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We formulate a quantum waveguide theory of the Josephson effect in multiband superconductors, with special
emphasis on iron-based materials. By generalizing the boundary conditions of the scattering problem, we first
determine the Andreev levels spectrum and then derive an explicit expression for the Josephson current which
generalizes the formula of the single-band case. In deriving the results, we provide a second quantization field
theory, allowing us to evaluate the current-phase relation and the Josephson current fluctuations in multiband
systems. We present results for two different order parameter symmetries, namely s± and s++, which are relevant
in multiband systems. The obtained results show that the s± symmetry can support π states which are absent in
the s++ case. We also argue that there is a certain fragility of the Josephson current against phase fluctuations
in the s++ case. The temperature dependence of the Josephson critical current is also analyzed and we find, for
both the order parameter symmetries, remarkable violations of the Ambegaokar-Baratoff relation. The results
are relevant in view of possible experiments aimed at investigating the order parameter symmetry of multiband
superconductors using mesoscopic Josephson junctions.
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I. INTRODUCTION

Multiband superconductivity [1] was theoretically sug-
gested a few years after the BCS formulation of the super-
conducting state [2]. The discovery of superconductivity in
MgB2 [3] in 2001 and the observation of superconductivity in
Fe-based compounds (FeBS) [4,5] in 2008 renewed the interest
towards multiband superconductivity. One main goal is under-
standing the pairing symmetry in this class of superconductors,
which is still the object of intensive investigation. In the case
of MgB2 there is a clear consensus towards the picture of two
coexisting in-phase superconducting gaps (s++ pairing) [6],
while in FeBS the experimental evidence seems to favor, in
some cases, the s± pairing, implying that both the electron-like
and the hole-like bands develop an s-wave superconducting
state with order parameters of opposite sign [7]. Thus, in
the s± symmetry, the superconducting gap exhibits a sign
reversal between α and β bands which is absent in the s++
symmetry. This phase difference can be probed using point
contact Andreev reflection spectroscopy (PCARS), which is
considered to be one of the high-resolution phase-sensitive
techniques to investigate the superconducting order parameter
[8–11]. This technique has recently been applied to gain
insight on the properties of the FeBS [12,13]. However, in
contrast to the high-Tc cuprate superconductivity manifesting
a d-wave symmetry, phase sensitive experiments appear to
be difficult in FeBS since the s++ and s± pairings have the
same crystallographic symmetry; so far no experiment has
been decisive in discriminating between the two symmetries.
A complementary tool to gain information on the symmetry of
the order parameter is the current-phase relation (CPR) of the
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Josephson current. In fact, along with PCARS, the Josephson
effect has been used in the past as a probe of electronic
properties in superconductors, including the order parameter
symmetry (see, e.g., Refs. [14–17]).

In this paper we develop a quantum waveguide approach to
describe the Josephson effect in a multiband superconducting
junction. The model can be used for discriminating between
different symmetries of the order parameter (s++ and s±). The
presence of more than one band in the superconductor implies
that extra scattering channels are present at the interface, a
physical situation which is analogous to a quantum waveguide
theory problem [18,19] as recently suggested by PCARS
modeling of a normal-multiband superconductor junction [20].
We evaluate the Josephson current carried by Andreev bound
levels and demonstrate that several distinctive features of the s±
and s++ symmetries of the order parameter can be highlighted
in the current-phase relation. The results are particularly
relevant with respect to the fast progress in nanofabrication
techniques [21], which now allow us to explore the Josephson
effect in the mesoscopic junction regime, where supercurrent
flows through a small number of channels. In this kind of
nanometric junction the effect of a different symmetry, s± or
s++, should emerge, and the experimental results should be
easily compared with the basic theory of the Josephson effect
in these materials.

The paper is organized as follows. In Sec. II we present the
quantum waveguide model of a multiband superconductor cou-
pled to another identical multiband superconductor (symmet-
rical junction) and derive the spectral equation of the Andreev
bound states. In Sec. III we calculate the Josephson current
by using a field theory formalism in second quantization. In
Sec. IV we discuss the results for the current-phase relation and
the temperature dependence of the critical current. In Sec. V
we draw the conclusions. Details on the computation of the
scattering coefficients are reported in Appendix A. The theory
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FIG. 1. Quantum waveguide schematization of a two-band
Josephson junction. Each branch represents a superconducting band,
α or β, in the left (SL) or right (SR) electrode. The wave functions
of superconducting bands are given by �

SL,R

α,β (x). The node at x = 0
represents the interface between the left and right superconducting
banks.

of the magnetic field dependence of the critical current of a
Josephson junction is briefly recalled in Appendix B.

II. MODEL AND THEORY

We formulate a ballistic theory of the Josephson effect
describing multiband superconducting junctions. The theory
allows us to consider an arbitrary number of bands, which are
treated as network branches of an effective quantum waveguide
model. The proposed approach could be applied to the MgB2 as
well as the FeBS case. In order to develop the theory, hereafter
we refer to the specific case of FeBS, for which the s++ and
s± symmetries have been suggested. The Josephson effect in
FeBS has been already studied by using a number of different
methods [22–41]. However, most of these studies, except a
few cases [25–27], deal with the so-called hybrid Josephson
junction in which the junction is formed by a conventional
(s-wave) superconductor and the (s± or s++) FeBS. We focus
here on the case of an all-FeBS coplanar Josephson junction,
in which both the electrodes are FeBS materials (symmetric
junction), as occurs for instance in grain boundary junctions.
So far, several Josephson junctions using thin films have been
fabricated [21,42–50] on bicrystal substrates (for a review on
Fe-based Josephson junctions, see Ref. [51], and references
therein) and thus a theoretical effort along this direction is
needed.

