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Quantum spin transport and dynamics through a ferromagnetic/normal metal junction
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We study the spin transport in the low-temperature regime (often referred to as the precession-dominated
regime) between a ferromagnetic Fermi liquid (FFL) and a normal metal metallic Fermi liquid (NFL), also
known as the F/N junction, which is considered as one of the most basic spintronic devices. In particular, we
explore the propagation of spin waves and transport of magnetization through the interface of the F/N junction
where nonequilibrium spin polarization is created on the normal metal side of the junction by electrical spin
injection. We calculate the probable spin wave modes in the precession-dominated regime on both sides of the
junction especially on the NFL side where the system is out of equilibrium. Proper boundary conditions at the
interface are introduced to establish the transport of the spin properties through the F/N junction. A possible
transmission conduction electron spin resonance (CESR) experiment is suggested on the F/N junction to see if
the predicted spin wave modes could indeed propagate through the junction. Potential applications based on this
novel spin transport feature of the F/N junction are proposed in the end.
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I. INTRODUCTION

With the development of microelectronic devices based on
electric charge reaching to its full capacity in the foreseeable
future as the size of device features approaches the dimension
of atoms, investigators have been eager to seek device applica-
tions based on electron spin, which has led to the emergence of
a new research field called spintronics [1]. The central theme
of spintronics involves active manipulation of the spin degree
of freedom in solid-state systems, which generally requires
the generation and control of nonequilibrium spin. Over the
past two decades, extensive studies on spintronics have been
carried out in various solid-state systems [2]. Among the many
interesting spintronic systems, the ferromagnetic/normal metal
(F/N) junction is considered to be one of the simplest and most
basic, where nonequilibrium spin polarization could be gen-
erated through electrical spin injection [3,4]. A considerable
amount of work has been done studying the spin transport from
the ferromagnetic metal to a normal metal in the classical
diffusion dominated transport regime [2]. In this paper, we
investigate the spin transport through the F/N junction under
electrical spin injection in the low-temperature regime, where
the spin diffusion is dominated by spin precession rather than
collision in the classical diffusion dominated transport regime.

The relative importance of the two mechanisms has been
studied both in weak ferromagnetic systems and nonequilib-
rium paramagnetic systems through calculating the effective
spin diffusion coefficient [5]. Here, we focus on studying
the propagation of spin waves and transport of magnetization
through the interface of the F/N junction. To be more specific,
we calculate the possible transverse spin wave modes in the
ferromagnetic metal side and the spin-polarized nonequilib-
rium normal metal side of the F/N junction using Landau
Fermi-liquid theory. We then propose a proper set of boundary
conditions at the junction interface, under which the spin waves
can successfully propagate from the ferromagnetic side of the
F/N junction to the normal metal side. Such a phenomenon
could in principle be tested by a transmission conduction
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electron spin resonance (CESR) experiment performed on the
F/N junction, and likely experimental results are discussed as
well. Potential device applications based on this spin transport
feature of the F/N junction are proposed in the end.

II. DERIVATION OF SPIN WAVE MODES

Under electrical spin injection, net magnetization is driven
from the ferromagnet into the normal metal region of the F/N
junction by a spin-polarized charge current flowing across
the F/N junction, as shown in Fig. 1(a). For a long enough
relaxation time, T1, of the polarized spin, this would lead to
a steady state in the normal metal region of the F/N junction
with nonequilibrium magnetization δM , depicted in Fig. 1(b),
which we will, from here on, refer to as the spin-polarized
quasiequilibrium state (QEQ) [6] in the weak polarization
limit, i.e., δM � 1. Therefore, in the steady state, the F/N
junction could be thought of as a composition of spin-polarized
equilibrium (ferromegnet side) and quasiequilibrium (normal
metal side) systems. We study the transverse spin wave modes
that may arise in these systems when a small transverse spin
perturbation is introduced to the steady state.

Using Landau Fermi-liquid theory, the spin waves for
a paramagnetic Fermi liquid in the presence of a constant
external magnetic field have been well understood by solving
the spin kinetic equation [7,8]. These spin wave modes are
the well known Silin modes [9] for polarized Fermi liquids.
A recent work has extended the study of spin waves to QEQ
spin systems [6], where new gapless spin wave modes were
found in a spin-polarized QEQ Fermi liquid in the absence
of an external magnetic field, similar to the case of a weak
ferromagnetic system. Following the same recipe as Ref. [6],
we start with the study of the spin wave modes for the QEQ
state of the normal metal region of the F/N junction.

