Eq. (7) is represented as

Q = T
∑
ωn

∫
dξ

[
X1 − ω2

n

2Z1
− ω2

n

Y1

Z2
1

]
. (34)

The total magnetic response of all the components must
be diamagnetic to realize stable superconducting states (i.e.,
Q > 0). Generally speaking, the pair density Q has a more
complicated expression than Eq. (34) in the presence of the
band asymmetry. Details are shown in Appendix C. It is
possible to discuss the type of magnetic response in general
cases by checking if fj contributes positively or negatively to
IF in Eq. (C7). We note that the expression of the response
function in Eq. (C8) can be applied to highly asymmetric
two-band superconductors.

The self-consistent equations for the intraband pair poten-
tials are represented by

�1 = g1T
∑
ωn

1

Vvol

∑
k

1

2Z1

[
(X1 − |V0|2/2 − K)�1

+ {(
v2

1 − v2
2

)
/2 + iv1v2

}
�2

]
, (35)

�2 = g2T
∑
ωn

1

Vvol

∑
k

1

2Z1

[
(X1 − |V0|2/2 + K)�2

+ {(
v2

1 − v2
2

)
/2 − iv1v2

}
�1

]
, (36)

where gλ is the pairing interaction at the λth band. When we
assume g1 > g2 in the simple model in Eq. (7), for instance, the
transition temperature Tc1 for �1 is larger than the transition
temperature Tc2 for �2 in the absence of hybridization.
Equation (36) indicates that hybridization induces �2 even
for Tc2 < T < Tc1 . The relative phase between the two pair
potentials is determined by the phase of the hybridization
potential. For V0 = v1 and v2 = 0, the sign of �2 should be
the same as that of �1, which leads to the decrease of �−.
As a result, the amplitude of the odd-frequency component
in Eq. (12) decreases. On the other hand for V0 = iv2 and
v1 = 0, the sign of �2 should be opposite that of �1. Therefore
�+ decreases, which results in the suppression of the odd-
frequency component. The self-consistent equation minimizes
the odd-frequency pairing correlations and maximizes the
condensation energy automatically. In more general cases for
v1 �= 0 and v2 �= 0, there is a relative phase difference between
the two pair potentials.
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B. Hybridization due to spin-orbit interaction
without spin flipping

Next we consider a situation where V0 = 0 and V3(k) �=
0. The spin-orbit interaction hybridizes the two conduction
bands. The Hamiltonian is represented by Eq. (8) with V0 =
0. Here we assume that V3(k) is a real value for simplicity.
The Green functions are represented by Eqs. (12) and (B1)
with v1 → sV3(k) and v2 = 0. The symmetry of the intraband
pairing correlations remain unchanged from the ESEE class.
The interband pairing correlations are calculated as

F12,↑↓(k,iωn) = F12,↓↑(k,iωn) = P2e − P2o, (37)

F21,↑↓(k,iωn) = F21,↓↑(k,iωn) = P2e + P2o, (38)

P2e = 1

2Z1
[V3(ξ+�+ − ξ−�−)], (39)

P2o = 1

2Z1
[iωnV3�−]. (40)

We find that

F12,↑↓ + F12,↓↑ + F21,↑↓ + F21,↓↑ = 4P2e (41)

belongs to the ETOE class, and

F12,↑↓ + F12,↓↑ − F21,↑↓ − F21,↓↑ = −4P2o (42)

belongs to the OTOO class because V3 is an odd-momentum-
parity function. The hybridization caused by the spin-orbit
interaction generates two types of spin-triplet Cooper pairs
as summarized in the bottom two columns of Table II. We
also conclude that the odd-frequency pairs generated by the
hybridization are paramagnetic in the sense that Qf (2) < 0 in
Eq. (33).

