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We demonstrate that the Higgs mechanism in three-dimensional topological superconductors exhibits unique
features with experimentally observable consequences. The Higgs model we discuss has two superconducting
components and an axionlike magnetoelectric term with the phase difference of the superconducting order
parameters playing the role of the axion field. Due to this additional term, quantum electromagnetic and phase
fluctuations lead to a robust topologically nontrivial state that holds also in the presence of interactions. In
this sense, we show that the renormalization flow of the topologically nontrivial phase cannot be continuously
deformed into a topologically nontrivial one. One consequence of our analysis of quantum critical fluctuations
is the possibility of having a first-order phase transition in the bulk and a second-order phase transition on the
surface. We also explore another consequence of the axionic Higgs electrodynamics, namely, the anomalous Hall
effect. In the low-frequency London regime an anomalous Hall effect is induced in the presence of an applied
electric field parallel to the surface. This anomalous Hall current is induced by a Lorentz-like force arising from
the axion term, and it involves the relative superfluid velocity of the superconducting components. The anomalous
Hall current has a negative sign, a situation reminiscent of but quite distinct in physical origin from the anomalous
Hall effect observed in high-Tc superconductors. In contrast to the latter, the anomalous Hall effect in topological
superconductors is nondissipative and occurs in the absence of vortices.
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I. INTRODUCTION

Topological solid states of matter [1,2] have bulk states
that are gapped, while states at the boundaries are gapless
and protected by some discrete quantum symmetry. The
topological aspect emerges when considering the transport
properties of the boundary states, where the transport current
happens to also be a topological current. The most well-
established topological solid states of matter are topological
insulators (TIs), which are gapped in the bulk and have
helical (or chiral) gapless states at the boundaries which are
protected by time-reversal symmetry. Helical here means that
the electronic spin is locked to momentum due to strong
spin-orbit coupling. Thus, the boundary states have a helicity
determined by the eigenvalues of σ · k/k at each boundary.
Topological insulators have been predicted to exist [3] and
confirmed experimentally in subsequent papers [4]. Although
many of the materials investigated experimentally are not
perfect insulators in the bulk [5], the observed boundary helical
states are robust features of these materials.

There exists another predicted topological solid state of
matter, namely topological superconductors (TSCs) [1,2],
where the experimental situation is less clear. TSCs follow
a symmetry classification scheme closely related to TIs, as
far as Hamiltonians of the Bogoliubov–de Gennes type are
concerned [6]. Just like TIs, TSCs have gapped states in the
bulk and symmetry-protected gapless states at the boundaries.
Unlike TIs, in TSCs the U (1) symmetry is broken, either
spontaneously or by proximity effect. The gapless boundary
states are Majorana fermions, which are fermionic particles
that are their own antiparticles. In order to support such
states at the boundaries, the topological superconductivity

must feature a p-wave type of gap. Particle-hole is the
underlying symmetry protecting the boundary Majorana states.
In one dimension, a paradigmatic simple model for topological
superconductivity has been proposed by Kitaev [7] where the
Majorana zero-energy states live at the ends of a quantum
wire. An experimental way of realizing a superconducting
state in a quantum wire is by proximity effect. In this case
a semiconducting wire with strong spin-orbit coupling is
deposited on the surface of an s-wave superconductor in
the presence of an external perpendicular magnetic field.
Then by proximity effect p-wave-like superconductivity is
induced on the wire for a certain range of parameters [8,9].
There are some experimental signatures of Majorana modes
in indium antimonide nanowires in contact with normal and
superconducting electrodes [10]. More recently, strong support
for Majorana boundary zero modes has been reported in an
experiment with a ferromagnetic chain of iron fabricated on
the surface of lead [11].

Three-dimensional (3D) TSCs have also been discussed
theoretically, in particular focusing on vortex physics [1,2]
and possible topological phase transitions [12]. A distinctive
feature of both three-dimensional TIs and TSCs with respect
to their nontopological counterparts is the topological mag-
netoelectric response induced by a mechanism similar to the
so-called chiral anomaly [13]. When fermions in topological
materials interact with the electromagnetic field, a Berry phase
mixing electric and magnetic fields is induced [14,15]. In TIs
this occurs due to strong spin-orbit coupling that locks spin
to momentum. The resulting Berry phases combine in the
form of a so-called axion term, which is a magnetoelectric
term ∼E · B with a periodic field, θ , appearing as a coefficient
[14]. This coefficient corresponds to a topological invariant
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implied by the Chern number of the band structure. If TR
symmetry is preserved, there are only two possible values for
θ in a 3D insulator, namely, θ = 0 and π , the former value
corresponding to a topologically trivial insulator [14]. In the
case of TSCs a topological magnetoelectric contribution also
arises, but now θ corresponds to the phase difference between
order parameters of opposite chirality [15]. Recently, axionic
superconductivity has been also discussed in the context of
doped narrow-gap semiconductors [16].