Thus we consider a Josephson junction model in which
the electrodes are two-band FeBS. To this end the junction is
represented by a network of four one-dimensional branches
connected to a single node point x = 0 (see Fig. 1), x being
the coordinate along the propagation direction normal to the
interface. Each superconducting branch represents the ith band
on the left or the right side of the junction, while the band wave
function �i = θ (−x)�SL

i (x) + θ (x)�SR

i (x), in the clean limit,
obeys the equation[

Ĥj (x) �j (x)

�∗
j (x) −Ĥ ∗

j (x)

]
�j = E�j, (1)

where j ∈ {α,β} is the band index, while

�j (x) = �je
iϕj θ (−x) + �je

i(ϕj +ϕ)θ (x), (2)

[θ (x) = 0 for x � 0, θ (x) = 1 for x > 0] are the two co-
existing pair potentials. The operator Ĥj (x) represents the
single-particle Bogoliubov–de Gennes (BdG) Hamiltonian in

the two bands, which reads

Ĥj (x) = − �
2

2mj

∂2

∂x2
− EF . (3)

In writing Eq. (2) we are neglecting the proximity effect
and assuming that the inhomogeneous character of the gap
in the junction is captured by choosing �α = �β = 0 just
at the node (short junction). The two gap values �α , �β ,
with �α < �β , are assumed to be the same in the two
superconductive leads. The quantity ϕ is the gauge invariant
phase difference between the two superconductive regions;
ϕα and ϕβ are the internal pair potential phases. In the case
of s±-wave gap model, ϕβ − ϕα = π and the two gaps have
opposite sign, while in the standard two band model, with
same sign gaps, ϕβ − ϕα = 0. The quantities mj in Eq. (3)
are the effective masses of quasiparticles in the j th super-
conducting branch and are material-dependent quantities. We
also introduce a single-particle node potential U (x) which is
different from zero only for x = 0 and can be modeled as
the usual Blonder-Tinkham-Klapwijk [52] interface potential
U (x) = U0δ(x), even though this limiting assumption is not
required to develop the theory. The node potential U (x) allows
the modeling of a FeBS/insulator/FeBS or FeBS/normal-
metal/FeBS junction in which a normal scattering at the
interface reduces the transparency of the junction. The junction
barrier strength can be still characterized by introducing
a Blonder-Tinkham-Klapwijk dimensionless parameter Z =
mU0/(�2kF ) (m being the bare electron mass and k2

F =
2mEF /�

2) within the boundary conditions of the scattering
problem. The modified boundary conditions used here [see
Eqs. (8) and (9)] account for band-sensitive scattering effects
and have been already introduced in Ref. [20] to describe the
differential conductance of a normal-metal/FeBS junction; in
the following we discuss their generalization to the Josephson
junction case. The potentials U (x) and �j (x) are responsible
for the normal scattering and the scattering of electrons into
holes (Andreev scattering) at the interface, respectively. The
four wave functions, �

SL

j (x), �
SR

j (x) (j = α,β), one for each
branch in the two electrodes, can be written in terms of the
eigenstates of the local Hamiltonians as

�
SL

j (x) =
[
uL

j (x)

vL
j (x)

]

= aj

(
vj

uj e
−iϕj

)
eip

j

hx + bj

(
uj

vj e
−iϕj

)
e−ip

j
e x, (4)

for x < 0 or

�
SR

j (x) =
[
uR

j (x)

vR
j (x)

]

= cj

(
uj

vj e
−i(ϕj +ϕ)

)
eip

j
e x + dj

(
vj

uj e
−i(ϕj +ϕ)

)
e−ip

j

hx,

(5)

for x > 0. Here uα , vα and uβ , vβ are the Bogoliubov
coefficients for the first and second bands, respectively:

uj =
[

1

2

(
1 + i

�j

E

)]1/2

, vj =
[

1

2

(
1 − i

�j

E

)]1/2

(6)
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with �j = √
�j (T )2 − E2, j ∈ {α,β}, while T represents the

temperature of the thermal bath. The wave vectors of the two
bands,

p
j

e,h =
√

r2
j k2

F ± 2imj�j/�2,

are well approximated by the expressions

pα
e,h � rαkF

(
1 ± iχ

√
1 − E2/�α

2
)
,

(7)
p

β

e,h � rβkF

(
1 ± iχ

√
�β

2/�α
2 − E2/�α

2
)
,

which are valid under the assumption EF � �β , while the
different signs +,− refer to electronlike or holelike exci-
tations, respectively. The coefficient r2

j = mj/m represents
the effective mass of the j th band measured in units of
the bare electron mass m. In writing Eq. (7) we have
introduced the dimensionless factor χ = �α(T )/2EF or χ =
�α(T )/(kF vF �), which represents the ratio between the Fermi
wavelength k−1

F and the coherence length ξ (T ) ∼ �vF /�α(T ).
Its zero-temperature value, χ0, can be also defined as χ0 =
�α(0)/(2EF ). Since we are interested in localized subgap
states, in Eq. (7) we assume E < �α(0), ensuring that the wave
functions �

SL

j (x), �
SR

j (x) (j = α,β) decay exponentially for
|x| → ∞.