A. Quasiequilibrium Fermi liquid

Assuming the QEQ Fermi liquid having a particle density,
n = n↑ + n↓, and a small magnetization, σ = n↑ − n↓, where
n↑,n↓ are the densities of ↑, ↓ spin fermions and σ is polarized
in an arbitrary direction, with n = nQEQ and σ = σ QEQ in the
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FIG. 1. (Color online) Pedagogical illustration of electrical spin
injection into the F/N junction [2]. (a) Schematic experimental setup.
(b) Distribution of the equilibrium and nonequilibrium magnetization
along z direction (the direction of the charge current).

steady state, the kinetic equation for the spin density can be
written as [7]
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where hp = 2
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a
pp′σ p′ is the effective field taking into

account only the internal field in the absence of an external
magnetic field, f a

pp′ denotes the spin antisymmetric Landau
Fermi-liquid interaction, εp is the quasiparticle energy, and

σ p is the quasiparticle spin density defined as σ p ≡ − ∂n0
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where n0
p is the ground-state quasiparticle density distribution

function (Fermi distribution function) and N (0) = m∗pf

π2�3 is the
density of state at the Fermi surface. The Lorentz force term
appearing in the kinetic equations of charged Fermi systems
[10] vanishes here as there is no external field. According to
Landau Fermi-liquid theory, the spin current is given by
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which represents the current in the i th spatial direction of the
σ spin polarization. When a charge current J is running across
the F/N junction in the steady state, we define in the QEQ
Fermi liquid an average drift velocity of electrons VQEQ

0 as

J = −enQEQVQEQ

0 . (3)

The steady-state quasiparticle velocity in the QEQ state could
be approximated as

v
QEQ

pi = V
QEQ

0i + v0
pi = ∂εp

∂pi

, (4)

where v0
pi is the equilibrium quasiparticle velocity for an

isotropic Fermi liquid. Substitute the QEQ quasiparticle
velocity into Eq. (2), we have the QEQ spin current as
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where we denote the first term as the drift spin current,

j drift
σ ,i (r,t) = V

QEQ

0i σ
(
1 + Fa

0

)
, (6)

and the second term as the regular Fermi-liquid diffusive spin
current,

j diff
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∫
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1

3

)
. (7)

In the steady state, j diff
σ ,i = −D∇iσ

QEQ, where D = 1
3v2

f (1 +
Fa

0 )τD is the regular spin diffusion coefficient in Fermi-liquid
theory, vf is the Fermi velocity, and τD is the spin diffusion
life time. The decomposition of the spin current into a drift
term and a diffusive term is consistent with the treatment
of an earlier study on the electrical spin injection into
semiconductors [11].

Under a small transverse spin distortion δσ , we define
the complex variables σ± = δσx ± iδσy and j diff±
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2
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0
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1
3 ), with σ±

p = − ∂n0
p

∂εp

σ±
N(0) . The oscilla-

tions of the transverse spin distortion are governed by the
linearized spin conservation law derived from linearizing and
summing both sides of Eq. (1) over p,
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where, here and throughout the paper, we have assumed a very
large spin relaxation time T1, therefore the spin relaxation
term is not included. The linearized equation of motion for the
diffusive spin current takes a more complex form as
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where Fa
0 = N (0)f a

0 and Fa
1 = N (0)f a

1 are the spin anti-
symmetric Landau parameters, and an extra spatial gradient
term on the spin current is present due to the effect of
the drift charge current. Equations (8) and (9) constitute
the hydrodynamic equations for the spin. After expanding
σ±(r,t) and j diff±

σ ,i (r,t) in their corresponding Fourier se-
ries as σ±(r,t) = ∫

d3qdω σ±(q,ω)ei(q·r−ωt) and j diff±
σ ,i (r,t) =∫

d3qdω j diff±
σ ,i (q,ω)ei(q·r−ωt), respectively, the Fourier trans-

formed hydrodynamic equations lead to a single equation for
the dispersion relation,
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3 )v2
f . We solve Eq. (10) in the long-

wavelength, small q, limit, where we keep only terms of order
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q2 and below. The dispersion relations of the modes are given
as