The 3D TSC constructed by Qi et al. [15] should actually
correspond to an interacting topological state of matter,
going beyond the the symmetry classification of topological
noninteracting theories for insulators and superconductors
[6]. According to the standard symmetry classification and
an argument following from the gravitational anomaly [17],
3D TSCs having TR invariance are classified by an integer
topological invariant belonging to the DIII class in the free
fermion classification table [6]. Thus, unlike TR-invariant
TIs, the electromagnetic axionic response of 3D TSCs would
involve an axion field having values θ = 0 or π , mod 2π .
However, as pointed out in Ref. [15], the axion in TSCs is a
dynamical phase variable associated with the superconducting
order parameter, or Higgs field, in the language of quantum
field theory. Furthermore, the Meissner effect gives a mass
to the photon via the Higgs mechanism. This is an important
difference with respect to the axion electrodynamics of TIs,
where no U (1) symmetry is broken and the gauge field remains
gapless. Furthermore, nontrivial Chern numbers are associated
with the different phases. For the simpler case featuring two
Weyl fermions with opposite helicity, we have opposite Chern
numbers, leading to a topological invariant given by the sign of
the gap amplitude [15]. Thus, the arguments in Ref. [15] seems
to point to a Z2 classification. However, since the relevant
symmetry in the problem is U (1) × Z2, it has been shown
recently [18,19] that in topological superconductors with TR
symmetry the Z classification is reduced to Z16.

In this paper, we investigate the Higgs mechanism and
anomalous Hall effect of three-dimensional TSCs within the
model introduced recently in Ref. [15]. In the simplest case,
the model features two superconducting order parameters
associated with left and right fermion chiralities interacting
with the electromagnetic field, and a topological magneto-
electric term. We show that quantum fluctuations in such
a superconductor (SC) imply an interacting topologically
nontrivial phase that cannot be continuously deformed into the
interacting topologically trivial one. Our claim is substantiated
by a renormalization group analysis. This result does not
follow from the classical Lagrangian of the system derived
earlier in Ref. [15] and is a purely quantum effect involving
the interaction between photons and Higgs fields. We show that
due to this behavior, the type I regime of the TSC features a
first-order phase transition in the bulk and a second-order phase
transition on the surface. This distinguishes a TSC from a topo-
logically trivial superconductor in the type I regime. The latter
would exhibit a first-order phase transition in the bulk as well
as on the surface, provided quantum fluctuations are accounted
for [20] (this point will be discussed in detail in Sec. III).

Another consequence of the topological magnetoelectric
term is the occurrence of an anomalous Hall effect when an
electric field is applied parallel to the surface of a TSC. Due to

the magnetoelectric effect, a transverse current is generated
from a Lorentz-like force involving the relative superfluid
velocity ∼∇θ and the applied electric field. The generated
transverse current is negative, a situation reminiscent of the
anomalous Hall effect in superconductors [21] and observed
high-Tc cuprate superconductors [22]. However, in the latter
case the anomalous Hall effect occurs due to vortex motion
induced by the Faraday law and is typically a very small
effect. Furthermore, in this case the Lorentz force acts directly
on the vortex core, and therefore on the normal components
of the superconductor. For this reason, it automatically leads
to dissipation. In the case of three-dimensional TSCs, on the
other hand, the anomalous Hall effect occurs even in absence
of vortices and is induced solely by an external electric field via
the magnetoelectric effect. Thus, a dissipationless anomalous
Hall current is generated on the surface.

The plan of the paper is as follows. In Sec. II we discuss how
the Higgs mechanism works in a topological superconductor.
We show that after the phases are integrated out, interactions
between the photons automatically arise due to the axion
term. This is in contrast to the ordinary Higg mechanism,
where the phases can be trivially integrated out by a gauge
transformation. In Sec. III we discuss the role of quantum
fluctuations and derive the effective potential on the surface
and the renormalization group (RG) equations. We show that
the RG equations of the topological superconductor cannot be
connected to the ones of a topologically trivial superconductor.
This is shown to occur as a direct consequence of the axion
term. Finally, in Sec. IV we discuss the dissipationless variant
of the anomalous Hall effect using the London limit of
topological superconductors.

II. HIGGS MECHANISM IN THREE-DIMENSIONAL
TOPOLOGICAL SUPERCONDUCTORS

The effective Lagrangian for a three-dimensional TSC
featuring two Fermi surfaces is given by [15]

Leff = e2θ

32π2
εμνστFμνFστ − 1

4
FμνF

μν

+
∑

i=L,R

[|(∂μ − qAμ)φi |2 − m2|φi |2]

− u

2
(|φL|2 + |φR|2)2 + 2J (φ∗

LφR + φ∗
RφL), (1)

where q = 2e is the charge of the condensate. The Greek
indices run from 0 to 3 and Fμν = ∂μAν − ∂νAμ, with (Aμ) =
(A0,A). The Lagrangian (1) corresponds to an Abelian Higgs
model with a two-component scalar field (φL,φR), where
R,L denote right and left chiralities of the two components
of the scalar condensate matter field, minimally coupled
to the gauge field (Aμ). In contrast to the standard Higgs
model, Eq. (1) features a so-called axion term [23,24], which
is the first term appearing in the Lagrangian above. The
term is topological in nature and contains a scalar field (the
axion) θ = θL − θR , where θL and θR are the phases of
φL and φR , respectively, i.e., φi = |φi | exp(iθi). In terms of
electric and magnetic field components, the toplogical term
reads e2θE · B/(4π2), which is precisely the magnetoelectric
form mentioned in the introductory paragraphs. A Josephson
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coupling term ∝ φ∗
LφR + φ∗

