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We demonstrate that the current-voltage (I -V ) characteristics of resistively and capacitively shunted Josephson
junctions (RCSJs) hosting localized subgap Majorana states provide a phase-sensitive method for their detection.
The I -V characteristics of such RCSJs, in contrast to their resistively shunted counterparts, exhibit subharmonic
odd Shapiro steps. These steps, owing to their subharmonic nature, exhibit qualitatively different properties
compared to harmonic odd steps of conventional junctions. In addition, the RCSJs hosting Majorana bound
states also display an additional sequence of steps in the devil’s staircase structure seen in their I -V
characteristics; such a sequence of steps makes their I -V characteristics qualitatively distinct from that of their
conventional counterparts. A similar study for RCSJs with graphene superconducting junctions hosting Dirac-like
quasiparticles reveals that the Shapiro step width in their I -V curves bears a signature of the transmission
resonance phenomenon of their underlying Dirac quasiparticles; consequently, these step widths exhibit a π

periodic oscillatory behavior with variation of the junction barrier potential. We discuss experiments which can
test our theory.
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I. INTRODUCTION

The possibility of realization of Majorana zero modes,
particles with anyonic statistics described by real wave
functions, has attracted tremendous interest in recent years
[1]. Several suggestions regarding condensed-matter systems
which can host such fermions have recently been put forth
[2–9]. Out of these, the most promising ones for experimental
realization turn out to be those which host Majorana modes
as localized subgap states in their superconducting ground
state [5–9]. Typically, the occurrence of such states requires
unconventional superconducting pairing symmetry such as p-
or d-wave pairing [10,11]. However, recent proposals have
circumvented this requirement; it was shown that such bound
states can occur either at the end of a one-dimensional (1D)
wire in a magnetic field with spin-orbit coupling and in the
presence of a proximate s-wave superconductor [6,7] or in
superconducting junctions atop a topological insulator surface
hosting Dirac fermions on the surface of a topological insulator
[8]. Such Majorana fermions leave their signature as a midgap
peak in tunneling conductance measurement [12] as well
through the fractional Josephson effect [13].

Another interesting phenomenon in recent years has been
the discovery of materials whose low-energy quasiparticles
obey Dirac-like equations. These materials are commonly
dubbed Dirac materials; graphene and topological insulators
are common examples of such materials [14,15]. These
materials can exhibit superconductivity via the proximity
effect with Cooper pairing occurring between Dirac electrons
with opposite momentum [16,17]; it is well known that
transport properties of such superconductors differ from their
conventional counterparts and can serve as experimental
signatures of the Dirac nature of their constituent quasiparticles
[16,17].

The experimental detection of Majorana modes has mainly
relied on either measurement of a midgap peak [18] or
detection of even Shapiro steps in a Josephson junction
of superconductors hosting Majorana modes [19]. The

effectiveness of the former set of experiments in the detection
of Majorana modes has been questioned since the midgap
peak did not lead to the expected 2e2/h value of the tunneling
conductance and could have also occurred because of several
other effects such as the presence of magnetic impurities
leading to the Kondo effect [20] and impurity-induced subgap
states [21]. In this sense, the presence of even Shapiro steps at
V = n�ωJ /e [and the absence of odd ones at (2n + 1)�ωJ /2e]
in Josephson current measurement, where ωJ is the Josephson
frequency, n is an integer, and V is the applied external voltage,
provides a more definite detection of such fermions since they
constitute a phase-sensitive signature which is free of effects
of disorder [13]. Consequently, theoretical studies of the ac
Josephson effect for unconventional superconductors which
hosts Majorana modes has received a lot of attention lately
[22,23]. Theoretical studies of the Josephson effect in graphene
Josephson junctions has also been carried out [24,25]; it was
shown that the critical current of such junctions shows a novel
oscillatory dependence on the barrier potential of the junctions.
However, the features of ac Josephson effects in either of these
systems for a resistively and capacitively shunted Josephson
junction (RCSJ) in the presence of external radiation has not
been studied previously. In this context, we mention that the
analysis presented in this paper for junctions hosting Majorana
subgap states is somewhat idealized in the sense that it does not
provide a full treatment of Landau-Zener tunneling and other
related quantum effects; however, we do provide a qualitative
discussion and identify a regime of junction parameters where
our analysis is expected to hold qualitatively.