ω±
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)(
VQEQ

0 · q
) − iD±
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2, (11a)
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where D±
eff = ic2

s /ω
±
1 is interpreted as the effective spin

diffusion coefficient. The meaning of D±
eff becomes clearer

when Eq. (9) is rearranged under the steady-state condition
∂j diff±

σ ,i (r,t)/∂t = 0:
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For small q, the second term on the right-hand side of Eq. (12)
is an order of q higher than the first term, we can thus drop the
last term in Eq. (12) and recover the familiar Fick form [7] for
the spin current,

j diff±
σ ,i (r,t) = −D±

eff

∂

∂ri

σ±(r,t), (13)

where D±
eff clearly serves as the role of the effective spin

diffusion coefficient.
The spin precession term, ± 2

�
(f a

0 − f a
1
3 )σ QEQ, in the de-

nominator of D±
eff, often referred to as the Leggett-Rice

effect [12,13], is solely a consequence of the interactions
between quasiparticles; it would cease to exist had we treated
the electronic system in the normal metal as a free Fermi
liquid using the simple electron band structure model. The
effective spin diffusion coefficient reduces to the regular Fermi
liquid spin diffusion coefficient, D = 1

3v2
f (1 + Fa

0 )τD , if we
shut off Fa

l ’s for the QEQ system. The complete picture of
the competition between the collision effect and the spin
precession effect in the effective spin diffusion coefficient
over a wide temperature range was obtained experimentally
in liquid 3He [14], and was studied theoretically in the
spin-polarized Fermi liquids [5] as well.

In the low-temperature limit, we take the spin diffusion
lifetime τD ≈ ∞, since it varies as T −2 in a clean Fermi
liquid, therefore, the collision term becomes negligible in
D±

eff compared to the spin precession term, leading to a
purely imaginary effective spin diffusion coefficient. Finally,
the dispersion relations of the modes for the QEQ system
in the low-temperature precession dominated regime can be
expressed as
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Since both dispersion relations of the modes contain only real
terms, for small enough q, we have found the transverse spin

wave modes that survive from Landau damping [7] and can
propagate through the QEQ system, which serve as collective
excitations of the QEQ system.

B. Ferromagnetic Fermi liquid

We consider here a weak ferromagnetic Fermi liquid for
the ferromagnet region of the F/N junction, where the spin
dynamics could be studied in the language of Landau Fermi-
liquid theory [15] in a similar fashion as the QEQ system.
We should use F̄ a

l and f̄ a
l for the Fermi liquid parameters

in the ferromagnetic metal side of the F/N junction. In the
precession dominated regime, the transverse spin wave modes
in the ferromagnet region of the F/N junction turn out to be
nearly identical to the ones found in the normal metal region
of the F/N junction, i.e., the QEQ Fermi liquid,

ω±
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)(
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except for the definition of the spin wave velocity, c̄2
s =

1
3 |1 + F̄ a

0 |(1 + F̄ a
1

3 )v̄2
f , since, (1 + F̄ a

0 ) < 0, for a ferromag-
netic Fermi liquid, v̄f is the Fermi velocity of the electrons
in the ferromagnet, σ FM is the equilibrium spin polarization in
the ferromagnet, and VFM

0 is the drift velocity of electrons in
the ferromagnet, which is related to the charge current through,
J = −enFMVFM

0 , with nFM being the equilibrium carrier density
in the ferromagnet. Again, for small q, the transverse spin wave
modes represented by Eq. (15) are the propagating modes in
the ferromagnet region of the F/N junction.

C. Boundary conditions

So far, we have established the propagating transverse spin
wave modes in the ferromagnet region and the normal metal
region of the F/N junction, respectively. Naturally, one would
want to look for proper boundary conditions to make the
spin wave modes propagate through the interface of the F/N
junction, as it could greatly increase the functionality of the
F/N junction as a spintronic device. To simplify the analysis
while keeping the underlying physics unchanged, we treat
the F/N junction as an effectively one-dimensional structure,
where only the spatial variation in the z direction of the spin
density is nonzero.

In describing the steady state of the F/N junction under
electrical spin injection, we have adopted boundary conditions
analogous to earlier studies on spin injection into metals
[3] and semiconductors [11], where the total spin current
is continuous at the interface in the absence of surface spin
relaxation,

j FM
σ ,z(z,t) = j QEQ

σ ,z (z,t) for z = 0. (16)

Contrary to the steady-state spin polarization, we assume hard
boundary conditions on the oscillations of the small transverse
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spin distortion,

∂σ±
FM

∂z
= 0 for z = −L1 and 0, (17a)

∂σ±
QEQ

∂z
= 0 for z = 0 and L2. (17b)

In other words, the diffusive spin current from distortion
vanishes at the surfaces, j diff±