RφL accounts for the interference
between the two superconducting order parameter fields. This
is a characteristic feature in superconductors with two or
more components of the order parameter and is absent only if
prohibited by symmetries of the problem [25,26]. Below, we
show that the Josephson coupling is generated by fluctuations,
and therefore it is legitimate to include such a term from the
very beginning in the Lagrangian. Furthermore, the Josephson
coupling is important for tuning between topologically trivial
and nontrivial phases. In fact, a simple mean-field analysis
shows that for J < 0 the Josephson coupling implies θ = 0,
yielding a topologically trivial superconductor. For J > 0, on
the other hand, θ is locked to π , thus leading to a topologically
nontrivial superconducting ground state. Since θ is periodic,
θ = π corresponds to a situation where the time-reversal (TR)
symmetry is preserved [15]. Thus, at the mean-field level,
J = 0 separates a topologically trivial ground state from a
nontrivial one. Thus, varying J from positive to negative values
induces a topological quantum phase transition.

In the U (1) Higgs mechanism the phases disappear from
the spectrum due to spontaneous breaking of the local U (1)
symmetry, being transmuted into the longitudinal mode for
the photon, which becomes gapped. Thus, only amplitude
modes remain in the spectrum of scalar particles. The Higgs
mechanism is equivalent to integrating out the phase degrees of
freedom, which in the case of the Higgs model automatically
leads to a massive gauge particle. This point of view of
integrating out the phases is particularly appealing in the case
where a Josephson coupling is present. However, additional
nonlinearities arise in the presence of the axion term. To see
this, let us first consider the Higgs mechanism in Eq. (1) for
the case where the axion term is absent. In this case we can
simply write φj = ρje

iθj /
√

2, j = L,R and make the shift

Aμ → Aμ + 1

q

(
ρ2

L∂μθL + ρ2
R∂μθR

ρ2
L + ρ2

R

)
, (2)

which yields

Leff = e2θ

32π2
εμνστFμνFστ − 1

4
FμνF

μν + q2
(
ρ2

L + ρ2
R

)
2

A2
μ

+ ρ2
Lρ2

R

2
(
ρ2

L + ρ2
R

) (∂μθ )2 + JρLρR cos θ

− m2

2

(
ρ2

L + ρ2
R

) − u

8

(
ρ2

L + ρ2
R

)2
. (3)

Note that in the absence of the axion term and for the particular
situation of a single scalar field component, i.e., ρL = ρ and
ρR = 0, the above effective Lagrangian trivially reduces to
the usual Lagrangian for the Higgs model in the unitary
gauge. In this particular case the Lagrangian is independent
of the phase. For the case relevant to us here, where two
scalar fields are present, there is a term ∼(∂μθ )2 remaining.
Thus, in the absence of Josephson coupling there is still a
massless (Goldstone) mode present in the spectrum. This
occurs because there are two Higgs fields and one Abelian
gauge field. Thus, it is only possible to gauge away one phase
degree of freedom. The phase θ would not couple directly to the
gauge field in the absence of the axion term. Due to the axion
term, integrating out the phases generates direct interactions

between photons, even if the amplitudes are assumed to be
uniform. For the topological phase of the system occurring
for J > 0, we have to integrate out the lowest order Gaussian
phase fluctuations around θ = π . In general, this renders the
induced photon-photon interaction nonlocal. If the amplitudes
are uniform, we obtain the effective Lagrangian,

LHiggs|J>0 = −1

4
F 2 + q2

(
ρ2

L + ρ2
R

)
2

A2

+ e2

32π
εμνστFμνFστ − 1

2

(
e2

16π2

)2(
ρ2

L+ρ2
R

ρ2
Lρ2

R

)

×
∫

d4x ′V (x − x ′)εμνλρε
αβγ δFμν(x)

×Fλρ(x)Fαβ(x ′)Fγδ(x ′) − JρLρR

− m2

2

(
ρ2

L + ρ2
R

) − u

8

(
ρ2

L + ρ2
R

)2
, (4)

where

V (x) =
∫

d4p

(2π )4

eip·x

p2 + m2
θ

, (5)

with m2
θ = J (ρL/ρR + ρR/ρL). In the long-wavelength

regime the induced photon interaction is strongly screened by
the axion. Hence, we have V (x − x ′) ≈ m−2

θ δ4(x − x ′). The
resulting photon-photon interaction simplifies and we obtain
[27]

LHiggs|J>0 = −1

4
F 2 + q2

(
ρ2

L + ρ2
R

)
2

A2 + e2

32π
εμνστFμνFστ

+ 1

2JρLρR

(
e2

16π2

)2

det(Fμν) − JρLρR

− m2

2

(
ρ2

L + ρ2
R

) − u

8

(
ρ2

L + ρ2
R

)2
, (6)

where det(Fμν) = (E · B)2.