C. Hybridization due to spin-orbit interaction with spin flipping

In the end of this section, we consider a situation where
V0 = V3 = 0, V1(k) �= 0 and V2(k) �= 0. The spin-orbit inter-
action hybridizes the two conduction bands with opposite spin.
The reduced Hamiltonian is represented by

H2(k) =

⎡
⎢⎣

ξ1 U ∗ s�1 0
U ξ2 0 −s�2

s�∗
1 0 −ξ1 U ∗

0 −s�∗
2 U −ξ2

⎤
⎥⎦, (43)

U =V1(k) + isV2(k). (44)

In the first particle-hole space (N1), the spin of an electron (a
hole) in band “1” is ↑ (↓), and the spin of an electron (a hole)
in band “2” is ↓ (↑). In the second particle-hole space (N2),
the spin of a quasiparticle is opposite to those in N1. The sign
factor s is 1 and −1 in N1 and N2, respectively. The phase of
hybridization potential does not affect the physics, because it
can be eliminated by a gauge transformation for each spin de-
gree of freedom. In Eq. (43), therefore, we assume that V1 and
V2 are real potential. The anomalous Green function results in

F̂2(k,iωn) = s

2Z2
[{−X2�− + K�+ + |V |2�−}ρ̂0

+{iωnV1�− + (ξ+�+ − ξ−�−)isV2}ρ̂1

+{iωnsV2�− − (ξ+�+ − ξ−�−)iV1}ρ̂2

+ {−X2�+ + K�−}ρ̂3], (45)

with Z2 = X2
2 − Y2 and

X2 = 1
2

[
ω2

n + ξ 2
+ + ξ 2

− + |�+|2 + |�−|2 + |V |2], (46)

Y2 = K2 + |V |2(ξ 2
+ + |�−|2), (47)

where K and D± are defined in Eq. (18) and |V |2 = V 2
1 + V 2

2 .
The normal Green function is presented in Eq. (B3)
in Appendix B. The first term of the f1 component
and that of the f2 component in Eq. (45) represent the
odd-frequency pairing correlations. By using the relation
F̂2(k,iωn) = F̂∗

2 (−k,iωn)|V2→−V2 , we can confirm that the
odd-frequency pairing correlations are paramagnetic. In the
simple model in Eq. (7), the expression of the pair density in
Eq. (34) is valid by applying Eqs. (46) and (47). The elements
of Green function in Eq. (45) correspond to

F̂N1
2 =

[
F11,↑↓ F12,↑↑
F21,↓↓ F22,↓↑

]
, F̂N2

2 =
[
F11,↓↑ F12,↓↓
F21,↑↑ F22,↑↓

]

in N1 and N2, respectively. To analyze the pairing symmetry,
we rewrite the results of equal-spin pairing correlations into

F12,↑↑ + F21,↑↑ = −(V1 − iV2)

Z2
(ξ+�+ − ξ−�−), (48)

F12,↓↓ + F21,↓↓ = (V1 + iV2)

Z2
(ξ+�+ − ξ−�−), (49)

F12,↑↑ − F21,↑↑ = 1

Z2
iωn�−(V1 − iV2), (50)

F12,↓↓ − F21,↓↓ = −1

Z2
iωn�−(V1 + iV2). (51)

The correlations in Eqs. (48) and (49) belong to
the even-frequency spin-triplet odd-momentum-parity
even-band-parity (ETOE) class because V1 and V2 are
odd-momentum-parity functions. The correlations in Eqs.
(50) and (51) belong to the odd-frequency spin-triplet
odd-momentum-parity odd-band-parity (OTOO) class. The
hybridization between the two bands generates these pairing
correlations. The symmetry classification is shown in Table II.
The spin-singlet pairing correlations that belong to the ESEE
class are linked to the pair potentials. The self-consistent
equation for the pair potentials are represented by

�1 = g1T
∑
ωn

1

Vvol

∑
k

× 1

2Z2
[(X2 − |V |2/2 − K)�1 + |V |2�2/2], (52)

�2 = g2T
∑
ωn

1

Vvol

∑
k

× 1

2Z2
[(X2 − |V |2/2 + K)�2 + |V |2�1/2]. (53)