σ ,z (z,t) = −D±
eff

∂σ±
∂z

= 0 for z =
0, − L1 and L2, where, L1 and L2, are the widths of the
ferromagnet region and the normal metal region of the F/N
junction, respectively. Under the conditions of Eq. (17a), a
series of standing wave modes with wave numbers, qz =
nπ/L1, could be excited for the transverse spin waves in
the ferromagnet region of the F/N junction. These standing
wave modes should appear as sidebands on the electron
spin-resonance line analogous to the spin wave excitations in
nonferromagnetic metals in transmission CESR experiments
[16,17], which we will discuss to some extent in a later
section of this paper. Under spin wave excitation, transverse
spin oscillations are transmitted from the left edge of the
ferromagnet region to the interface of the F/N junction
through the propagation of the standing wave modes, resulting
in the accumulation of oscillating transverse spin signals
at the interface. Recalling that we have required the total
spin current to be continuous, as well as the vanishing of
the diffusive spin current, j diff±

σ ,z (z,t) = 0, at the interface, the
drift spin current must then be continuous at the interface,
j drift±

FM,σ ,z
(z,t) = j drift±

QEQ,σ ,z
(z,t) for z = 0, which leads to the following

relation:

V FM
0z σ±

FM

(
1 + F̄ a

0

) = V
QEQ

0z σ±
QEQ

(
1 + Fa

0

)
for z = 0. (18)

The transverse spin signals in the ferromagnet side of the
interface are driven into the normal metal region by the external
electric potential in the form of a continuous drift spin current.
Consequently, propagating transverse spin wave modes are
excited in the normal metal region of the F/N junction once
the transverse spin distortion is driven into the normal metal
region. Therefore Eqs. (16) and (17) constitute the boundary
conditions under which the spin wave modes can effectively
propagate across the F/N junction.

In real systems where interface roughness is inevitable,
spin-flip scattering may arise inside the contact of the F/N
junction due to spin-orbit coupling or magnetic impurities.
The effect of the spin nonconserving scattering is investigated
in Ref. [18], where a mismatch is created between the spin
currents on the left- and right-hand sides of the interface.
Subject to the different natures of the contact and the materials
making the F/N junction, the polarization of the spin current
injected into the normal metal region of the F/N junction can
be either larger or smaller than that of the spin current on
the ferromagnet side of the junction, j FM

σ ,z(0,t) ≶ j QEQ
σ ,z (0,t). In

some cases, the direction of the polarization of the spin current
can even be flipped across the interface, which is somewhat
counterintuitive. To give account for the spin nonconserving
scattering at the interface, we introduce a proportionality factor
α on the left-hand side of Eq. (18),

αV FM
0z σ±

FM

(
1 + F̄ a

0

) = V
QEQ

0z σ±
QEQ

(
1 + Fa

0

)
for z = 0, (19)

where α can be both positive and negative. Therefore, as long as
α is nonzero, an appreciable amount of transverse spin signals
is still driven into the normal metal region of the F/N junction,
and the transverse spin wave modes can still be excited in the
normal metal region of the junction and propagate through
the interface. Finally, we claim that as long as efficient spin
injection is achieved in the F/N junction, the qualitative spin
transport features of the junction stay unchanged despite the
presence of the interface roughness. The dispersions of the spin
wave modes also remain the same as they are intrinsic modes
of the materials forming the F/N junction under electrical spin
injection.

III. RESULT AND DISCUSSION

A. Spin wave modes

Aside from the collective modes developed in the previous
sections for both QEQ and ferromagnetic systems, there
are also a continuum of particle-hole (p-h) excitations in
these systems. The dispersions of the p-h excitations for the
QEQ system are [6], ω±

p-h(q) = ∓ 2
�
σ QEQf a

0 + q · vp, where,
vp = VQEQ

0 + v0
p, is the steady-state quasiparticle velocity given

by Eq. (4), |v0
p| = vf , and the dispersions of the p-h continuum

for the ferromagnetic systems are [19], ω±
p-h(q) = ∓ 2

�
σ FMf̄ a

0 +
q · v̄p, where, v̄p = VFM

0 + v̄0
p and |v̄0

p| = v̄f . For a given q, with
the freedom of choosing vp over the entire Fermi surface, the
dispersions of the p-h excitations form a continuum bounded
by the maximum and minimum values of q · vp. Here, we
choose q, VQEQ