III. QUANTUM FLUCTUATIONS

A. Important vanishing of a Feynman diagram

We now turn to a crucial aspect of the topological phase with
respect to the surface states. It turns out that in the presence
of quantum fluctuations, the topological surface states cannot
be continuously deformed into topologically trivial ones in
the long wavelength limit when crossing the critical point.
To see this, let us assume that θ is uniform on the surfaces,
with θ = π for the TR invariant case. Note that θL and
θR are still allowed to fluctuate, with θL = θ/2 + δθL and
θR = −θ/2 + δθR . Since εμνστFμνFστ = 2∂μ(εμνλρA

νF λρ),
each surface contains a Chern-Simons (CS) term [28]. Thus,
assuming two surfaces perpendicular to the z axis, we find that
the imaginary time photon propagator at any surface is given by

�±
μν(p) = p2 + m2

A

�(p2)

[
δμν − pμpν

p2
± Mθ

p2 + m2
A

εμνλp
λ

]
, (7)

where m2
A = q2(ρ2

L + ρ2
R), Mθ = e2θ/(8π2), �(p2) =

(p2 + m2
A)2 + M2

θ p2, and the ± sign is chosen depending on
which surface one is referring to. In Eq. (7) the transverse
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FIG. 1. (Color online) Difference in behavior for surface photon-
mediated Higgs scattering at the critical point in the long-wavelength
limit. For the topologically trivial case (θ = 0) the corresponding
Feynman diagram diverges. On the other hand, for the topologically
nontrivial case (θ 	= 0), the same diagram vanishes. This shows
beyond the noninteracting regime that a topological superconductor
cannot be continuously deformed into a topologically nontrivial one
in the long wavelength limit.

gauge has been fixed. At the phase transition to the normal state
where m2

A → 0, the Feynman diagram shown in Fig. 1, which
is associated with Higgs scattering mediated by photons,
behaves very differently at long wavelengths (|p| → 0),
depending on whether θ = 0 (topologically trivial) or θ 	= 0
(topologically nontrivial). Namely, for all θ 	= 0 we have

lim
|p|→0

lim
m2

A→0

∫
d3q

(2π )3
�±

μν(p + q)�±
νμ(q) = 0, (8)

whereas the result is divergent for θ = 0. Thus, after other
one-loop scattering amplitudes are taken into account to obtain
the full four-Higgs vertex, we see that at the critical point
the topological field theory cannot be continuously deformed
into a topologically trivial one. This statement holds trivially
for topological Bogoliubov–de Gennes superconductors.
Here, we have shown that it also holds in the presence of
quantum fluctuations in an interacting system, beyond the
Bogoliubov–de Gennes picture. This occurs because the
photon is topologically gapped, despite the vanishing of
the Meissner gap (mA = 0). Note that this result is due to

the topological character of the axion term and not due to
a symmetry protection. Indeed, since the diagram of Fig. 1
vanishes for any θ 	= 0, TR invariance is not required. Thus,
in this context the topologically nontrivial phase simply
corresponds to the case where the axion term is nonzero.

A continuous deformation to the topologically trivial phase
can be done in the Higgs phase, where there are no gapless
modes. At the critical point such a continuous deformation
is not possible. Thus, quantum critical fluctuations in this
system will govern topologically stable universal behavior in
physical quantities. This has important implications for critical
exponents and amplitude ratios. Indeed, as we will see, the
vanishing of the diagram shown in Fig. 1 changes significantly
the renormalization group (RG) β function associated to the
interaction vertex between scalar fields.

B. One-loop effective action on the surface

As is well known, the one-loop effective action is more
easily obtained by integrating out the quadratic fluctuations
of the scalar fields and gauge fields [29]. We assume that
the magnitudes of both φL and φR have the same expectation
value in the broken symmetry phase. Thus, we write φL =
eiθ/2ϕ + φ̃L and φR = e−iθ/2ϕ + φ̃R , where ϕ is uniform and
φ̃i represents the fluctuation around 〈φi〉. The effective action
is therefore written in the form

S
1−loop
eff = S0

eff + 1

2

∫
d3x

∫
d3x ′[�†(x)M(x − x ′; ϕ)�(x ′)

+Aμ(x)Mμν(x − x ′; ϕ)Aν(x ′)], (9)

where

S0
eff = 2V [(m2 − 2J cos θ )|ϕ|2 + u|ϕ|4], (10)

with V being the (infinite) volume of three-dimensional space-
time, and �† = [φ̃∗

L φ̃∗
R φ̃L φ̃R]. The matrices M(x − x ′; ϕ) and

Mμν(x − x ′; ϕ) are given in momentum space by

M(p,ϕ) =
[

(p2 + m2 + 3u|ϕ|2)I + (u|ϕ|2eiσzθ − 2J )σx u|ϕ|2(eiθσz + σx)

u|ϕ|2(e−iθσz + σx) (p2 + m2 + 3u|ϕ|2)I + (u|ϕ|2e−iσzθ − 2J )σx

]
, (11)

where I is a 2×2 identity matrix, while σx and σz are Pauli
matrices, and

Mμν(p,ϕ) = (p2 + 4q2|ϕ|2)δμν − pμpν − Mθεμνλpλ. (12)