The quasiparticle wave functions obey the generalized
matching quantum waveguide conditions [20]

�SR

α (0) = sα�SL

α (0), �
SR

β (0) = sβ�SL

α (0),

�
SL

β (0) = s�SL

α (0), (8)

∂

∂x

[
sα

1

r2
α

�SR

α + sβ

1

r2
β

�
SR

β

]
x=0

− ∂

∂x

[
1

r2
α

�SL

α + s
1

r2
β

�
SL

β

]
x=0

= 2kF Z�SL

α (0). (9)

Equations (8) and (9) guarantee the conservation of the
charge current at the node x = 0 (quantum Kirchhoff’s law)

and generalize the waveguide boundary conditions given in
Ref. [20] to the Josephson junction case. The three parameters
sα,sβ,s characterize the interface and make the scattering pro-
cesses and the current flow band-sensitive. Indeed, the overlap
between the wave functions on different sides of the junction
may favor scattering events towards a specific band, α or β.
The existence of these “band coupling parameters” implies
that a discontinuity of the wave functions may occur at the
node (x = 0) when at least one of the coupling parameters
sα,sβ,s is different from 1. The meaning of this discontinuity
has been discussed in Ref. [20] in connection with the theory of
PCARS in multiband superconductors. The physical meaning
of the overlap parameters sα,sβ,s can be easily understood by
observing that setting, for instance, sα = 0 implies �SR

α (0) =
0. Thus the wave function �SR

α (x) presents a vanishing overlap
at the interface with the remaining branch wave functions. As
a consequence, in this case, the band α on the right side of the
junction is excluded from the transport. The latter point can be
further clarified by looking at the prefactor of the first term of
Eq. (9), namely sα(mα/m)−1, which governs the particle flow
through the α band on the right side of the junction. Lowering
sα has the same effect of increasing mα , causing a lowering
of the particle flux through the considered band. In the equal
coupling case (sα = sβ = s = 1) the partitioning of the current
among different network branches is entirely governed by the
bulk mass ratios rj and only weakly affected by the interface
scattering potential strength Z. Thus the parameters sα,sβ,s

can be properly interpreted as overlap or coupling factors
which define the fraction of current flowing through a specific
band.

Equations (8) and (9) provide a linear system of equations
for the eight unknown coefficients aj , bj , cj , dj (j ∈ {α,β})
appearing in the wave functions (see Appendix A). The bound
state spectrum can be determined by imposing the condition
that this homogeneous system of equations has a nontrivial
solution. Within the Andreev approximation, i.e., pα

e � pα
h �

rαkF and p
β
e � p

β

h � rβkF , this critical condition is written as

− s2
β(ε2 − γ 2)

[
1 − ε2 − 2s2

αε2 − s4
α(ε2 − 1) + 2s2

α cos ϕ
]

r2
α

+ s2(ε2 − 1)
[
2ss2

βε2 + (
s2 + s4

β

)
(ε2 − γ 2) − 2ss2

βγ 2 cos ϕ
]

r2
β

+ 2ssβ

√
ε2 − 1

√
ε2 − γ 2

(
s
[(

1 + s2
α

)
ε2 − eiδγ

] + s2
β

[(
1 + s2

α

)
ε2 − eiδs2

αγ
] − eiδ

(
ss2

α + s2
β

)
γ cos ϕ

)
rαrβ

+ 4s2
βZ2(ε2 − 1)(ε2 − γ 2) = 0, (10)

where δ = ϕβ − ϕα , γ = �β/�α , and ε = E/�α(T ). Choos-
ing δ = 0 or δ = π reflects the internal pairing symmetry
s++ or s±, respectively. Two sets of energy levels E+(ϕ)
and E−(ϕ) are found in solving Eq. (10), which correspond
to electronlike and holelike quasiparticles, respectively. One
finds that the Andreev bound states never appear beyond
�α . When sα = sβ = s = 1, in the two limits rα → ∞
or rβ → ∞ (exclusion of the α or β band respectively),
Eq. (10) provides the well known s-wave result E = EB =
�j

√
[cos2(ϕ/2) + Z2

j ]/(1 + Z2
j ), with Zj = rjZ [53], j being

α or β [see Fig. 2(c)].

In Fig. 2 we show Andreev bound states spectra computed
using Eq. (10). Once the mass ratios rj have been fixed,
different Josephson couplings can be obtained depending on
the kind of the order parameter symmetry and on the choice
of the overlap factors. To better explain this point, we present
different curves obtained by letting the parameter sα vary in
the range (1,0.3) in steps of −0.1, while sβ = s = 1. This
choice of the overlap factors corresponds to progressively
weakening the coupling of the band �SR

α from the remaining
bands. Panels (a) and (b) (rα = 1.8, rβ = 1) show a generalized
lowering of the levels toward the zero-energy state in the case
of s± symmetry [panel (a)], which is absent in the case of
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FIG. 2. (Color online) Bound states energy levels E+(ϕ) and
E−(ϕ) [normalized to �α(T )] calculated through Eq. (10). Panels
(a) and (c): s± symmetry. Panels (b) and (d): s++ symmetry. Z and
γ have been fixed to Z = 0.03 and γ = 3, the various curves are
obtained by letting parameter sα to vary in the range (0.3,1) in steps
of 0.1, while sβ = s = 1. Panels (a) and (b): rα = 1.8, rβ = 1. Panels
(c) and (d): rα = 1, rβ = 1.8; the darker curve (blue line in color
version) in panel (c) is the Andreev level of a conventional s-wave
junction with rjZ = 0.03.