These coupled equations allow us to understand the role of the
odd-frequency pairing correlation. When the two conduction
bands are identical to each other (i.e., ξ− = 0 and g1 = g2),
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�1 = �2 is expected in the self-consistent equations. As a
result, the odd-frequency pairing correlation vanishes because
�− = 0 as shown in Eq. (45). In such a case, we obtain
the equation that determines the transition temperature Tc0

at g1 = g2,

1 = 2πN0g1T

Nc0∑
ωn>0

1

ωn

, (54)

where N0 is the density of states at the Fermi level in each band
per spin, Nc0 = ωc/(2πTc0 ), and ωc is the cutoff energy. The
equation is identical to the equation for determining the tran-
sition temperature in a single-band superconductor. Therefore
the hybridization does not affect transition temperature when
�1 = �2 is expected in superconducting states. On the other
hand for g1  g2, �1  �2 is expected in superconducting
states. By neglecting �2 in Eq. (52), we find that

1 = 2πN0g1T

Nc∑
ωn>0

[
1

ωn

− |V |2/2

ωn

(
ω2

n + |V |2)
]

(55)

determines the transition temperature Tc with Nc =
ωc/(2πTc). Because of the second term in Eq. (55), Nc > Nc0

is necessary for Eq. (55) to have a solution. The condition
is identical to Tc < Tc0 . In this way, we conclude that the
hybridization reduces the transition temperature when �1 �=
�2 is expected in superconducting states. In such states, the
induced odd-frequency pairs are unstable because of their
paramagnetic instability. The expression of the pair density in
Eq. (34) with Eq. (7) is also valid for this case when we replace
X1 and Y1 by corresponding values Eqs. (46) and (47). A stable
superconducting state is possible as long as Q is positive. If we
could control the fraction of odd-frequency pairs in real materi-
als, it would be possible to detect them from the variation of Tc.

IV. INTERBAND PAIRING ORDER

In this section, we consider the superconducting order
parameter that derived from the attractive interaction between
two electrons in different conduction bands. The total Hamil-
tonian is given by Eq. (6) with �1 = 0 and �2 = 0. Even if
we focus on equal-time s-wave pair potential, the band degree
of freedom makes both the spin-triplet and the spin-singlet
pair potentials possible. Here we assume that the attractive
interaction acts on two electrons with different spins in
different conduction bands. Actually the interband spin-triplet
order parameters [9] have been discussed in Cu-doped Bi2Se3.

A. Spin-singlet pairing order

We first consider the situation where the hybridization
preserves spin by setting V1 = V2 = 0. The Hamiltonian is
described by

Ȟ3(k) =

⎡
⎢⎢⎢⎣

ξ1 W 0 s�

W ∗ ξ2 s� 0

0 s�∗ −ξ1 −W ∗

s�∗ 0 −W −ξ2

⎤
⎥⎥⎥⎦, (56)

W =V0 + sV3(k) (57)

for the spin-singlet pair potential [i.e., sspin = −1 in Eq. (6)].
Hereafter we remove “12” from the subscript of the interband
pair potential for simplicity. In the particle-hole space N1, the
spin of an electron is ↑ in the two conduction bands, whereas
that of a hole is ↓. The spin direction is opposite in N2. At
V3 = 0, the anomalous Green function is calculated as

F̂3(k,iωn) = s�

2Z3

[
(v1ξ+ − iv2ξ−)ρ̂0 + (−X3 + ξ 2

−)ρ̂1

−ωnξ−ρ̂2 + (−v1ξ− + iv2ξ+)ρ̂3], (58)

with Z3 = X2
3 − Y3 and

X3 = 1
2

[
ω2

n + ξ 2
+ + ξ 2

− + |V0|2 + |�|2], (59)

Y3 = ξ 2
+ξ 2

− + ξ 2
+|V0|2 + ξ 2

−|�|2. (60)

The normal part is given in Eq. (B5) in Appendix B. The
phase of the hybridization potential does not play any role in
this case. Actually, Z3 depends only on |V0| as shown in Eqs.
(59) and (60). The elements of the anomalous Green function
in Eq. (58) correspond to