From Eq. (11), we see that a correction to the Josephson
coupling has been generated by fluctuations. It has the form,
u|ϕ|2(eiθ φ̃∗

Lφ̃R + e−iθ φ̃∗
Rφ̃L). This term is generated even if

J = 0, which means that including a Josephson coupling in
the Lagrangian is a physically reasonable assumption. This
should be expected, since fluctuations will necessarily lead
to an overlap between the two complex field components.
Note that this result is valid in general for any two-component

superconductor and is not restricted to the topological one
being considered here.

Integrating out the fluctuations in Eq. (9), we obtain

e−V U (|ϕ|,θ) =
∫

DAμD�†D�e−S
1−loop
eff (Aμ,�†,�), (13)

where V is the three-dimensional spacetime volume and
U (|ϕ|,θ ) is the effective potential given by

U (|ϕ|,θ ) = 1

2V
[Tr ln Mμν + Tr ln M]. (14)
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The trace logs can be written in more explicit form:

U (|ϕ|,θ ) = 2[(m2 − 2J cos θ )|ϕ|2 + u|ϕ|4]

+ 1

2

∑
σ=±

∫
d3p

(2π )3

{
ln

[
p2 + M2

σ (|ϕ|,θ )
]

+ ln
[
p2 + M2

1σ (|ϕ|,θ )
] + ln

[
p2 + M2

2σ (|ϕ|,θ )
]}

,

(15)

where

M2
±(|ϕ|,θ ) = 2q2|ϕ|2 + M2

θ

2
± |Mθ |

2

√
8q2|ϕ|2 + M2

θ , (16)

M2
1±(|ϕ|,θ ) = m2 + 2u|ϕ|2 ± 2J, (17)

M2
2±(|ϕ|,θ ) = m2 + 4u|ϕ|2

± 2
√

J 2 + u2|ϕ|4 − 2Ju cos θ |ϕ|2. (18)

From this mass spectrum underlying the effective potential, we
recognize p2 + M2

1± and p2 + M2
2− as the would-be Goldstone

modes from the regime J = 0, corresponding to the absence
of the Josephson coupling. Note that the corresponding
uncharged system in absence of Josephson coupling features
three Goldstone modes. This is to be expected, since the
system in this case would be O(4) invariant. As usual, in the
charged system there are only gapped modes, even in absence
of Josephson coupling, as required by the Higgs mechanism.

The momentum integral in Eq. (15) can be easily evaluated
using an ultraviolet cutoff �,

U (|ϕ|,θ ) = U0 + 2[(m2 − 2J cos θ )|ϕ|2 + u|ϕ|4]

− 1

12π

∑
σ=±

[|Mσ (|ϕ|,θ )|3

+ |M1σ (|ϕ|,θ )|3 + |M2σ (|ϕ|,θ )|3], (19)

where U0 is a field-independent (vacuum) contribution. We
have absorbed a term �(3u + q2)/(2π2) in m2, since this
contribution just corresponds to tadpole diagrams. Note that
this simple renormalization does not actually affect the other
terms, since the error committed by doing this is of higher
order than one loop. From the effective potential above we
see that the diagram of Fig. 1 can only arise from the sum∑

σ=± |Mσ (|ϕ|,θ )|3, with M2
σ (|ϕ|,θ ) given in Eq. (16). An

expansion in powers of |ϕ| for θ 	= 0 clearly shows that the
diagram shown in the figure indeed vanishes when θ 	= 0.
However, the contributions q2n|ϕ|2n for n � 4 become singular
for all θ . We emphasize that this is only true when the
topological magnetoelectric term is nonzero. On the other
hand, if θ = 0, we obtain∑

σ=±
|Mσ (|ϕ|,θ = 0)|3 = 8q3|ϕ|3, (20)

meaning that the effective potential is nonanalytic as a function
of q2|ϕ|2. Albeit simple, this is actually a nonperturbative
result, since it cannot be obtained as a power series in q2. The
absence of a power series involving terms q2n|ϕ|2n reflects
the divergence of the diagram shown in Fig. 1 when θ = 0
for vanishing external momenta. In this case a meaningful
perturbative evaluation of the vertex function can only be