In this work, we study the Josephson junction described by
a RCSJ model where the superconductors forming the junction
either host Majorana modes at the interface or constitute
Dirac-like quasiparticles. In the former case, we show that in
contrast to their counterpart in conventional junctions, the I -V
characteristics display subharmonic odd Shapiro steps whose
width vanishes for resistive junctions (in the limit where the
junction capacitance approaches zero) [22,23]. We provide an
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analytical formula for the step width of both even and odd
steps for such junctions, show that the analytic result matches
exact numerics closely, and demonstrate, on the basis of this
analytical result, that the behavior of this ratio is qualitatively
different for Josephson junctions with and without Majorana
bound states. In particular we demonstrate that the ratio of
the odd and even step widths decreases exponentially with the
junction capacitance for junctions with Majorana modes; in
contrast, this ratio does not vary appreciably for conventional
s-wave junctions. Thus it serves as a robust indicator for bound
Majorana states in a Josephson junction. Our analytical results,
supported by numerical analysis, reproduces the phenomenon
of the absence of odd Shapiro steps in Josephson junctions
with Majorana bound states as a special limiting property
of resistive Josephson junctions; thus our work indicates
that the absence of odd Shapiro steps, while sufficient, is
not a necessary characteristic of Majorana bound states in
a Josephson junction. We also find that the I -V characteristics
of junctions with Majorana bound states show a qualitatively
different devil’s staircase structure which is distinct from their
s-wave counterparts. In particular, they display an additional
sequence of steps which follows Farey’s sum rule [26]; such
sequences are absent in I -V characteristics of conventional
s-wave junctions. In the latter case, for junctions of supercon-
ductors hosting Dirac quasiparticles, we show that the width of
the Shapiro steps displays π -periodic oscillatory dependence
on the barrier potential of the junction. Such a behavior is a
direct consequence of the transmission resonance phenomenon
of the Dirac-like quasiparticles of the superconductors forming
the junctions and is qualitatively distinct from conventional
junctions hosting quasiparticles which obey Schrodinger’s
equation. We note that our work shows that a RCSJ can
act as phase-sensitive detection device for both Majorana
bound states in topological superconductors and Dirac-like
quasiparticles in a superconductor; it is therefore expected to
be of interest to theorists and experimentalists working on both
Majorana modes and Dirac materials.

The plan of the rest of this work is as follows. In
Sec. II, we provide our analytical and numerical results
for junctions which host subgap Majorana bound states. In
Sec. III, we present our results on junctions which host
Dirac-like quasiparticles. Finally, we summarize our main
results, provide a discussion of experiments that can test our
theory, and conclude in Sec. IV.

II. JUNCTIONS WITH MAJORANA MODES

The basic design of the circuit which we propose to serve
as the detector is shown in Fig. 1. To analyze the property
of this circuit, we first consider the Josephson junction.
In our proposal, this comprises two superconductors with
order parameters �R (for x > d/2) and �L (for x < −d/2)
separated by a barrier region of width d (−d/2 � x � d/2)
characterized by a barrier potential V0, as shown in Fig 1. The
superconductors can be either topological superconductors
with (effective) p-wave pairing [6,7] or superconductors with
Dirac-like quasiparticles which have s-wave pair potential
[16,17,24,25]. In this section, we analyze the former case in
detail. We note at the outset that the present analysis will hold
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FIG. 1. (Color online) Schematic representation of the Josephson
junction in the RCSJ circuit (see inset). The junction has width L in
the transverse direction, and the barrier region separating the two
superconductors has a thickness d and is modeled by a potential V0.
IJ , IC , and IR are the Josephson current, displacement current, and
quasiparticle currents, respectively.

for topological superconductors in 1D wire geometry [6,7]
provided that the transverse dimension L is set to zero.