F̂N1
3 =

[
F11,↑↓ F12,↑↓
F21,↑↓ F22,↑↓

]
, F̂N2

3 =
[
F11,↓↑ F12,↓↑
F21,↓↑ F22,↓↑

]
,

(61)

in N1 and N2, respectively.
The intraband pairing correlations become

F11,↑↓ − F11,↓↑ = �

Z3
(ξ+ − ξ−)V0, (62)

F22,↑↓ − F22,↓↑ = �

Z3
(ξ+ + ξ−)V ∗

0 . (63)

They are generated by the hybridization and belong to the
ESEE class. The band asymmetry generates the interband
pairing correlation

F12,↑↓ − F12,↓↑ − F21,↑↓ + F21,↓↑ = 2�

Z3
iωnξ−, (64)

which belongs to the OSEO class. The odd-frequency pairing
correlation is paramagnetic because F(k,iωn) = F∗(k,iωn).
The pair potential is linked to the pairing correlation

F12,↑↓ − F12,↓↑ + F21,↑↓ − F21,↓↑ = 2�

Z3
(−X3 + ξ 2

−). (65)

The self-consistent equation becomes

1 = gT
∑
ωn

1

Vvol

∑
k

X3 − ξ 2
−

2Z3
. (66)

When we consider spin-orbit hybridization V3 at V0 = 0,
the Green functions are given by Eqs. (B5) and (58) with
v1 → sV3 and v2 → 0. The intraband pairing correlations are

F11,↑↓ + F11,↓↑ = �

Z3
(ξ+ − ξ−)V3, (67)

F22,↑↓ + F22,↓↑ = �

Z3
(ξ+ + ξ−)V3. (68)

The hybridization V3 generates pairing correlations that belong
to the ETOE class. The results of the symmetry classification
are summarized in Table III.
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TABLE III. The symmetry classification of Cooper pairs with an equal-time spin-singlet s-wave
even-band-parity (interband) pair potential.

Frequency Spin Momentum parity Band parity Magnetic response

Pair potential Even Singlet Even Even (inter) Diamagnetic
Induced by V0 Even Singlet Even Even (intra) Diamagnetic
Induced by V1, V2, V3 Even Triplet Odd Even (intra) Diamagnetic
Induced by ξ− Odd Singlet Even Odd Paramagnetic

Next we consider effects of spin-flip hybridization on the
pairing correlations. At V0 = V3 = 0, the Hamiltonian can be
reduced to

Ȟ4(k) =

⎡
⎢⎣

ξ1 U ∗ 0 s�

U ξ2 −s� 0
0 −s�∗ −ξ1 U

s�∗ 0 U ∗ −ξ2

⎤
⎥⎦, (69)

U = V1(k) + isV2(k). (70)

In the first particle-hole space (N1), the spin of a quasiparticle
in band “1” is ↑ and that in band “2” is ↓ for both an electron
and a hole. In the second particle-hole space (N2), the spins of
a quasiparticle are opposite of those in N1. The Green function
is calculated as follows:

F̂4(k,iωn) = s�

2Z4
[(V1ξ− + isV2ξ+)ρ̂0 + iωnξ−ρ̂1

− i(X4 − ξ 2
−)ρ̂2 − (V1ξ+ + isV2ξ−)ρ̂3], (71)

with Z4 = X2
4 − Y4, |V |2 ≡ V 2

1 + V 2
2 and

X4 = 1
2

[
ω2

n + ξ 2
+ + ξ 2

− + |V |2 + |�|2], (72)

Y4 = ξ 2
+ξ 2

− + ξ 2
+|V |2 + ξ 2

−|�|2. (73)

The normal part is shown in Eq. (B7) in Appendix B. The
elements of the anomalous Green function in Eq. (71) are
represented by

F̂N1
4 =

[
F11,↑↑ F12,↑↓
F21,↓↑ F22,↓↓

]
, F̂N2

4 =
[
F11,↓↓ F12,↓↑
F21,↑↓ F22,↑↑

]

in N1 and N2, respectively. It is easy to confirm that the
hybridizations V1 and V2 generate the equal-spin intraband
pairing correlations