0 and VFM
0 to be in the z direction in displacing

the dispersion relations of the spin wave modes, as we consider
the F/N junction an effectively one dimensional system.
The dispersions of the spin wave modes for both the QEQ
and ferromagnetic systems together with their respective p-h
continuums are plotted in Fig. 2, where we have chosen a spin

FIG. 2. Dispersion relations of the spin wave modes and p-h
continuum of the QEQ system and ferromagnetic system. (a) QEQ
system with F a

0 = −0.235, F a
1 = −0.18, V QEQ

0 = 0; (b) QEQ system
with F a

0 = −0.235, F a
1 = −0.18, V QEQ

0 /vf = 10%; (c) ferromagnetic
system with F̄ a

0 = −1.16, F̄ a
1 = −0.84, V FM

0 = 0; (d) ferromagnetic
system with F̄ a

0 = −1.16, F̄ a
1 = −0.84, V FM

0 /v̄f = 10%.
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polarization of 10%, σ/n = 10%, for both systems. We have
chosen to show only the upper branches ω+(q) of the spin wave
modes, as the physics is the same for the two branches except
for the direction of the spin precession. We use a set of Landau
parameters suitable for the simple metal aluminum [20] when
evaluating the dispersion relations for the QEQ system on
the normal metal region of the F/N junction. The Landau
parameters for the ferromagnetic system are obtained from
the weakly ferromagnetic heavy fermion material MnSi [19].

In a typical electrical spin injection experiment on the F/N
junction [4] composed of simple metals nickel and iron on
the ferromagnet side and aluminum on the normal metal
side, the electron drift velocity V0 is negligible compared
with the Fermi velocity for a small driven current of order
10 ∼ 100 mA, however, V0 can be appreciable with respect
to the Fermi velocity when we use a heavy fermion material
with a big effective mass, which as a consequence reduces
the Fermi velocity. In fact, for an F/N junction with a cross
section of 1 μm × 1 μm and a driven current of 1 A, we could
have the drift velocity as close as 10% of the Fermi velocity,
V0/vf ≈ 10%, if the effective mass m∗ of the heavy fermion
material is of order 102 ∼ 103 me and the electron density is
that of a typical metal, n ≈ 1023cm−3. Hence the spin wave
dispersions for both the zero drift velocity case and the 10%
drift velocity case are shown in Fig. 2.

As is shown in Figs. 2(a) and 2(b), there exists a gapless
mode as well as a gapped spin wave mode in the QEQ
system despite the absence of an external magnetic field.
The accumulation of the nonequilibrium spin polarization
in the QEQ system has effectively broken the spin symmetry
in the original paramagnetic state, therefore making it possible
for the existence of these collective excitations. Although
the dispersion relation of the gapless spin wave mode in the
QEQ system is very similar to the gapless Goldstone mode
of the ferromagnetic system shown in Figs. 2(c) and 2(d),
their respective origins are fundamentally different as has been
discussed in detail in Ref. [6]. The gapless spin wave modes
in both the QEQ and the ferromagnetic systems are related
to the uniform precessional mode of the spin polarization.
This is understood through the following argument. If we take
q = 0, each individual spin is polarized in the same direction,
hence no uniform precession of the individual spins around
the internal field will take place, and we have ω(0) = 0, which
resembles a gapless energy spectrum for the uniform spin
precessional mode. Consequently, the gapped spin wave modes
must be related to the precessional mode of the spin current,
as the two spin wave modes are the solutions to the coupled
hydrodynamic equations of the spin polarization, Eq. (8), and
the spin current, Eq. (9). The gapped modes are collective
excitations of the system which involve energy consuming
spin flip processes, and could also be interpreted as the Higgs
amplitude mode in a weak ferromagnet [19].

For a small enough q, the dispersion curves of the spin
wave modes are outside the p-h continuum, therefore the
collective excitations become propagating spin wave modes
without getting Landau damped. It has to be pointed out that
although the gapless modes seem to survive entirely from the
p-h continuum, the calculation is only accurate in the low-q
limit. Corrections to the dispersion relations as well as the p-h
continua at higher q need to be evaluated through calculating

the complete spin response function of the system, which is
beyond the scope of this paper.

B. Transmission CESR experiment

The transmission CESR experiment has long been used
in investigating the spin wave excitations in paramagnetic
metals [16,17], where, by coupling a microwave power to
one side of the metal sample, the spin wave modes are excited
in the sample and spin signals are transmitted through the
sample to be detected by the receiver on the other side.
When the frequency of the incident microwave power satisfies
the condition, ω = ω(q) with q = nπ/L, where ω(q) is the
dispersion of the spin wave modes and L is the width of the
sample, the system is under spin resonance with standing spin
wave modes being excited in the sample and there appears a
peak in the intensity of the transmitted spin signals collected by
the receiver. A typical set of transmitted spin signal data from
the transmission CESR experiment would contain multiple
peaks over a range of frequencies.