Josephson junctions, shown in Fig. 1, are known to support
localized subgap Andreev bound states, which can be obtained
as the solution of the Bogoliubov–de Gennes (BdG) equation.
For topological superconductors which support p-wave pair-
ing, the BdG equation reads

{[Hβ + V (x)]τz + [�β(x)τ+ + H.c.]} ψβ = Eψβ, (1)

where β = R,L for the right and the left superconductors,
ψβ = [ψβ↑(x,k‖),ψ†

β↓(x,k‖)] is the two-component BdG wave
function, V (x) = V0δ(x) is the barrier potential (we take
the limit of a thin barrier for which d → 0), and Hβ =
�

2k2/(2m) − μ denotes the dispersion of the left and right
superconductors, with μ being the chemical potential, m being
the electron mass, and k2 = −∂2

x + k2
‖ . In what follows, we

are going to assume px-wave pairing and write �L(x) =
�0kxF /kF and �R = �0kxF /kF exp(iφ), where kF are the
Fermi momenta of the two superconductors, φ is the phase
difference across the junction, �0 is the amplitude of the super-
conducting gap, and kxF is the x component of the Fermi mo-
mentum. The wave functions ψβ satisfy the boundary condi-
tion ψL(x = 0) = ψR(x = 0) and ∂xψL(x = 0) − ∂xψR(x =
0) = kF χ1(k‖)ψL(x = 0), where χ1(k‖) ≡ χ1 = 2U0/�vF (k‖)
is the dimensionless barrier potential for a given transverse
momentum of the quasiparticles. The localized subgap solu-
tions of Eq. (1) are given by [13,27]

E1 = −�0 cos(φ/2)/
√

1 + χ2
1 /4. (2)

Note that for φ = π , E = 0, and it has been shown that
this state constitutes a realization of Majorana modes [8].
Since these subgap states are the only ones with φ-dependent
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dispersion, one find the zero-temperature Josephson current as

I1(φ) = 2e

�
∂E1/∂φ =

∫ kF

−kF

dky

2π

e�0 sin(φ/2)

2�

√
1 + χ2

1 /4
. (3)

As noted in Ref. [13], the current is 4π periodic, and a
substitution φ → 2eV t/� in the presence of a bias voltage
V leads to the fractional ac Josephson effect [13,27].

We now use Eqs. (3) to obtain the response of an RCSJ
circuit constructed out of the superconducting junctions
discussed above. The RCSJ model, shown in the inset of
Fig. 1, includes a resistive component to take into account
the dissipative process, which may occur, for example, due to
quasiparticle tunneling, and a shunting capacitance C, which
takes into account the displacement currents due to possible
charge accumulation in the leads [28]. The current phase
relationship for this model, in the presence of an external
radiation, is given by [28,29]

φ̈ + βφ̇ + IJ (φ)/Ic = I/Ic + A sin(ωt)/Ic, (4)

where Ic is the critical current of the junction, A and ω are the
amplitude and frequency of the external radiation, IJ (φ) =
I1 for superconducting junctions with Majorana fermions,
β =

√
�/(2eIcR2C0), R and C0 denote the resistance and

capacitance of the junction, and we have scaled t → t/τ ,
where τ = √

�C0/(2eIc).
Before proceeding further, we note that Eq. (2) holds in

the ideal limit where the two subgap Majorana modes at
the two ends of each wire do not interact [23]. Such an
interaction leads to hybridization of amplitude δ between
the two Majorana branches: E1hyb = ±

√
δ2 + E2

1 [23]. The
hybridization amplitude δ arising from such interaction is
exponentially suppressed for long wires δ ∼ exp[−L/(2ξ )],
where the coherence length ξ , for 1D nanowires, depends on
the spin-orbit-coupling strength of the wire. In the presence
of an external voltage, this leads to a Landau-Zener tunneling
probability Pt = exp[−2πδ2/(EJ �φ̇)], where EJ ∼ �0 is the
maximal Josephson energy. The manifestation of 4π periodic-
ity is evident when Pt 	 1. This occurs when δ2/(EJ �φ̇) 
 1;
a complete determination of the frequency and voltage range
where Pt 	 1 requires the self-consistent solution of Eq. (4)
and IJ = ∂E1hyb/∂φ. We have not attempted that in this work;
however, we note that such a regime can always be obtained
for long enough wire since δ is exponentially suppressed in
this regime, leading to Pt 	 1. An analysis of these conditions
for resistive junctions can be found in Ref. [23]; in the rest of
this work, we shall assume Pt 	 1 and work with Eq. (2).

In what follows, we first obtain an approximate analytical
solution of Eq. (4) in Sec. II A, which demonstrates the
existence of subharmonic odd Shapiro steps for junctions
hosting Majorana bound states. Then in Sec. II B we carry
out a detailed numerical study of Eq. (4) where the analytical
results are verified and the devil’s staircase structure of the
Shapiro steps is studied.