done for nonzero external momenta, a fact related to the
infrared divergence arising from a massless photon. Note that
in contrast to the θ 	= 0 case, the expansion is singular in
the infrared for all n � 2, rather than for n � 4. However, the
singularities in the case of a topologically massive photon is
not a problem, since they correspond to interactions that are
irrelevant in an RG sense. For instance, this type of infrared
singularity in higher order vertices would also occur in a simple
ϕ4 Landau theory. Having θ 	= 0 turns the photon topologically
massive without spoiling gauge invariance [28]. Thus, we
can interpret the cubic contribution arising in the limit of
vanishing θ as a consequence of resumming up all the one-loop
infrared divergent diagrams containing only internal photon
lines. This leads to a nonanalytic contribution to the effective
potential. As is well known, summing up these contributions
in d = 3 + 1 in the case of standard scalar electrodynamics
leads to a logarithmic term ∼q4|ϕ|4 ln |ϕ|2 in the effective
potential [30], while the cubic term has been obtained in the
context of Ginzburg-Landau superconductors for d = 3 + 0
(i.e., scalar electrodynamics in d = 2 + 1 and imaginary time)
[20]. In both cases these one-loop photon contributions lead
to a fluctuation-induced first-order phase transition. However,
it was later shown that this result is valid only in the type
I regime, while in the type II regime a second-order phase
transition in the so-called inverted 3D XY universality class
arises [31].

In view of the above discussion, it is of interest to investigate
the character of the superconducting phase transition on the
surface of a topological superconductor. The theory features
two ingredients that are not present in the previous analysis
of fluctuation-induced first-order phase transitions by Halperin
et al. [20]. These are the Josephson coupling between the scalar
field components and the CS term. The case with Josephson
coupling in the absence of the CS term has been examined
in the London limit (i.e., in the strong type II regime) in
Ref. [26]. For this case it has been shown by means of exact
duality arguments that a two-component superconductor with
Josephson coupling exhibits a phase transition in the 3D XY
universality class [26]. On the other hand, when the Josephson
coupling is absent, it has been shown using renormalization
group (RG) methods in Ref. [32] that for a large enough
CS coupling (i.e., Mθ in our notation), the first-order phase
transition is turned into a second-order one. Regarding the
result in the London limit without CS term, we note that our
analysis in this section is being done in the type I regime,
since amplitude fluctuations play an important role in the
calculations above. Indeed, the theory with θ = 0 yields a
fluctuation induced first-order phase transition.

C. Renormalization group analysis

It is a well-known fact that the CS term does not renormalize
[33]. This is a consequence of the topological nature of the CS
term. Indeed, since it is independent of the metric, it does not
change under scale transformations. Thus, using this result and
the invariance of the effective action under renormalization, we
obtain

MθεμνλA
μ∂νAλ = Mθ,rεμνλA

μ
r ∂νAλ

r , (21)
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where A
μ
r = Z

−1/2
A Aμ is the renormalized gauge field with

the corresponding wave function renormalization, ZA, and
Mθ,r is the renormalized topological mass. From the above
equation it follows that Mθ,r = ZAMθ . Since gauge invariance
implies the renormalization q2

r = ZAq2 [20,30], which is
easily obtained from the vacuum polarization, it follows that
θ is a renormalization group invariant,

dθ

dl
= 0, (22)

where l = ln(mr/�) is a logarithmic renormalization scale
defined in terms of the renormalized mass, mr , yielding the
inverse correlation length. Equation (22) is an important result,
since it allows one to study the critical topological behavior
with a vanishing renormalized Josephson coupling Jr , while
still having θ 	= 0, corresponding to the critical point of the
topological phase transition.

Combining both CS terms stemming from the two surfaces,
we obtain that the axion term in the bulk does not get
renormalized either, so the result (22) also holds in the bulk.
An interesting consequence of this analysis is that the RG
flow of the bulk theory does not differ significantly from the
one where the axion term is absent, which is just given by
the well-known analysis of Coleman and Weinberg [30]. In
this case, the phase transition is known to be of first order,
irrespective of the superconducting regime being of type I or
type II. However, this is not the case for the phase transition
on the surfaces. Indeed, the vanishing of Feynman graph of
Fig. 1 when θ 	= 0 implies that a contribution ∼q̂4 is absent in
the RG β function of û. Here are q̂ = qr/mr and û = ur/mr

renormalized dimensionless couplings defined on the surface
of a TSC. The one-loop RG functions for a superconductor
in 2+1 dimensions with a CS term, and N complex order
parameter fields, are obtained in a way similar to that in
Ref. [20], except that we use the propagator (7) with mA = 0
in the Feynman diagrams involving photon lines. The result is

dq̂2

dl
=

(
Nq̂2

24π
− 1

)
q̂2, (23)

dû

dl
= −

[
1 + 4

3π

q̂2(
1 + q̂2|θ |

8π2

)2

]
û + (N + 4)

8π
û2, (24)

where we now have

θ =
N∑

j=1

C1j θj , (25)

where C1j are the Chern numbers associated to the helicity
of the N Fermi surfaces involved [15]. Note that we have not
expanded 1/(1 + q̂2|θ |/8π2) in powers of q̂, because θ can
also be very large, so that the product q̂2|θ | is not necessarily
small.