We propose a transmission CESR experiment on the F/N
junction under the condition of electrical spin injection to
probe the spin wave modes calculated in Sec. II and to test
the proposal of propagating spin wave modes across the F/N
junction. Instead of applying an external magnetic field to
the sample and sweeping through a range of magnetic fields
during the measurement of a traditional transmission CESR
experiment, we propose not to apply any external magnetic
field to the sample, but vary the frequency of the incident
microwave power instead. Spin wave modes can be excited
in the QEQ system without the introduction of the external
magnetic field, which is a major difference between the
QEQ state and the equilibrium paramagnetic state. Under
the boundary conditions introduced in Sec. II C, electron spin
resonance is achieved in the F/N junction when standing spin
wave modes are excited on both sides of the F/N junction. In
the absence of an external magnetic field, under electron spin
resonance, the frequency of the exciting microwave power
must satisfy the following condition:

ω = ωFM(q1) = ωQEQ(q2), (20)

where q1 = n1π/L1 and q2 = n2π/L2 are the respective wave
vectors of the standing wave modes in the ferromagnetic
system and the QEQ system, ωFM(q) and ωQEQ(q) stand for
the spin wave dispersions of the ferromagnetic system and the
QEQ system presented in Eqs. (15) and (14), respectively. The
spin signals measured from the transmission CESR experiment
are expected to display a series of intensity peaks located at the
frequencies derived from Eq. (20) known as the spin resonance
lines. Each spin resonance line represents the excitation of
the standing spin wave modes on both sides of the F/N
junction with a distinct pair of wave vectors (n1π/L1,n2π/L2).
The positions of the spin resonance lines depend on the
experimental parameters such as the values of the Landau
parameters of the metals forming the F/N junction, the widths
of the two regions of the F/N junction, the degree of spin
polarizations in the two regions of the F/N junction and the
magnitude of the driving charge current.

For the particular MnSi/Al junction shown in Fig. 2, the
frequencies of the spin wave modes in the small-q limit can be
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estimated. We find on the ferromagnet (MnSi) side of the F/N
junction, ν0 ∈ (0 Hz,1012 Hz) for the frequency of the gapless
mode and ν1 ∼ 1013 Hz for the frequency of the gapped mode,
while ν0 ∈ (0 Hz,1014 Hz) and ν1 ∼ 1014 Hz on the normal
metal (Al) side. Therefore, under electron spin resonance, both
the gapless and the gapped modes could be excited in MnSi,
whereas only the gapless mode is excited in Al. The frequency
of the gapped mode in Al is much higher than that of both
spin wave modes in MnSi, so the simultaneous excitation of
the gapped mode in Al and either of the spin wave modes in
MnSi by a single microwave power is impossible in principle.
A proper width of the sample could be chosen, L ∼ 1 μm, so
that the wave vectors, q = nπ/L ∼ 106 m−1, of the standing
spin wave modes are much smaller than the Fermi wave vector,
kF ∼ 1010 m−1, and it guarantees that we are working in the
long-wavelength limit, q � kF , where the spin waves survive
from Landau damping and become propagating modes.

C. Potential applications

According to our study, propagating spin wave modes could
be excited in the normal metal side of the F/N junction without
applying an external magnetic field on it. Spin wave modes
excited in the ferromagnetic side of the F/N junction are
also proposed to be able to propagate across the interface of
the junction and travel through the normal metal side of the
F/N junction. This unique spin transport feature of the F/N
junction makes it possible to speculate about potential device
applications.

Since radio frequency signals with certain frequencies
could effectively tunnel through the F/N junction, we could
think of the F/N junction as a frequency selective signal
transmitter. More importantly, we can dynamically control
the resonance conditions of the F/N junction by varying the
relevant parameters of the F/N junction. As a result, we can
effectively turn the transmitter on and off with respect to
a microwave signal with a particular frequency by moving
the F/N junction to and away from the resonance. The F/N
junction then serves as a novel switchlike device in terms
of its ability in transmitting microwave signals. The easiest
and most practical way to control the switch is varying the
drift current by changing the electric bias potential applied
to the F/N junction. However, as mentioned previously, the

effect of the electron drift velocity is rather negligible in
an F/N junction composed of simple metals, we need an
F/N junction made of heavy fermion materials in order to
utilize this control mechanism. Other control mechanisms such
as dynamically controlling the spin polarization in the F/N
junction are also worth exploring. It is also possible to realize
multiple resonance conditions by changing a single or multiple
parameters of the F/N junction, therefore the F/N junction
could be turned into a more functional transmitter with one
or more controlling dials, which could be tuned to make the
device transmit microwave signals with different frequencies.