A. Perturbative analytical solution

In this section we consider perturbative analysis of
Eq. (4) for an unconventional Josephson junction composed
of superconductors hosting subgap Majorana states with

E = EJ cos(φ/2). We begin from the equation of such a
junction given by Eq. (4) and analyze this equation for
ω,βω,A � 1. The key point regarding this analysis is the
observation in the regime mentioned above that it is possible
to expand φ as [30]

φ =
∑

n

εnφn, I =
∞∑

n=0

εnIn, (5)

where I0 is the applied current and In, ε 
 1, and In for
n > 0 are determined self-consistently from the condition of
the absence of additional dc voltage: limT →∞

∫ T

0 φ̇n = 0 [28].
The equations for φn can be obtained by equating terms in

the same order of ε. The procedure is standard and yields

φ̈n + βφ̇n = fn(t) + In, f0 = A sin(ωt),

f1 = − sin[φ0/2], f2 = φ1 cos[φ0/2]/2. (6)

Note that the n = 0 equation represents the autonomous I -V
curve of the junction and is independent of the nonlinear
sinusoidal term.

To solve these equations, we note that this represents a
linear first-order differential equation in φ̇n; consequently, we
define yn = φ̇n and write

ẏn + βyn = In + fn(t). (7)

These equations admit the solution

yn(t) = β−1In + e−βt

∫ t

0
eβt ′fn(t ′)dt ′

φn(t) =
∫ t

0
yn(t ′)dt ′ + φn(0). (8)

For n = 0, this yields

φ0(t) = φ′ + I0t/β + A

ωγ
sin(ωt + α0), (9)

where α0 = arccos(ω/γ ), γ =
√

β2 + ω2, and φ′ is the dc
phase of the junction. The supercurrent at this order is given
by

I (0)
s ∼ sin[φ0(t)/2] = Im(eiφ0(t)/2) (10)

= Im
∞∑

n=−∞
Jn(x)ei([I0/(2β)+nω]t+nα0+φ′/2) (11)

where x = A/(2γω). Thus the Shapiro steps occur when the
ac component of the supercurrent vanishes: I0 = 2|n|ω (even
steps). The width of the nth even step can be read off from
Eq. (11): Weven = �I even

s = 2Jn(x). Thus Eqs. (10) and (11)
lead to expression for width of harmonic steps. Note that in
contrast to the conventional junctions where Is ∼ sin[φ0], only
even harmonic steps occur for junctions which host subgap
Majorana steps.

Next, we obtain the solution for φ1. Substituting Eq. (11)
in Eq. (7), we find, after some straightforward algebra,

φ1 =
∞∑

n=−∞
Jn(x)(γnωn)−1 cos(ωnt + nα0 + δ0 + nφ′/2),

(12)
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where ωn = I0/2β + nω, δn = arccos(ωn/γn), and γn =√
ω2

n + β2. At this order, the supercurrent is given by

I (1)
s ∼ 1

2
φ1(t) cos[φ0(t)/2]

=
∞∑

n1,n2=−∞
Jn1 (x)Jn2 (x)(2γn1ωn1 )−1

× sin[ωn1 t + n1(α0 + φ′/2) + δn1 ]

× cos[ωn2 t + n2(α0 + φ′/2) + δn2 ]

=
∑
n1,n2

Jn1 (x)Jn2 (x)(4γn1ωn1 )−1

× (sin{[ωn1 + ωn2 ]t + [n1 + n2](α0 + φ′/2) + δn1}
+ sin{[ωn1 − ωn2 ]t + [n1 − n2](α0 + φ′/2) + δn1}).

(13)

At this order, we find that there are additional steps in
the dc component of the supercurrent; these steps occur at
|n1 + n2|ω = I0, for which the first of the two terms on the
right side of Eq. (14) becomes independent of time. A set
of these steps occurs at (n1 + n2) = 2n − 1 for integers n =
1,2... and constitutes the odd Shapiro steps. Thus we find
that the odd steps for a junction of superconductors hosting
Majorana ground states are necessarily of subharmonic nature.
The width of these steps can be read off from Eq. (14) to be

Wodd = �I odd
sn =

∑
n1

Jn1 (x)J2n−1−n1 (x)

2[({2n − 1 − 2n1}ω)2/4 + β2]
(14)