It is easily seen that the above RG equations have an
infrared stable fixed point for all N , in contrast to the analysis
by Halperin et al. for the nontopological superconductor,
where infrared fixed points are only found for N > 183 [34].
However, there is a stability condition involving θ that has to
be fulfilled in the case of a TSC. It is obtained by considering
the critical correlation function of the superconducting order

field components,

〈φi(x)φ∗
j (0)〉 ∼ δij

|x|1+η
, (26)

where at one loop

η = − 16

N
(
1 + 3|θ |

πN

)2 , (27)

which implies the inequality η > −1. The latter inequality is
fulfilled provided

|θ | >
π

3
(4

√
N − N ), (28)

and we see that for N � 16 a quantum critical point is obtained
for all values θ , showing that at least sixteen Weyl fermions
are necessary to have a quantum critical point. Values of
θ violating the inequality η > −1 correspond to a situation
where a continuum limit cannot be defined and is therefore
unphysical. Thus, in order to have a physically meaningful
phase transition, the inequality (28) has to be satisfied. We
note that the lower bound for |θ | is larger than π when
N = 2. Therefore, the TR symmetric value θ = π obtained
at the mean-field level does not produce a second-order phase
transition when quantum fluctuations are accounted for. The
one-loop RG predicts that a second-order phase transition
occurs for θ = π only if N � 10.

It is tempting to relate the critical value of N to the Z16

classification [19]. However, at this stage it would be too
speculative, since higher order results may affect the values
of N for which critical points obey the inequality η > −1.

As a final remark on the RG analysis, let us comment
on another possible renormalization scheme allowing us to
continuously connect the cases θ = 0 and θ 	= 0. The infrared
divergences stemming from the photon propagator for θ = 0
requires defining the renormalized four-point vertex at external
nonzero momenta. This yields a renormalization scale μ that
replaces mr in the RG flow. Since the diagram of Fig. 1 does
not vanish for nonzero external momenta, it turns out that a q̂4

term would be generated in the RG β function of û, even when
θ 	= 0. This q̂4 term would have a θ -dependent coefficient
allowing to smoothly connect the result to the known RG
equations of a topologically trivial superconductor in the limit
θ → 0. We would find once more that a second-order phase
transition occurs for large enough θ and a stability criterion
would follow from the inequality η > −1 [32]. The latter
inequality would yield in this case values of θ leading to a
negative coefficient of the q̂4 term, with values of θ yielding
a positive coefficient of q̂4 violating the condition η > −1.
This implies that the RG β function of û can actually not be
continuously connected to the θ = 0 regime, since to this end
it would be necessary to enter a regime where the continuum
limit is not even defined.

D. Summary of the phase structure

There are two important consequences of quantum fluctu-
ations as unveiled by the analysis in this section. First, we
note that it is not possible to reach the topologically trivial
phase from the topologically nontrivial one within the RG.
Simply taking the limit θ → 0 does not recover the RG flow
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of topologically trivial superconductors, while this limit can be
realized classically. Second, and most importantly, the phase
transition in the bulk is always a first-order one, while a
second-order phase transition is possible on the surface. This is
not the case for the topologically trivial superconductor, where
a second-order phase transition on the surface is only obtained
for sufficiently large N .

IV. VORTEX-FREE ANOMALOUS HALL EFFECT

We next turn to the Meissner effect aspects of a TSC,
which as we now show implies an anomalous Hall effect
even in the absence of vortices. This is more conveniently
done by rewriting the Lagrangian in a London limit exhibiting
explicitly electric and magnetic fields, i.e.,

Leff = 1

2
(E2 − B2) + e2θ

4π2
E · B

+ 1

2

∑
i=L,R

ρ2
i (∂μθi − qAμ)2 + JρLρR cos θ

− m2

2

(
ρ2

L + ρ2
R

) − u

8

(
ρ2

L + ρ2
R

)2
. (29)

From the effective Lagrangian we obtain that the electric
displacement and magnetic fields are given respectively by
D = E + e2θB/π and H = B − e2θE/π , while the supercon-
ducting current is given by

j = q
[
ρ2

L(∇θL − qA) + ρ2
R(∇θR − qA)

]
. (30)

From Eq. (30) we obtain the usual London equation in
absence of vortices, ∇ × j = −(1/λ2)B, where λ2 = 1/m2

A

is the square of the penetration depth. Thus, the Maxwell
equation in the presence of the axion field,

∇ × B = j + ∂tE + e2

π
(∇θ × E + ∂tθB), (31)

yields the equation determining the London electrodynamics
of the TSC in the form

∂2
t B − ∇2B + m2

AB = e2

π
[∇ × (∇θ × E) + ∇ × (∂tθB)].

(32)

For the axion field we obtain the equation of motion,

∂2
t θ − ∇2θ + m2

θ sin θ = e2

4π2

(
1

ρ2
L

+ 1

ρ2
R

)
E · B. (33)

In the low-frequency regime and in the absence of vortices,
the London equation (32) simplifies to

−∇2B + m2
AB = e2

π
[∇ × (∇θ × E)], (34)

while the current satisfies

−∇2j + m2
Aj = −e2m2

A

π
(∇θ × E). (35)

The London equation for the electric field is unaffected by the
axion term, retaining its traditional form, −∇2E + m2

AE = 0.
This result is closely related to the fact that the electromagnetic
energy density does not contain a magnetolectric term.