s++ symmetry [panel (b)] and represents the main difference
between the two symmetries in this case. A further difference
is illustrated in panels (c) and (d) (rα = 1, rβ = 1.8). In the
case of s± symmetry [panel (c)] the energy levels undergo a
gradual concavity change as the parameter sα is decreased.
This concavity change is responsible for a π -shift in the
current-phase relation, which is not observed in the s++ case
[Fig. 2(d)]. Thus, as also observed elsewhere [25], a 0–π

transition may be a distinctive signature of the s± symmetry.
This point will be further explained in Sec. IV, where the
current-phase relations and the temperature dependence of the
maximum Josephson current will be presented.

III. JOSEPHSON CURRENT

The Josephson current flowing through the junction could
be directly computed from the Andreev bound states according
to the formula [54]

IJ (ϕ) ≈ −2e

�

dE+(ϕ)

dϕ
tanh

[
E+(ϕ)

2kBT

]
. (11)

Due to the special character of the bound state of a multiband
junction, in the following we will characterize the Josephson
current by using a field theory formalism in second quanti-
zation. We verified that the latter procedure provides results
consistent with those obtained using Eq. (11).

The Cooper-pair charge flow J̄ch through the junction
can be computed as a quantum-statistical average of the

current density operator according to the expression J̄ch =∑
j,σ 〈ψ̂†

jσ J̌j ψ̂jσ 〉, where J̌j = i�|e|
2mj

(
−→
∂ x − ←−

∂ x) represents
the first-quantization band operator [55]. The second quantized
fields ψ̂jσ (ψ̂†

jσ ) represent the annihilation (creation) operators
of a spin σ electron in the j th band and obey a fermionic
algebra. These fields provide an appropriate basis in the
absence of superconducting correlations. However, when the
superconductivity is established, ψ̂jσ are not eigenfields of
the problem and, for this reason, the Nambu representation
can be conveniently used: �(x) = ∑

j∈{α,β} |j 〉 ⊗ (ψ̂j↑,ψ̂
†
j↓)t .

The Nambu field �(x) is a nonlocal quantity describing
particle-hole excitations in different network branches and
can be expanded in eigenfields of the Hamiltonian problem
on the network. Limiting the expansion to the eigenfields
γ̂σ describing the low-energy (sub-gap) states with energy
±EB ∈ [−�α,�α], we get

�(x) ≈ γ̂↑e−iEB t/�ψB(x) + γ̂
†
↓eiEBt/�ψ̃B(x), (12)

where ψB(x) = θ (−x)ψ (L)
B (x) + θ (x)ψ (R)

B (x) is the wave
function of the electronlike bound state having energy eigen-
value EB > 0, while ψ̃B(x) = [

∑
j |j 〉〈j | ⊗ iσ̂yC]ψB(x) rep-

resents its time-reversed state associated with a holelike state
with energy −EB . The electronlike bound state is localized
at the interface and extends over all the waveguide branches.
Thus eigenstates of the local branch Hamiltonians can be used
to expand ψB(x), using the following decomposition:

ψ
(ν)
B (x) =

∑
j∈{α,β}

|j 〉 ⊗
[
uν

j (x)

vν
j (x)

]
, (13)

with ν ∈ [L,R] an index identifying the left (x < 0) or right
(x > 0) side of the junction. Once �(x) has been expanded in
eigenfields γ̂σ it is possible to recognize the fermionic fields
ψ̂j↑ in the expression

ψ̂j↑ ≈ γ̂↑e−iEB t/�uj (x) − γ̂
†
↓eiEBt/�vj (x)∗, (14)

with uj (x) = θ (−x)uL
j (x) + θ (x)uR

j (x) and analogously for
vj (x). Substituting Eq. (14) in the expression for J̄ch, in the
absence of spin-sensitive potentials [56], we obtain (x > 0)

J̄ch = −2|e|�
m

∑
j

r−2
j

{
Im

[
uR

j (x)∗∂xu
R
j (x)

]
f (EB)

+ Im
[
vR

j (x)∂xv
R
j (x)∗

]
[1 − f (EB)]

}
, (15)

where we explicitly used the thermal equilibrium averages
〈γ̂ †

σ γ̂σ 〉 = f (EB) and 〈γ̂σ γ̂ †
σ 〉 = 1 − f (EB). Due to current

conservation we have the freedom to evaluate the current in
x = 0+, and thus starting from Eq. (15) we get (e = −|e|) [57]

J̄ch = −2evF

∑
j

ujvj

rj

(|cj |2 − |dj |2) tanh

[
EB

2kBT

]
, (16)

where the coefficients cj (ϕ) and dj (ϕ) are calculated at the
energy EB = εB(ϕ)�α(T ), while εB(ϕ) is solution of Eq. (10).
It is worth mentioning here that the Fermi velocity in the ith
band is given by v

(i)
F = vF /ri , while the quantity vF = �kF /m

is just used as the velocity unit. Equation (16) is one of the
main results of this work and generalizes the expression found
in Ref. [58] to the multiband case.