IV. CONCLUSION

We have studied the spin transport and spin dynamics
in an F/N junction under electrical spin injection in the
low-temperature (precession dominated) regime using Landau
Fermi liquid theory. In particular, we calculate the transverse
spin wave modes on both sides of the F/N junction. The normal
metal region of the F/N junction is treated as a QEQ system
with nonequilibrium spin polarization. We find both a gapless
and a gapped spin wave mode in the QEQ system similar to a
weak ferromagnetic system, which makes the QEQ system
fundamentally different from an equilibrium paramagnetic
system. A probable propagation of the spin wave modes
through the F/N interface is proposed and a transmission
CESR experiment on the F/N junction is suggested to test
such a proposal. If the proposal is valid, we will see multiple
spin resonance lines in the transmitted spin signals from
the transmission CESR experiment similar to the result of
a transmission CESR experiment on a paramagnetic metal. In
the end, potential device applications are speculated for the
F/N junction, and we suggest that a switchlike device as well
as a functional microwave signal transmitter could be made
out of the F/N junction with a couple of control mechanisms
being mentioned as well.

ACKNOWLEDGMENTS

We thank Hari Dahal, Chris Hammel, and Darryl Smith for
valuable and insightful discussions. This work is supported in
part by John H, Rourke, Boston College endowment fund.

[1] S. Das Sarma, Spintronics, Am. Sci. 89, 516 (2001).
[2] I. Zutic, J. Fabian and S. Das Sarma, Spintronics: Fundamentals

and applications, Rev. Mod. Phys. 76, 323 (2004).
[3] A. G. Aronov, Spin injection in metals and polarization of nuclei,

Pis’ma Zh. Eksp. Teor. Fiz. 24, 37 (1976) [JETP Lett. 24, 32
(1976)].

[4] M. Johnson and R. H. Silsbee, Spin-injection experiment, Phys.
Rev. B 37, 5326 (1988).

[5] H. P. Dahal and K. S. Bedell, Effective spin diffusion in spin-
polarized equilibrium and quasiequilibrium Fermi liquids, Phys.
Rev. B 87, 174406 (2013).

[6] K. S. Bedell and H. P. Dahal, Spin Waves in Quasiequilibrium
Spin Systems, Phys. Rev. Lett. 97, 047204 (2006).

[7] G. Baym and C. J. Pethick, Landau Fermi-Liquid Theory (Wiley,
New York, 1991).

[8] K. S. Bedell and D. E. Meltzer, Spin waves and spin diffusion in
Fermi liquids: Bounds on effective diffusion coefficients, Phys.
Rev. B 33, 4543 (1986).

[9] V. P. Silin, On the theory of a degenerate electron
fluid, Zh. Eksp. Teor. Fiz. 33, 495 (1957) [JETP 6, 387
(1958)].

[10] D. Pines and P. Nozieres, The Theory of Quantum Liquids
(Benjamin, New York, 1966), Vol. I.

[11] A. G. Aronov and G. E. Pikus, Spin injection into semicon-
ductors, Fiz. Tekh. Poluprovodn. 10, 1177 (1976) [Sov. Phys.
Semicond. 10, 698 (1976)].

224437-6

http://dx.doi.org/10.1511/2001.6.516
http://dx.doi.org/10.1511/2001.6.516
http://dx.doi.org/10.1511/2001.6.516
http://dx.doi.org/10.1511/2001.6.516
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/PhysRevB.37.5326
http://dx.doi.org/10.1103/PhysRevB.37.5326
http://dx.doi.org/10.1103/PhysRevB.37.5326
http://dx.doi.org/10.1103/PhysRevB.37.5326
http://dx.doi.org/10.1103/PhysRevB.87.174406
http://dx.doi.org/10.1103/PhysRevB.87.174406
http://dx.doi.org/10.1103/PhysRevB.87.174406
http://dx.doi.org/10.1103/PhysRevB.87.174406
http://dx.doi.org/10.1103/PhysRevLett.97.047204
http://dx.doi.org/10.1103/PhysRevLett.97.047204
http://dx.doi.org/10.1103/PhysRevLett.97.047204
http://dx.doi.org/10.1103/PhysRevLett.97.047204
http://dx.doi.org/10.1103/PhysRevB.33.4543
http://dx.doi.org/10.1103/PhysRevB.33.4543
http://dx.doi.org/10.1103/PhysRevB.33.4543
http://dx.doi.org/10.1103/PhysRevB.33.4543