We note that when C0 → 0, β → ∞, and the subharmonic
steps vanish, leading to the result that only even harmonic
Shapiro steps exist for resistive Josephson junctions hosting
subgap Majorana steps. Thus our analysis reproduces the
absence of odd Shapiro steps in Josephson junctions with
Majorana bound states as a special case [13,22,23]. We also
note that these odd steps have a completely different origin
than the analogous steps discussed in Ref. [23] since they
occur without any ∼ sin(φ) dependence of IJ . Finally, we note
that the ratio of the nth even and the adjacent odd Shapiro steps
for these junctions are given by

ηn = Weven

Wodd
= 2Jn(x)∑

n1

Jn1 (x)J2n+1−n1 (x)
2[({2n−1−2n1}ω)2/4+β2]

(15)

In the next section, we shall compare the analytical expression
[Eq. (15)] with numerical results obtained by exact numerical
solution of Eq. (4).

B. Exact numerical results

To compute the I -V characteristics, we study the temporal
dependence of V = �φ̇/(2e) obtained by numerical solution
of Eq. (4) as a function of time for a fixed bias current I . The
dc component of the voltage is obtained by standard procedure
[29,31] from V and plotted as a function of I to generate the
I -V characteristics.

The central results that we obtain from this analysis are
as follows. First, for topological superconductors hosting
Majorana subgap states, we find that for a significant range
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FIG. 2. (Color online) (a) and (b) CVC of the p-wave Josephson
junction. (a) shows the CVC in the underdamped region (β = 0.2)
and for A = 20 and ω = 2, while (b) represents the overdamped
region (β = 1.2) with A = 5 and ω = 1 (in appropriate dimensionless
units; see text). (c) The CVC of the s-wave junction [all parameters
are the same as in (a)]. (d) The ratio of the widths of the even and
odd Shapiro steps, η = Weven(2ω)/Wodd(ω), for the p-wave and the
s-wave junctions (inset) as a function of β for A = 10 and ω = 3.
For the p wave, η ∼ exp(0.31β2), while for the s wave, η does not
vary with β. (a), (b), and (c) have V and I scaled in units of �/(τe)
and Ic, respectively. The red solid (blue dashed) curves in (a) and (c)
correspond to data for increasing (decreasing) current sweeps; these
data coincide in the overdamped region, as shown in (b).

of external coupling and in the underdamped region β <

1, both even and odd Shapiro steps appear as expected
from the analytical results obtained in Sec. II A. The even
steps at V = 2n�ω/e are enhanced compared to their odd
counterparts at V = (2n + 1)�ω/e, as shown in Figs. 2(a)
and 2(b) for underdamped (β < 1) and overdamped (β > 1)
regions, respectively. Figure 2(c) shows an analogous plot for
the s-wave superconductors. The dominance of the even steps
over the odd ones is characterized by η1 ≡ η [Eq. (15)]. A
plot of η as a function of β shown in Fig. 2(d) demonstrates
that η ∼ exp(0.3β2) for junctions with Majorana modes. We
also note that the theoretical result for η obtained from
Eq. (15) provides a near-perfect match with the exact numerics,
demonstrating the accuracy of the analytical solution over a
wide range of β. We further note that the behavior of η as
a function of β is in complete contrast to its counterpart for
s-wave superconductors where η does not vary appreciably
with β, as shown in Fig. 2(d). Thus the exponential dependence
of η on the junction capacitance C constitutes a phase-sensitive
signature of the presence of the Majorana modes. Note that it
is generally expected that only even Shapiro steps occur in
I -V characteristics of Josephson junctions, which supports
Majorana modes due to 4π periodicity of the Josephson
current [13,22,23]; this is a consequence of analysis of the
problem in the limit of zero junction capacitance C → 0
[13,22,23], where β → ∞, leading to vanishing of the odd
steps. However, our study shows that an underdamped RCSJ
of such an unconventional Josephson junctions with finite C
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FIG. 3. (Color online) Plots of the self-similar structure for p-
wave (A = 0.6) and s-wave (A = 0.8) Josephson junctions for
D = 0.7 and ω = 0.5. The additional fractions marked with arrows
pointing to the right belong to the additional sequence characteristics
of Josephson junctions with Majorana subgap states and obey the
Farey sum rule. V and I are scaled in units of �/(eτ ) and Ic,
respectively; see text for details.

can display both even and odd steps. Thus the presence of
odd Shapiro steps does not necessarily signify the absence of
Majorana modes, especially if the RCSJ is underdamped.