224503-4



QUANTUM WAVEGUIDE THEORY OF THE JOSEPHSON . . . PHYSICAL REVIEW B 92, 224503 (2015)

Equation (16), complemented by the coefficients cj and
dj derived following the procedure sketched in Appendix A,
allows us to obtain the current-phase relation of the junction
at all temperatures. The Josephson current [Eq. (16)] is
parametrized by the barrier strength Z and the overlap
parameters sα,sβ,s. These parameters characterize the multi-
band superconductor junction and can be determined by
fitting the current phase relation as well as the temperature
dependence of the critical current of the junction. In de-
riving the scattering coefficients aj , bj , cj , dj (j ∈ {α,β}),
Eqs. (8) and (9) have to be complemented by the normaliza-
tion condition,

∫ ∞
−∞ dxψB (x)†ψB(x) = 1, of the bound state

wave function ψB(x):
∑

j=α,β

∫ 0
−∞ [|uL

j (x)|2 + |vL
j (x)|2]dx +∑

j=α,β

∫ +∞
0 [|uR

j (x)|2 + |vR
j (x)|2]dx = 1. The normalization

condition can be satisfied only by considering an imagi-
nary part in the expressions of the quasiparticle momenta
p

j
e and p

j

h. This accounts for the localized nature of the
bound state, whose wave function contains decaying expo-
nentials of the type ∼ exp [±χrαkF

√
1 − (EB/�α)2x] and

∼ exp [±χrβkF

√
γ 2 − (EB/�α)2x], the decay length being

comparable with the coherence length ξ (T ) ∼ �vF /�α(T ).
Due to the different decay lengths characterizing the bound
state wave function, |EB | cannot exceed �α . Indeed, assuming
EB > �α , the quantum state is no longer localized and
its wave function ψB(x) is not normalizable. The above
arguments explains why the bound state energy EB can-
not exceed the minimum value among the superconducting
gaps describing the multiband junction. This latter aspect
suggests that the performances of a multiband Josephson
junction can be strongly affected by disorder effects and
inhomogeneities.

IV. NUMERICAL RESULTS

In this section we provide specific examples of the current-
phase relation derived through Eq. (16). We assume that
the temperature dependence of both gaps �j (j = α,β) is
given by �j (T ) = �j (0) tanh (1.74

√
Tc/T − 1), where Tc is

the critical temperature of the superconducting transition. We
also assume the validity of the BCS ratio �α(0)/kBTc = 1.76
between the critical temperature and the zero-temperature
pair potential. Under these assumptions, the parameter γ =
�β/�α does not depend on the temperature. Note that the
quantity χ0 has been assigned the value 0.01 in the calculations
but that the results do not depend on the specific value of χ0,
provided that χ0 � 1.

In Fig. 3 we present the current-phase relation of two
junction configurations whose bound states energy has been
shown in Fig. 2. In particular, in panels (a) and (b), we
report the current-phase relations computed for the s± and
the s++ symmetry, respectively, setting the model parameters
as follows: Z = 0.03, γ = 3, r1 = 1.8, r2 = 1. The different
curves are obtained by letting the parameter sα vary in the
range (0.3,1) in steps of 0.1, while sβ = s = 1. One notices,
besides the weak dependence of the various curves on sα

in both panels (a) and (b) of Fig. 3, a suppression of the
Josephson current by a factor 3 ∼ γ in the s± symmetry
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FIG. 3. (Color online) Current-phase relations at T = 0.001Tc.
Panels (a) and (c): s± symmetry. Panels (b) and (d): s++ symmetry.
Parameters are the same as those of the corresponding panels in Fig. 2;
(a) and (b): Z = 0.03, γ = 3, r1 = 1.8, r2 = 1; (c) and (d): Z = 0.03,
γ = 3, r1 = 1, r2 = 1.8. The value of χ0 has been set to χ0 = 0.01.
The various curves are obtained by letting parameter sα vary in the
range (0.3,1) in steps of 0.1, while sβ = s = 1.

[panel (a)] compared to the s++ case [panel (b)]. The
latter phenomenon originates from the destructive interference
effects of quasiparticles experiencing two opposite gap signs.
The destructive interference lowers the Andreev reflection
probability such that, in perfectly symmetric junctions (i.e.,
rα = rβ , sα = sβ = s = 1), the current would exactly vanish.
Thus s++ Josephson junctions exhibit greater critical current
values [Ic(T → 0) ∼ e�β/�] compared to those expected for
the s± case [Ic(T → 0) ∼ e�α/�]. On the other hand, the
peculiar functional form of the current-phase relations of
the s++ symmetry [panel (b)] indicates a certain fragility
of this junction against bias current fluctuations. Indeed, a
small bias fluctuation (less than few percent of the critical
current) can cause, at low bias, a relevant phase fluctuation.
This stochastic phase jump may represent a relevant source of
voltage fluctuation across the junction which can also drive the
system towards an Ohmic regime.