F11,↑↑ = �

2Z4
(ξ+ − ξ−)(−V1 + iV2), (74)

F11,↓↓ = �

2Z4
(ξ+ − ξ−)(V1 + iV2), (75)

F22,↑↑ = �

2Z4
(ξ+ + ξ−)(−V1 + iV2), (76)

F22,↓↓ = �

2Z4
(ξ+ + ξ−)(V1 + iV2). (77)

They belong to the ETOE class. The band asymmetry generates
the pairing correlation

F12,↑↓ − F12,↓↑ − F21,↑↓ + F21,↓↑ = 2�

Z4
iωnξ−, (78)

which belongs to the OSEO class. Since F4(k,iωn) =
−F∗

4 (−k,iωn), the odd-frequency pairing correlation is para-
magnetic. The results of the symmetry classification are shown
in Table III. The self-consistent equation is described by Eq.
(66) with X3 → X4 and Z3 → Z4.

B. Spin-triplet pairing order

Finally we consider the spin-triplet odd-band-parity pair
potential. When the hybridization preserves spin (i.e., V1 =
V2 = 0), the reduced Hamiltonian is given by

Ȟ5(k) =

⎡
⎢⎢⎢⎣

ξ1 W 0 �

W ∗ ξ2 −� 0

0 −�∗ −ξ1 −W ∗

�∗ 0 −W −ξ2

⎤
⎥⎥⎥⎦, (79)

with W = V0 + sV3(k). At V3 = 0, the Green function for
V0 �= 0 becomes

F̂5(k,iωn) = �

2Z5
[ωnv2ρ̂0 + iωnξ−ρ̂1

− i(X5 − |V0|2 − ξ 2
−)ρ̂2 − iωnv1ρ̂3], (80)

with Z5 = X2
5 − Y5 and

X5 = 1
2

[
ω2

n + ξ 2
+ + ξ 2

− + |V0|2 + |�|2], (81)

Y5 = (ξ 2
+ + |�|2)(ξ 2

− + |V0|2). (82)

The elements of the anomalous Green function in Eq. (80)
correspond to Eq. (61). In this case, both the hybridization
and the band asymmetry generate the odd-frequency pairing
correlations. The hybridization induces the correlations

F11,↑↓ + F11,↓↑ = − �

Z5
iωnV0, (83)

F22,↑↓ + F22,↓↑ = �

Z5
iωnV

∗
0 . (84)

The band asymmetry induces

F12,↑↓ + F12,↓↑ + F21,↑↓ + F21,↓↑ = 2�

Z5
iωnξ−. (85)

All of them belong to the OTEE class. Since F5(k,iωn) =
−F∗

5 (k,iωn), all of the odd-frequency pairing correlations are
paramagnetic.
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TABLE IV. The symmetry classification of Cooper pairs with an equal-time spin-triplet s-wave
odd-band-parity pair potential.

Frequency Spin Momentum parity Band parity Magnetic response

Pair potential Even Triplet Even Odd Diamagnetic
Induced by V0 Odd Triplet Even Even (intra) Paramagnetic
Induced by ξ− Odd Triplet Even Even (inter) Paramagnetic
Induced by V1,V2,V3 Even Triplet Odd Even (intra) Diamagnetic

The Green function for V0 = 0 and V3 �= 0 are presented in
Eqs. (B9) and (80) with v1 → sV3 and v2 → 0. The spin-orbit
hybridization generates the correlations

F11,↑↓ − F11,↓↑ = − �

Z5
iωnV3, (86)

F22,↑↓ − F22,↓↑ = �

Z5
iωnV3. (87)

They belong to the OSOE class.
Finally we discuss the effects of spin-flip hybridization V1

and V2 on the pairing correlations. The Hamiltonian is given
by Eq. (69) with s� → �. The Green function is presented in
Eqs. (B7) and (71) with s� → �. The spin-flip hybridization
generates the pairing correlations that belong to the ETOE
class. The correlations F11,↑↑ and F22,↓↓ are equal to Eqs. (74)
and (77), respectively. The remaining components F11,↓↓ and
F22,↑↑ change their signs from Eqs. (75) and (76), respectively.
The band asymmetry induces

F12,↑↓ + F12,↓↑ + F21,↑↓ + F21,↓↑ = 2�

Z4
iωnξ−, (88)

which belongs to the OTEE class and has a paramagnetic
property because of F4(k,iωn) = −F∗

4 (−k,iωn). The sym-
metry classification results for the spin-triplet order parameter
are summarized in Table IV. The spin-orbit hybridization
generates the equal-spin pairing correlation.