Another qualitative difference between the I -V charac-
teristics of Josephson junctions hosting Majorana states and
their conventional counterparts occurs in the devil’s staircase
structures of the Shapiro steps occurring within fixed-bias
current intervals in these junctions. Such steps are known to
occur for conventional s-wave junctions, and their voltage-
frequency relation can be represented by a continued fraction
as

V = (N ± 1/{n ± [1/m ± 1/(p ± 1)]})ω. (16)

The fractions involving N are termed as first level fractions,
those with N and n are second level fractions, and so on. The
steps obey Farey sum rule [26] and their structure for both s-
and p- wave junctions is shown in Figs. 3 and 4. We find that for
conventional junctions, the steps corresponding to second level
fractions occur at V = (N ± 1/n)ω. In contrast, for junctions
hosting Majorana subgap states, the steps correspond to V =
(N ± 2/n)ω (Figs. 3 and 4) leading to several additional steps
within a given range of A. This difference in structure lead
us to hypothesize that in contrast to conventional Josephson
junctions, the steps for the junctions with Majorana bound
states show additional fractions. We therefore suggest that
the presence of these additional specific continued fractions
may be considered as a signature of Majorana fermions. Two
specific examples of this phenomenon is presented in Figs. 3
and 4. In Fig. 3, we find that the continued fraction V =
(N − 1/n)ω with N = 6 which appears in s-wave Josephson
junctions at β = 0.2, ω = 0.5 and A = 0.8. In contrast, as
clearly demonstrated in Fig. 3, the steps for the p-wave
junction occur at V = (N − 2/n)ω with N = 6, and several
n. Further, as shown in Ref. [29], the continued fraction V =

I
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FIG. 4. (Color online) Same as Fig. 3, but with different ampli-
tudes of external radiation (for p waves, A = 0.77; for s waves,
A = 0.9). Note that the additional sequence of steps for p waves
persists.

(N + 1/n)ω with N = 6 appears for conventional Josephson
junctions at A = 0.9. In contrast, for Josephson junctions
with Majorana subgap states, as shown in Fig. 4, the steps
occur at V = (N + 2/n)ω with N = 6. Thus for both these
cases, for junctions with Majorana fermions, the steps occur at
V = (N ± 2/n)ω leading to the additional sequence of steps.
Our numerics therefore suggests that the difference between
junctions without and with Majorana subgap states lies in the
manifestation of the subharmonics in their I-V characteristics;
the steps follow continued fractions characterized by N ± 1/n

for the former and N ± 2/n for the latter as A is increased.
We conjecture that the additional factor of 2 leading to the
extra steps is a manifestation of the 4π periodicity of the
junctions. Finally, we point out that the difference between
these two type of junctions can also be stressed by comparing
the largest width of the first subharmonic in these continued
fractions. We find that with the increase of A, the largest
subharmonic is V = 20ω/3 (the series is 8/1,7/1,20/3,...)
for junctions with Majorana fermions; in contrast, for junctions
without Majorana subgap states, the largest width correspond
to V = 13ω/2(7/1,13/2,...).

III. JUNCTIONS WITH DIRAC FERMIONS

For superconducting junctions hosting Dirac quasiparticles
such as in graphene [12,16], the pair potential has s-wave
symmetry: �L = �0 and �R = �0 exp(iφ). Here pairing
occurs between electrons with opposite spin and momenta; in
graphene this necessitates pairing between electrons of K and
K ′ valleys [14]. The BdG equations are described in terms of
four-component wave functions ψ = (ψK

A↑,ψK
B↑,ψ

K ′†
A↓ ,ψ

K ′†
B↓ )

and are given by

{[H ′ − V (x)]τ3 + [�(x)τ+ + H.c.]}ψ = Eψ, (17)

where A,B denote sublattice indices H ′
β = �vF (−iσx∂x ±

σyky) − μ, �τ and �σ denote Pauli matrices in valley and
pseudospin (sublattice) spaces, respectively, μ is the Fermi
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energy, vF is the Fermi velocity of the Dirac quasiparticles
described by H ′, and a plus (minus) sign corresponds to
electrons in the K (K ′) valley. The pair potential takes the
form �(x) = �Lθ (d/2 + x) + �Rθ (x − d/2) and V (x) =
V0θ (d/2 − x)θ (d/2 + x). The localized subgap Andreev
states are obtained by demanding the continuity of ψ at x =
±d/2 and are given, in the thin-barrier limit (V0 → ∞, d → 0,
and V0d/�vF = χ ), by [25]