Figures 3(c) and 3(d) are obtained by setting rα = 1.8
and rβ = 1, while maintaining the remaining parameters
at the same values fixed in the upper panels of Fig. 3.
Again, a suppression of the current amplitude by a factor
3 between the s± symmetry and s++ symmetry appears
[compare the curves corresponding to sα = 1 in panels (c)
and (d) respectively]. Moreover, the sign change of the pair
potential in the s± symmetry is made evident by lowering
sα (sα = 1,0.9, . . . ,0.3); this lowering determines the gradual
phase shift and the formation of a π state in the curves
of panel (c), while curves in panel (d) do not present this
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phenomenology. A π -state Josephson junction (π junction)
exhibits negative critical current and a minimum of the free
energy F (ϕ) = �0/2π

∫ ϕ

0 dθ I (θ ) located at ϕ = π rather
than ϕ = 0. The existence of π -shifted junctions can be
experimentally proved employing superconducting quantum
interference device (SQUID) measurements [15,59–61].

The study of the CPR may provide important information
about a Josephson junction’s parameters [62]. The deter-
mination of the parameters Z,sα,sβ,s, i.e., the Josephson
spectroscopy of the multiband superconductor, can be achieved
through a current-phase relation measurement and a direct
comparison with Eq. (16). Most of the methods employed for
the experimental investigation of the current-phase relation
are re-elaborations of the rf technique proposed in 1967
by Silver and Zimmerman [63]. An important point is that
the CPR can be extracted from experimental data without
any fitting parameters [64]. The method has been refined
in the years by many researchers, in particular Il’ichev
and coworkers, who measured the CPR of YBCO junctions
[14,65,66] and also demonstrated that current-phase relation
measurements are much less sensitive to thermal fluctuations
than other junctions’ properties measurements [67]. The CPR
measurement technique has been recently [68] applied in
topological insulator-superconductor systems where it may
potentially reveal the surface ballistic nature of an induced
superconducting state or even the presence of Majorana
fermions. In the case of iron-pnictides the present theory
predicts strongly characterized behaviors of the CPRs such
that this type of measurement may be pivotal in helping
to discriminate between s± and s++ symmetries or also in
determining the degree of coupling between various bands.
In iron based superconductors the superconducting order
parameters �α,�β coexist with a magnetic order parameter
(spin density wave) [26,69], so that experiments should be
performed in a regime where the effects of a spin density wave
order can be neglected.

Besides the CPR experiments, the measurement of the
temperature dependence of the junction critical current Ic(T )
represents an important independent tool useful for identifying
the nature of the superconducting pairing [70–72]. Thus, in
order to compare our results with the experimental findings,
we have derived the temperature dependence of the maximum
Josephson current (critical current). Figure 4 shows the
temperature dependence of the critical current calculated for
the s± [(a) and (c)] and s++ symmetries [(b) and (d)] by setting
the model parameters as in Figs. 2 and 3. Negative critical
current values, like those presented in panel (c), indicate
a π -shifted Josephson junction. A common feature of all
the panels in Fig. 4 is the violation of the Ambegaokar-
Baratoff relation, which is usually reported in multiband S/I/S
Josephson junctions [73]. The extent of such a violation
depends on the junction parameters and is more pronounced
for the s± symmetry [see panels (a) and (c)], where the critical
current vs temperature curves develop a peculiar positive
curvature. Panels (b) and (d) are described by a deformed
Ambegaokar-Baratoff relation and suggest that a π junction
cannot be observed for the s++ symmetry. In this respect we
observe that the 0–π transition reported in the present work
[see Figs. 3(c) and 4(c)] is the result of a different mechanism
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FIG. 4. (Color online) Josephson critical current as a function of
the reduced temperature T/Tc. Panels (a) and (c): s± symmetry. Panels
(b) and (d): s++ symmetry. Parameters are the same as those of the
corresponding panels in Fig. 2: Z = 0.01, γ = 3. The value of χ0

has been set to χ0 = 0.01. (a) and (b): r1 = 1.8, r2 = 1. (c) and (d):
r1 = 1, r2 = 1.8. The critical current is in units of e�α(0)/�. The
various curves are obtained by letting parameter sα vary in the range
(0.3,1) in steps of 0.1, while sβ = s = 1.

compared to the one described in Ref. [25]. There the transition
originates from the competition of two Andreev bound states
carrying opposite current. As the temperature is lowered, the
state with higher energy eigenvalue is progressively excluded
from the transport and a sign reversal of the critical current is
observed. Here we predict the presence of a single electronlike
bound state and thus a temperature activated 0–π transition
cannot be observed as an intrinsic effect. However, direct
tunneling (α → α or β → β) and crossed tunneling (α → β

or β → α) effects provide a supercurrent contribution with
opposite sign and thus, depending on the relative strength
of these contributions, a π junction can be formed only
by assuming the s± symmetry. The relative strength of the
direct and crossed tunneling contributions is controlled in
the model by the overlap parameters sα , sβ , and s which are
characteristic of the interface. According to these arguments,
a 0–π transition can occur by varying at least one overlap
parameter. This can be done in different ways: (i) changing the
temperature can induce a lattice deformation at the interface
which is relevant in determining the overlap parameters;
(ii) experiments performed under controllable pressure or
strain allow one to control lattice distortion and thus the overlap
parameters. Both methods (i) and (ii) can be used to induce
the 0–π transition in multiband Josephson junctions. The
mechanism of formation of a π junction described above can
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FIG. 5. (Color online) Normalized critical current Ic(�)/Ic(0) as
a function of the applied magnetic flux �/�0 computed for the s±
[panel (a)] and s++ symmetries [panel (b)]. Parameters are the same
as those of the corresponding panels in Fig. 3: Z = 0.03, γ = 3,
r1 = 1.8, r2 = 1, sα = sβ = s = 1, χ0 = 0.01, and T = 0.001Tc. The
dashed curve in each panel represents the Fraunhofer pattern for
comparison.

be also recovered in the framework of a semiclassical theory
of the s±/I/s± Josephson junction as developed in Ref. [74],
or within the framework of the tunneling Hamiltonian method
as reported in Ref. [26] [see Eq. (5)].