QUANTUM SPIN TRANSPORT AND DYNAMICS THROUGH A . . . PHYSICAL REVIEW B 92, 224437 (2015)

[12] A. J. Leggett and M. J. Rice, Spin Echoes in Liquid 3He and
Mixtures: A Predicted New Effect, Phys. Rev. Lett. 20, 586
(1968).

[13] A. J. Leggett, Spin diffusion and spin echoes in liquid 3He at
low temperature, J. Phys. C 12, 448 (1970).

[14] L. R. Corruccini, D. D. Osheroff, D. M. Lee and R. C.
Richardson, Spin-wave phenomena in liquid 3He systems, J.
Low Temp. Phys. 8, 229 (1972).

[15] K. S. Bedell and K. B. Blagoev, Quantum spin hydrodynamics
and a new spin-current mode in ferromagnetic metals, Phil. Mag.
Lett. 81, 511 (2001).

[16] P. M. Platzman and P. A. Wolff, Spin-Wave Excitation in
Nonferromagnetic Metals, Phys. Rev. Lett. 18, 280 (1967).

[17] S. Schultz and G. Dunifer, Observation of Spin Waves in Sodium
and Potassium, Phys. Rev. Lett. 18, 283 (1967).

[18] E. I. Rashba, Diffusion theory of spin injection through resistive
contacts, Eur. Phys. J. B 29, 513 (2002).

[19] Y. Zhang, P. Farinas, and K. Bedell, The “Higgs” amplitude
mode in weak ferromagnetic metals, Acta Phys. Pol. A, 127,
153 (2015).

[20] T. M. Rice, Landau Fermi-liquid parameters in Na and K, Phys.
Rev. 175, 858 (1968).

224437-7

http://dx.doi.org/10.1103/PhysRevLett.20.586
http://dx.doi.org/10.1103/PhysRevLett.20.586
http://dx.doi.org/10.1103/PhysRevLett.20.586
http://dx.doi.org/10.1103/PhysRevLett.20.586
http://dx.doi.org/10.1088/0022-3719/3/2/027
http://dx.doi.org/10.1088/0022-3719/3/2/027
http://dx.doi.org/10.1088/0022-3719/3/2/027
http://dx.doi.org/10.1088/0022-3719/3/2/027
http://dx.doi.org/10.1007/BF00655081
http://dx.doi.org/10.1007/BF00655081
http://dx.doi.org/10.1007/BF00655081
http://dx.doi.org/10.1007/BF00655081
http://dx.doi.org/10.1080/09500830110044573
http://dx.doi.org/10.1080/09500830110044573
http://dx.doi.org/10.1080/09500830110044573
http://dx.doi.org/10.1080/09500830110044573
http://dx.doi.org/10.1103/PhysRevLett.18.280
http://dx.doi.org/10.1103/PhysRevLett.18.280
http://dx.doi.org/10.1103/PhysRevLett.18.280
http://dx.doi.org/10.1103/PhysRevLett.18.280
http://dx.doi.org/10.1103/PhysRevLett.18.283
http://dx.doi.org/10.1103/PhysRevLett.18.283
http://dx.doi.org/10.1103/PhysRevLett.18.283
http://dx.doi.org/10.1103/PhysRevLett.18.283
http://dx.doi.org/10.1140/epjb/e2002-00316-5
http://dx.doi.org/10.1140/epjb/e2002-00316-5
http://dx.doi.org/10.1140/epjb/e2002-00316-5
http://dx.doi.org/10.1140/epjb/e2002-00316-5
http://dx.doi.org/10.12693/APhysPolA.127.153
http://dx.doi.org/10.12693/APhysPolA.127.153
http://dx.doi.org/10.12693/APhysPolA.127.153
http://dx.doi.org/10.12693/APhysPolA.127.153
http://dx.doi.org/10.1103/PhysRev.175.858
http://dx.doi.org/10.1103/PhysRev.175.858
http://dx.doi.org/10.1103/PhysRev.175.858
http://dx.doi.org/10.1103/PhysRev.175.858