E2 = ±�0

√
1 − T (ky,χ ) sin2(φ/2), (18)

where T (ky,χ ) = cos2(γ )/[1 − cos2(γ ) sin2(χ )] is a measure
of transparency of the junction and sin(γ ) = �vF ky/μ. Note
that Eq. (18), in contrast to Eq. (2), is 2π periodic in φ. The
corresponding Josephson current at zero temperature is given
by I2(φ) = 2e

�

∫ π/2
−π/2 dγ cos(γ )∂E2/∂φ and leads to

I2 = I0�0

∫ π/2

−π/2
dγ cos(γ ) sin(φ)T (γ,χ )/|E2|, (19)

where I0 = e�0EF L/(2�
2πvF ). Equation (19) shows that

the Josephson current is an oscillatory function of the di-
mensionless barrier strength for such junctions. We note that
whereas the forms of Eqs. (18) and (19) are generic for s-wave
conventional tunnel junctions, the oscillatory dependence of
T on χ is a consequence of the Dirac nature of graphene
quasiparticles and is not observed in junctions made of
conventional superconductors [25].

To chart out the I -V characteristics of the superconducting
junctions which host such Dirac quasiparticles, we analyze
Eq. (4) numerically with IJ = I2 and obtain the corresponding
Shapiro step structure. The procedure followed here is identical
to the one charted out in Sec. II B. We find that the Shapiro step
structure in the I -V characteristics is same as the conventional
s-wave superconductor displaying harmonic odd and even
steps, as shown in Fig. 5(a). However, the width of these steps
W varies with the dimensionless barrier potential χ in an
oscillatory manner, as shown in Fig. 5(b). This is in complete
contrast to the dependence of W in the conventional junctions,
where the step widths are a monotonically decreasing function
of the barrier potential. This behavior of W can be qualitatively
understood as follows. In a RCSJ, W can be related to the
magnitude of IJ , which, in turn, depends on the transparency
of the junction: W ∼ (1 + χ2/4)−1/2 for conventional junc-

0.4 0.6 0.8 1
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χ=2.6π
χ=3π
χ=3.15π

1

(a)

2 2.5 3 3.5 4 4.5 5

χ/π

0.1

0.12

0.14

W

(b)

FIG. 5. (Color online) (a) CVC of the graphene Josephson junc-
tion with A = 1 and ω = 4 for several values of χ , indicating the
variation in the width of the main Shapiro step at ω. (b) Plot of the
width of the Shapiro step at ω as a function of χ showing π periodic
oscillatory behavior.

tions. In a conventional junction, the increase of the barrier
potential χ leads to a monotonic decrease of the transparency;
consequently, W decreases monotonically with increasing
χ . However, for a RCSJ made out of Dirac materials, the
transparency of the junction T (ky,χ ) is a π -periodic oscillatory
function of the dimensionless barrier strength χ with maxima
at χ = nπ due to the transmission resonance condition of
the Dirac quasiparticles [17]. Consequently, one expects
IJ and hence W to oscillate with χ . This expectation is
corroborated in Fig. 5(b), where the π -periodic oscillation
of the step width is plotted as a function of χ . We note that
such an oscillatory behavior is a direct manifestation of the
transmission resonance condition of the Dirac quasiparticles;
it thus provides a qualitative distinction between Josephson-
junction-hosting Schrodinger and Dirac quasiparticles.

IV. DISCUSSION

In this work we have studied the I -V characteristics of
a RCSJ where the superconductors making up the junction
either host subgap Majorana bound states or have Dirac-like
character of the Bogoliubov quasiparticles. The former set
of junctions occurs for p-wave superconductors [12] or 1D
nanowires [6,7] with strong spin-orbit coupling and transverse
magnetic field, while graphene superconduction junctions
provide an example of the latter class. We find that the I -V
characteristics of RCSJs for each of these classes of junctions
are qualitatively different from their conventional counterparts.
Thus such junctions may serve as phase-sensitive detectors of
Majorana and Dirac fermions realized using superconducting
platforms.