We now consider a solution with a simple geometry, namely,
a semi-infinite TSC (z � 0) with a surface at z = 0 at an
external electric field E0 = E0x̂ parallel to the surface. We
obtain

−d2θ

dz2
+ m2

θ sin θ = e2

4π2

(
1

ρ2
L

+ 1

ρ2
R

)
Ex(z)Bx(z), (36)

where Ex(z) = E0e
−mAz, and

−d2Bx

dz2
+ m2

ABx = −e2

π

d

dz

[
Ex(z)

dθ

dz

]
, (37)

−d2jy

dz2
+ m2

Ajy = −e2m2
A

π
Ex(z)

dθ

dz
. (38)

The solution for Eq. (38) in terms of the axion is

jy(z) = e2m2
AE0

π

[
θ (0)

2mA

e−mAz − emAz

∫ ∞

z

dz′e−2mAz′
θ (z′)

]
,

(39)

where θ (0) = π . Since E · (∇ × j) = −λ−2E · B, we obtain
the following relation:

1

λ2
Bx(z) = mAjy(z) + e2m2

AE0

π
e−mAz[θ (z) − θ (0)], (40)

which implies mABx(0) = jy(0). Thus, we find that the
usual boundary condition of the London theory, djy/dz|z=0 =
mAjy(0), is obviously fulfilled by the solution (39) in the
presence of the axion field. However, the Maxwell equation
(31) in the static regime implies a boundary condition that
deviates from the standard one in the London theory of
nontopological superconductors,

dBx

dz

∣∣∣∣
z=0

= mABx(0) + e2E0

π

dθ

dz

∣∣∣∣
z=0

. (41)

From Eqs. (39) and (40) we see that an approximate
solution can be obtained by considering terms proportional to
e4 as being of higher order, which amounts to approximating
Eq. (36) as being homogeneous. In this case we can use
the domain wall solution θ (z) = π + 2 arcsin[tanh(mθz)] in
Eq. (39), which yields jy(z) explicitly. The explicit solution
for jy(z) with mθ 	= mA in terms of hypergeometric and Lerch
transcedents is not very illuminating. Instead, we plot it in
Fig. 2 for four different values of the ratio mθ/mA. It has
a negative sign, just like in the case of the anomalous Hall
effect in high-Tc superconductors [22]. As emphasized in
the introductory paragraphs, the anomalous Hall effect in
nontopological superconductors has a quite different origin
from the one discussed here. In three-dimensional TSCs the
anomalous Hall current arises independently of vortex motion
and is associated with a dissipationless current.

For mθ = mA (blue [gray] curve in Fig. 2), the expression
for jy(z) does not involve special functions, reading

jy(z) = e2mAE0

π
{(π/2)e−mAz − 2 − 2[e−mAz arctan(emAz)

− emAz arctan(e−mAz)]}. (42)

In order to make connection with the quantization of Hall
conductivity in the normal state, it is instructive to integrate the
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mθ/mA = 1
mθ/mA = 1/2
mθ/mA = 1/4
mθ/mA = 1/6

mAz

πjy(z)
e2mAE0

FIG. 2. (Color online) Induced anomalous Hall current jy(z) for
mθ/mA = 1,1/2,1/4,1/6.

current density over z ∈ [0,∞) to obtain the surface current
density,

j surf
y =

∫ ∞

0
dzjy(z)

= e2

2π
E0θ (0) − e2E0mA

π

∫ ∞

0
dz(e−mAz − e−2mAz)θ (z).

(43)

We obtain

j surf
y = e2E0

2π

[
2ψ

(
mθ + mA

4mθ

)
− ψ

(
mθ + 2mA

4mθ

)

+ψ

(
3mθ + 2mA

4mθ

)
− 2ψ

(
3mθ + mA

4mθ

)]
, (44)

where ψ(z) = �′(z)/�(z) is the � function. The normal state
corresponds to mA/mθ → 0, which yields j surf

y = −(e2/2)E0,
i.e., the half-quantum of the quantized Hall conductivity.

V. CONCLUSION

In conclusion, we have shown that due to quantum
electromagnetic fluctuations the Higgs mechanism in three-

dimensional TSCs implies a robust topological state of matter,
since its RG flow cannot be continuously deformed into the
RG flow of a topologically trivial one. This is an example of a
topological state that is protected due to the coupling of phase
and electromagnetic fluctuations via the axion term, with TR
symmetry not being required. In fact, TR can be spontaneously
broken by quantum fluctuations. In this context, we have also
shown that a second-order quantum phase transition happens
on the surface of a TSC, while its bulk undergoes a first-order
phase transition. Without the axion term a first-order phase
transition would happen both in the bulk and on the surface,
provided the superconductor is in the type I regime.

Another aspect of the Higgs mechanism we have studied
is the influence of the axion term in the Meissner effect. We
have found that the gradient of the axion field on the surface
induces a transverse supercurrent. In the low-frequency limit
this implies a London regime leading to the generation of an
anomalous Hall current with a negative sign. This anomalous
Hall current is dissipationless and is the consequence of a
Lorentz-like force involving the relative superfluid velocity,
which is simply given by the gradient of the phase difference
between the chiral superconducting components.
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