V. CONCLUSION

We have studied the magnetic response of the odd-
frequency pairing correlations appearing in two-band super-
conductors by using analytical expressions of the anomalous
Green function for the Gor’kov equation. We confine ourselves
to the equal-time s-wave pair potential and introduce two
types of hybridization potentials between the two conduction
bands. One is a spin-independent hybridization potential.
The other is a spin-dependent hybridization potential derived
from the spin-orbit interaction. The hybridization potentials
and the asymmetry in the two conduction bands generate
the odd-frequency pairing correlations. We conclude that
odd-frequency pairs always exhibit a paramagnetic response
to external magnetic fields irrespective of their generation
process. By analyzing the self-consistent equation for the
order parameter, we found that the odd-frequency pairing
correlations reduce the superconducting transition temperature
because of their paramagnetic instability. The hybridization
potential also generates even-frequency Cooper pairs, which
belong to a different symmetry class from that of the pair po-
tential. The appearance of the subdominant pairing correlation
can be understood as a deformation of the ground state by

the hybridization and/or the band asymmetry [13]. Thus rich
symmetry variety of Cooper pairs in a uniform ground state is
an essential feature of two-band superconductors.
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APPENDIX A: PARAMAGNETIC PROPERTY OF
ODD-FREQUENCY COOPER PAIRS

The superconducting state is described well by a phe-
nomenological many-body wave function

�(r) = √
nse

iϕ(r), (A1)

where ns is the uniform pair density and ϕ is the macroscopic
phase. The phase coherence is an essential property of
superconductivity, which is described by ∇ϕ = 0 in the
uniform ground state. The current density is defined by

j = e�

2mi
(�∗∇� − ∇�∗�) − e2|�|2

mc
A, (A2)

under an external magnetic field H = ∇ × A. By applying
the rigid phase coherence ∇ϕ ≈ 0, we obtain the so-called
London equation,

j = −nse
2

mc
A. (A3)

By substituting Eq. (A3) into the Maxwell equation ∇ × H =
(4π/c) j , we obtain

∇2 A − 1

λ2
L

A = 0, (A4)

where λL = (4πnse
2/mc2)−2 is the London penetration

length. Equation (A4) indicates the exponential decay of a
magnetic field into a superconductor. Thus all superconductors
are diamagnetic. The negative sign on the right-hand side
of Eq. (A3) is essential in this argument. Indeed, the charge
square e2, the electron mass m, the speed of light c, and the
pair density ns are all positive values. The superconducting
condensate decreases its free energy by keeping the rigid
phase coherence, which results in the diamagnetism of a
superconductor. Equation (A1) means nothing other than
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the wave function of Cooper pairs which belong to the
equal-time (even-frequency) spin-singlet s-wave class. Thus
even-frequency Cooper pairs in a uniform superconductor are
diamagnetic.

In a microscopic theory, the electric current is connected
with the vector potential by a response function K as shown
in Appendix C. The Cooper pairs are described by the
anomalous Green function instead of the many-body wave
function in Eq. (A1). In an inhomogeneous superconductor,
odd-frequency Cooper pairs are generated by the spatial
gradient of pair potential. For instance, odd-frequency pairs
appear at a surface of spin-singlet d-wave or spin-triplet
p-wave superconductor as a subdominant pairing correlation.
Reference [33] demonstrated a paramagnetic response of
odd-frequency pairs to an external magnetic field at surfaces of
such unconventional superconductors. At the London equation
in Eq. (A3), the paramagnetic property is represented by
negative pair density ns < 0, which immediately results in
the penetration of magnetic field into a superconductor in
Eq. (A4). The paramagnetic Cooper pairs attract a magnetic
field and break the phase coherence. As a consequence, the
existence of odd-frequency pairs increases the free energy as
demonstrated in Ref. [34]. Therefore odd-frequency pairs are
thermodynamically unstable. In single-band superconductors,
the odd-frequency pairs always appear locally due to their
instability.