However, as clearly evidenced in Figs. 3(a) and 3(b), the
0–π transition is strongly affected by the band’s effective
mass and can remain unobserved also for an s± junction.
Under this condition, the magnetic response of the system
(see Appendix B for details) provides an indirect probe of
the harmonic content of the current-phase relation and can
help in discriminating the pairing symmetry of the junction.
In particular, the zero-field critical current Ic(0) of the s++
case [see Fig. 3(b)] is greater than the corresponding value
obtained for the s± case [see Fig. 3(a)]. As a consequence,
one expects that the harmonic content of the current-phase
relation of the s++ case strongly affects the low-field magnetic
diffraction pattern of the junction. On the other hand, for the
s± case, the high harmonic contribution is expected to be
less important due to the lower value of zero-field critical
current. The above arguments are confirmed by Fig. 5 where
the normalized critical current Ic(�)/Ic(0) is studied as a
function of the applied magnetic flux �/�0 (normalized to
the flux quantum �0) for the s± [panel (a)] and s++ [panel
(b)] symmetries, while the model parameters are fixed as done
for the corresponding panels in Fig. 3. Interestingly, the s++
Josephson junction evidences a critical current halving already
for flux values of ∼0.4�0, while the critical current of the s±
case is less sensitive to magnetic field effects.

V. CONCLUSIONS

We have formulated a minimal model of the dc Josephson
effect for multiband superconductors based on the quantum
waveguide approach. The method is based on the analogy be-
tween multiband superconductors and multibranch networks
recently suggested in Ref. [18]. Accordingly, the subgap bound

states wave functions (electron- and holelike), relevant in
describing the quantum transport within the short junction
limit, are decomposed using the eigenstates of local branch
Hamiltonians, and the coefficients of such a decomposition
are found by imposing generalized boundary conditions on
the wave functions. The boundary conditions are a direct
generalization of those used in Ref. [20] and incorporate a
local scattering potential at the interface (Z parameter) and
band overlap factors sα , sβ , and s which define the weight
of each band in the quasiparticles transport. This provides
an effective parametrization of the interface effects, allowing
us to describe Josephson junctions ranging from the metallic
(Z � 1) to the tunnel limit (Z � 1). The bulk properties
of the superconducting bands are introduced using different
effective masses (rj parameters) which can be determined by
complementary experiments. We have solved the scattering
problem and we have determined the Andreev bound states
spectrum and the normalized eigenfunctions. The Josephson
current flowing through the junction has been computed using
a second quantization approach which correctly reproduces
results obtained using the phase derivative of the Andreev
bound states spectrum formula. The second quantization
method used in the derivation of the Josephson current
generalizes the result presented in Ref. [58] for a single-band
superconductor to the multiband case and represents one of the
main results of this work. To provide a specific and relevant
application of the theory, we have focused our treatment on
FeBS-FeBS tunnel junctions. In particular, we have derived the
current-phase relations and the critical currents of symmetric
FeBS junctions modeled as superconducting systems with two
relevant bands. We have analyzed s++ and s± symmetries
of the FeBS and we have shown that a π junction can be
observed only for s± symmetry and under appropriate interface
conditions, which are carefully discussed in the text. Further
peculiar aspects of FeBS-FeBS tunnel junctions are also
discussed. The above findings are relevant for the Josephson
effect theory in multiband systems and can contribute to
the current debate about the order parameter symmetry of
iron-based materials.
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APPENDIX A: DETERMINATION OF THE SCATTERING
COEFFICIENTS

The matching conditions Eqs. (8) and (9) pro-
vide the linear homogeneous system M · X = 0, where
X = (aα, . . . ,dα,aβ, . . . ,dβ)t and M is the following
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matrix: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sαvα sαuα −uα −vα 0 0 0 0

sαuα sαvα −e−iϕvα −e−iϕuα 0 0 0 0

0 0 0 0 sβvβ sβuβ −uβ −vβ

0 0 0 0 e−iδsβuβ e−iδsβvβ −e−i(δ+ϕ)vβ −e−i(δ+ϕ)uβ

svα suα 0 0 0 0 −uβ −vβ

suα svα 0 0 0 0 −e−i(δ+ϕ)vβ −e−i(δ+ϕ)uβ

− vα (i+2rαZ)
rα

uα(i−2rαZ)
rα

isαuα

rα
− isαvα

rα
− isvβ

rβ

isuβ

rβ

isβuβ

rβ
− isβvβ

rβ

− uα(i+2rαZ)
rα

vα (i−2rαZ)
rα

ie−iϕ sαvα

rα
− ie−iϕ sαuα

rα
− ie−iδ suβ

rβ

ie−iδ svβ

rβ

ie−i(δ+ϕ)sβvβ

rβ
− ie−i(δ+ϕ)sβuβ

rβ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The homogeneous system admits a nontrivial solution pro-
vided that the condition det(M) = 0 [Eq. (10) of the main
text] is fulfilled. Since M is not a maximal rank matrix, the
normalization condition of the bound state wave function
provides a further condition to determine the coefficients
vector X.