For junctions hosting subgap Majorana states, we find two
essential characteristics which are qualitatively different from
their s-wave counterparts. First, the odd Shapiro steps are
subharmonic in nature; the ratio of their width to that of
adjacent even Shapiro steps is a decreasing function of the
junction capacitance. This is in contrast to the conventional
s-wave junctions, where the ratio is largely independent of
C. We note that our result in this regard shows that the
absence of odd Shapiro steps is a sufficient condition for
having subgap Majorana modes; however, it is not necessary
since such an absence requires, in addition to the presence of
the Majorana modes, resistive Josephson junctions. Our result
thus constitutes a generalization of the detection criteria for
Majorana modes realized using a superconducting platform.
Second, we find that the devil’s staircase structure of the
Shapiro steps in Josephson junctions with Majorana subgap
states involves additional sequences which satisfy the Farey
sum rule. This feature, as shown in our work, constitutes a
qualitative difference between Josephson junctions with and
without Majorana subgap states.

For junctions with Dirac quasiparticles, we find that even
with s-wave symmetry, the Shapiro step width is a π -periodic
oscillatory function of the barrier potential of the junction.
We trace the origin of this phenomenon to the transmission
resonance of the Dirac-Bogoliubov quasiparticles in such
superconductors and demonstrate that the oscillatory behavior
is a qualitatively distinct signature of the Dirac nature of the
superconducting quasiparticles.
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The numerical estimate of typical frequencies at which the
devil’s staircase structure can be obtained is as follows. For
standard experiments Ic ∼ 1 nA and C0 	 1 pF. Using these
numbers, one can estimate ωp = √

2eIc/(�C0) 	 1 GHz. In all
the figures, we have used ω ranges between 0.5ωp 	 0.5 GHz
and 2ωp 	 2 GHz. In particular, the devil’s staircase structure
is seen at an external radiation frequency of 0.5 GHz. The
self-similar structure is seen at energy range of 5ω–6ω, which
is around 2–3 GHz. In this context, we note that the required
frequency range is small enough to avoid possible smearing
due to 2π periodicity arising due to multimode effects [23].
In addition, this estimate holds for zero-temperature analysis;
however, it is expected to be qualitatively accurate for kBT 

�0 when quasiparticle poisoning and thermal decoherence
rates do not play a significant role. Also, we note that it is
possible to model the dissipation and noise in the junction
by assuming it to be coupled through a thermal bath using
the standard Caldeira-Leggett formalism [32]; the Langevin
or saddle-point equation corresponding to that analysis at
low temperature, where the effects of white noise can be
ignored, reduces to Eq. (4) of our work with the resistive
term being renormalized by the coefficient of dissipation. This
formalism also allows for the study of the effect of quantum
fluctuations and noise in such junctions beyond saddle-point
approximation, which is left as a possible subject of future
study.

The experiments to test our theory involve measurement on
the RCSJ under applied radiation with definite amplitude A and
frequency ω. Such experiments are rather standard for s-wave
junctions [33]; more recently, such experiments have been
performed for a 1D Majorana nanowire setup with resistive
junctions [19]. Our specific suggestion involves measurement
of η as a function of the effective junction capacitance for
Josephson junctions with Majorana bound states in a circuit
with finite capacitance which can be modeled by a RCSJ;

we predict the presence of subharmonic odd Shapiro steps
for such junctions, whose width depends on the junction
capacitance and leads to an exponential dependence of η

on the junction capacitance [see Fig. 2(d)]. In addition, we
suggest the presence of an additional sequence in the devil’s
staircase structure of the Shapiro steps. For junctions with
Dirac quasiparticles, which can be made with graphene [34],
we predict that the width of the Shapiro steps will display
π -periodic oscillatory dependence on the junction barrier
potential.

We note here that it is possible to have additional odd
steps in a realistic experimental system due to presence of
small but additional 2π periodic terms (IJ ∼ sin[φ]) in the
Josephson current due to a variety of reasons [19,23]. However,
such steps are harmonic and for them η would not show
appreciable variation with β [bottom curve of Fig. 2(d)]; in
contrast, the subharmonic odd steps that we focus on here
has η ∼ exp[0.3β2] [upper curves of Fig. 2(d)]. The size of
the steps vary with the junction capacitance and thus displays
qualitatively different behavior.

In conclusion, we have studied RCSJ Josephson junction
circuits and have shown that they can serve as phase-sensitive
detectors for both Majorana and Dirac quasiparticles in such
junctions. We have charted out the properties of such junctions,
which are qualitatively distinct from their s-wave counterparts,
and have suggested experiments which can test our theory.
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