To our knowledge, the odd-frequency pairing correlations
derived from the Bogoliubov-de Gennes Hamiltonian are
always paramagnetic and thermodynamically unstable. Thus
the presence of uniform odd-frequency pairs in two-band
superconductors is a surprising conclusion. To realize stable
and diamagnetic two-band superconducting states, the total
pair density (corresponding to Q in the text) must be positive.

Finally, a relation to Majorana physics [40,41] may be
worth mentioning. We have shown that Majorana fermions in
a topologically nontrivial superconducting nanowire always
accompany odd-frequency pairs [42]. To our knowledge,
subgap quasiparticles in single-band superconductors look like
odd-frequency Cooper pairs.

APPENDIX B: NORMAL GREEN FUNCTION

The normal Green functions are summarized in this
appendix. The results for H1 are given by

Ĝ1(k,iωn) = 1

2Z1
[{A1 + |V0|2ξ+ + ξ−K}ρ̂0

−{(B1 − |�−|2)v1 + iD−v2}ρ̂1

+{(B1 − |�+|2)v2 + iD−v1}ρ̂2

+{−X1ξ− + (iωn + ξ+)K}ρ̂3], (B1)

A1 = − (iωn + ξ+)X1, B1 = X1 − (iωn + ξ+)ξ+, (B2)

at V3 = 0. The two normal Green functions satisfy the relations
Ĝ1(k,iωn) = −Ĝ∗

1 (k,iωn).

The normal Green function for H2 is given by

Ĝ2(k,iωn) = 1

2Z2
[{A2 + |V |2ξ+ + ξ−K}ρ̂0

−{(B2 − |�−|2)V1 + iD−sV2}ρ̂1

−{(B2 − |�−|2)sV2 − iD−V1}ρ̂2

+{−X2ξ− + (iωn + ξ+)K}ρ̂3], (B3)

A2 = − (iωn + ξ+)X2, B2 = X2 − (iωn + ξ+)ξ+ (B4)

and satisfies the relation Ĝ2(k,iωn) = −Ĝ∗
2 (−k,iωn)|V2→−V2 .

For H3, the normal Green function at V3 = 0 is given by

Ĝ3(k,iωn) = 1

2Z3
[{A3 + ξ+(ξ 2

− + |V0|2)}ρ̂0

+B3v1ρ̂1 − B3v2ρ̂2 + (B3 − |�|2)ξ−ρ̂3],

(B5)

A3 = − (iωn + ξ+)X3, B3 = X3 − (iωn + ξ+)ξ+. (B6)

The two normal Green functions are related by G3(k,iωn) =
−G∗

3 (k,iωn).
One normal Green function for H4 is calculated as

Ĝ4(k,iωn) = 1

2Z4
[{A4 + ξ+(ξ 2

− + |V |2)}ρ̂0

−B4V1ρ̂1 − B4sV2ρ̂2 − (B4 − |�|2)ξ−ρ̂3],

(B7)

A4 = − (iωn + ξ+)X4, B4 = X4 − (iωn + ξ+)ξ+. (B8)

The other normal Green function can be obtained by using
Ĝ4k,iωn) = −Ĝ∗

4 (−k,iωn).
For H5, the normal Green function at V3 = 0 is represented

by

Ĝ5(k,iωn) = 1

2Z5
[{A5 + ξ+(ξ 2

− + |V0|2)}ρ̂0

− (B5 − |�|2)(v1ρ̂1 − v2ρ̂2 + ξ−ρ̂3)], (B9)

A5 = −(iωn + ξ+)X5, B5 = X5 − (iωn + ξ+)ξ+. (B10)

The two normal Green functions satisfy Ĝ5k,iωn) =
−Ĝ∗

5 (k,iωn).