APPENDIX B: MAGNETIC FIELD DEPENDENCE
OF THE CRITICAL CURRENT

We describe the response of a Josephson junction under
the application of a sufficiently weak external magnetic field
�H = Hẑ parallel to the z axis. We explicitly assume the

small junction limit in which the transverse dimension L

of the junction (parallel to the y axis) is comparable to or
smaller than the Josephson penetration length λj (L � λj )
[75]. The junction region, located at x = 0, presents a reduced
pairing potential and thus experiences the maximum magnetic
field value, while inside the electrodes the polarizing effect
of the field is effectively screened by supercurrents. Due to
this, the spatial dependence of the magnetic field is given
by �H = Hẑ exp(−|x|/λ). Since we are interested in the bulk
effect of �H , observing that

∫ ∞
−∞ �H · ẑ dx = 2λH , we can

approximate the spatial dependence of the field according
to the expression �H = ẑ �

L
δ(x), where we introduced the

magnetic flux � = 2λLH induced by the external field
and the Dirac delta function δ(x). The magnetic field �H =
�∇ × �A can be expressed in terms of the vector potential
�A = (−�y

L
δ(x),0,0) which is not affected by self-fields in

the considered limit. Assuming that the Zeeman term is
effectively screened in the bulk of the electrodes, the presence
of �H affects the BdG branch Hamiltonian H

(j )
BdG [Eq. (1)]

only through the substitution p̂x → p̂x − eAx . The vector
potential Ax can be gauged away by means of the unitary
transformation

U = exp

(
iπ

�

�0

y

L
θ (x)σ̂z

)
, (B1)

with σ̂z a Pauli matrix acting on the particle-hole space
and �0 = h/(2|e|) the elementary flux quantum. The
transformed branch Hamiltonian H̃

(j )
BdG = U †H (j )

BdGU un-
der the action of U can be obtained with the following

substitutions:

U ∗
11Ĥj (x; Ax)U11 → −�

2∂2
x

2mj

,

−U ∗
22Ĥ

∗
j (x; Ax)U22 → �

2∂2
x

2mj

, (B2)

�j (x)U ∗
11U22 → �̃j (x),

while the BdG state associated with H̃
(j )
BdG is given by �̃j =

U †�j . The pair potential �̃j (x) takes the same mathematical
structure as the one presented in Eq. (2), the only action
of the unitary transformation being the substitution of the
phase difference ϕ with ϕ̃ = ϕ − 2π �

�0

y

L
. As a consequence

the phase difference between the two sides of the junction is
modulated along the junction, and this modulation is the source
of the magnetic diffraction pattern affecting the critical current
of the junction. Under our assumptions, the y dependence of
the pair potential is adiabatic compared to the microscopic
scale of the problem. This statement can be rigorously proved
using the two-scale perturbation theory [76]. In particular
the wave vector, q = 2π

L
�
�0

, modulating the superconducting
phase is much smaller than the Fermi wave vectors rj kF , and
thus the phase modulation along the y direction enters only
parametrically in the one-dimensional problem described in
the main text. The validity of these arguments also requires that
the Cooper pairs tunneling with normal incidence represent the
dominant microscopic process and thus the energy associated
with transverse modes is negligible compared to the Fermi
energy. When the energy of the transverse modes becomes
relevant (e.g., for very short junctions with L � λ) on the
Fermi energy scale, a full treatment of the transverse degrees
of freedom is required. Hereafter, we focus our attention on
the case of adiabatic phase variation of ϕ̃ along the transverse
dimension of the junction. Under this assumption, once the
current-phase relation IJ (ϕ) has been obtained according to
the procedure given in the main text, the magnetic field
dependence of the critical current of the junction is obtained
according to the formula

Ic(�) = max
ϕ∈[0,2π]

∫ L/2

−L/2

dy

L
IJ

(
ϕ − 2π

�

�0

y

L

)
, (B3)

where the current-phase relation presents a parametric de-
pendence on y. A further progress can be done observing
that the current-phase relation is an odd function of the
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phase difference, and thus it can be written as IJ (ϕ) =∑∞
n=0 an sin(nϕ). As a consequence, Eq. (B3) takes the form

Ic(�) = max
ϕ∈[0,2π]

∞∑
n=0

an sin(nϕ)
sin

(
nπ�

�0

)
nπ�

�0

, (B4)

where the coefficients an can be directly extracted by IJ (ϕ)
using the relation

an = 1

π

∫ 2π

0
IJ (ϕ) sin(nϕ)dϕ, (B5)

where we explicitly used the orthogonality condition∫ 2π

0 sin(nϕ) sin(mϕ)dϕ = πδn,m. Equation (B4) provides the

Fraunhofer diffraction pattern,

Ic(�)/Ic(0) =
∣∣∣∣∣ sin

(
π�
�0

)
π�
�0

∣∣∣∣∣,
when a single-harmonic current-phase dependence IJ (ϕ) =
a1 sin(ϕ) is considered, while deviations are expected if the
high-harmonic contribution is not negligible. For the above
reasons, the magnetic diffraction pattern Ic(�) is an indirect
probe of the harmonic content of the current-phase relation
of the junction. Our treatment of the magnetic field effects on
the junction justifies the validity of the approach proposed in
Refs. [77,78] and the classical argument given in Ref. [75].
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