APPENDIX C: PAIR DENSITY

In this paper, we consider a two-band superconductor in
type II. The relation

jμ(x) = −
∫

dx ′Kμν(x,x ′)Aν(x ′), (C1)

with x = (r,t) connects the electric current and the vector
potential. Within the linear response to vector potential
[38,39], the electric current is described by

jμ(q,ωl) = −Kμν(q,ωl)Aν(q,ωl), (C2)
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Kμν(q,ωl) = e2

c

⎡
⎣ ∑

λ=1,2

∑
α=↑,↓

nλ,α

mλ

δμν

+ T
∑
ωn

1

Vvol

∑
k

∑
α,α′

∑
λ,λ′

(k + q/2)μ
mλ

(k+q/2)ν
mλ′

× {
Gλα,λ′α′ (k + q,ωn + ωl)Gλ′α′,λα(k,ωn)

+ Fλα,λ′α′ (k + q,ωn + ωl)Fλ′α′,λα(k,ωn)
}⎤⎦

(C3)

for a two-band superconductor, where nλ,α is the electron
density with spin α in the band λ, and ωl is a bosonic Matsubara
frequency. In the static limit ωl → 0 and the uniform magnetic
field q → 0, the diagonal element describes the Meissner
effect. In such a case, the Meissner kernel becomes

K ≡ Kμμ(0,0)

= e2

c

⎡
⎣ ∑

λ=1,2

∑
α=↑,↓

nλ,α

mλ

+ T
∑
ωn

1

Vvol

∑
k

∑
α,α′

∑
λ,λ′

k

mλ

k

mλ′

1

d

×{Gλα,λ′α′ (k,ωn)Gλ′α′,λα(k,ωn)

+ Fλα,λ′α′ (k,ωn)Fλ′α′,λα(k,ωn)}
⎤
⎦, (C4)

where d is the dimensionality of a superconductor. When we
decompose the Green function into

Gλ,λ′ =
3∑

j=0

gj ρ̂j , Fλ,λ′ =
3∑

j=0

fj ρ̂j (C5)

in two-band space, we obtain

IF ≡
∑
λ,λ′

1

mλ

1

mλ′
Fλα,λ′α′ (k,ωn)Fλ′α′,λα(k,ωn), (C6)

=
[

1

m2
1

+ 1

m2
2

]
(f0f 0

+ f3f 3
) + 2

m1m2
(f1f 1

+ f2f 2
)

+
[(

1

m1

)2

−
(

1

m2

)2
]

(f0f 3
+ f3f 0

), (C7)

where we omit spin indices α and α′. The kernel becomes

K = e2

c

⎡
⎣ ∑

λ=1,2

∑
α=↑,↓

nλ,α

mλ

+T
∑
ωn

1

Vvol

∑
k

∑
α,α′

k2

d
{IG+IF }

]
.

(C8)

Equation (C8) can be applied to highly asymmetric two-band
superconductors.

For a simple model in Eq. (7), we obtain

K =nee
2

mc

[
1 + 1

4
T

∑
ωn

∫
dξTr{GG + FF}

]
(C9)

at m1 = m2 = m, where ξ = k2/2m − μF , ne = 4n0 with n0

being the electron density for each band per spin, and Tr
represents summation over spin and band degree of freedom.
We have used N0v

2
F /d = n0/m, with N0 being the density

of states at the Fermi level in each band per spin. Since the
relation

1

4

1

Vvol

∑
k

[
T

∑
ωn

v2
F

d
Tr{GNGN }

]
= −n0

m
(C10)

holds for the Green function in the normal state GN [38], the
Meissner kernel becomes

K =nee
2

mc
Q, (C11)

Q =1

4
T

∑
ωn

∫
dξTr{GG + FF − GNGN }, (C12)

where Q corresponds to the dimensionless pair density. In the
simple model (7), we obtain Q = 1 at the zero temperature.
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