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Frustrated Heisenberg antiferromagnet on the honeycomb lattice: Spin gap
and low-energy parameters
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We use the coupled cluster method implemented to high orders of approximation to investigate the frustrated
spin- 1

2 J1-J2-J3 antiferromagnet on the honeycomb lattice with isotropic Heisenberg interactions of strength
J1 > 0 between nearest-neighbor pairs, J2 > 0 between next-nearest neighbor pairs, and J3 > 0 between next-
next-nearest-neighbor pairs of spins. In particular, we study both the ground-state (GS) and lowest-lying triplet
excited-state properties in the case J3 = J2 ≡ κJ1, in the window 0 � κ � 1 of the frustration parameter, which
includes the (tricritical) point of maximum classical frustration at κcl = 1

2 . We present GS results for the spin
stiffness ρs and the zero-field uniform magnetic susceptibility χ , which complement our earlier results for the GS
energy per spin E/N and staggered magnetization M to yield a complete set of accurate low-energy parameters
for the model. Our results all point towards a phase diagram containing two quasiclassical antiferromagnetic
phases, one with Néel order for κ < κc1 , and the other with collinear striped order for κ > κc2 . The results for both
χ and the spin gap � provide compelling evidence for a disordered quantum paramagnetic phase that is gapped
over a considerable portion of the intermediate region κc1 < κ < κc2 , especially close to the two quantum critical
points at κc1 and κc2 . Each of our fully independent sets of results for the low-energy parameters is consistent
with the values κc1 = 0.45 ± 0.02 and κc2 = 0.60 ± 0.02, and with the transition at κc1 being of continuous (and
hence probably of the deconfined) type and that at κc2 being of first-order type.
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I. INTRODUCTION

The roles played by quantum fluctuations and frustration
on the ordering properties of the ground-state (GS) phases of
Heisenberg systems of interacting spins placed on the sites
of a regular periodic lattice continue to be the subject of
intense study. Other things being equal, quantum fluctuations
tend to be larger for lower spatial dimensionality D, lower
values of the spin quantum number s, and lower values
of the lattice coordination number z. The Mermin-Wagner
theorem [1] rules out the possibility of magnetic order
in an isotropic Heisenberg system when D = 1 even at
zero temperature (T = 0), since it is not possible to break a
continuous symmetry in a 1D system even at T = 0. Similarly,
the Mermin-Wagner theorem also implies the absence of
magnetic order in any isotropic 2D Heisenberg model at
all nonzero temperatures (T > 0). Thus the study of 2D
spin-lattice systems at T = 0 occupies a very special role for
the study of quantum phase transitions. In order to maximize
the role of quantum fluctuations, it is then natural to focus
special attention on spin- 1

2 systems on the honeycomb lattice,
which have the lowest values of both s and z (=3 in this case).

The simplest archetypal such model is perhaps then the
pure isotropic Heisenberg model, which comprises antifer-
romagnetic Heisenberg bonds only between nearest-neighbor
(NN) pairs on the lattice, all with identical exchange coupling
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strength J1 > 0. This model has been studied many times
in the past, using a variety of theoretical tools, includ-
ing, for example, the exact diagonalization (ED) of small
finite-sized lattices [2,3], spin-wave theory (SWT) [4],
Schwinger-boson mean-field theory (SBMFT) [5], a linked-
cluster series expansion (SE) around the Ising limit [6], quan-
tum Monte Carlo (QMC) simulations [7–11], and the coupled
cluster method (CCM) [12,13]. From many such studies there
is now a broad consensus that the Néel order of the classical
(s → ∞) Heisenberg antiferromagnet (HAF) on a bipartite
lattice at T = 0 is not destroyed by quantum fluctuations in
the s = 1

2 case for the honeycomb lattice, albeit with a much
reduced value for the Néel order parameter. Thus the staggered
(or sublattice) magnetization M for the spin- 1

2 honeycomb-
lattice HAF is generally agreed to take a value of about 54% of
the classical value. The role of reducing the lattice coordination
number, for example, from z = 4 for the square lattice to z = 3
for the honeycomb lattice can be seen from the corresponding
value for M for the spin- 1

2 square-lattice HAF, which is
generally agreed to be about 62% of the classical value.

Another fundamental difference between the square and
honeycomb lattices is that, although both are bipartite, whereas
the former is a Bravais lattice, the latter is not. Instead, the
honeycomb lattice has two sites per unit cell and comprises two
interlocking triangular Bravais lattices. Thus, the translational
invariance of the full honeycomb lattice is broken for any
type of state in general. This has the consequence, for
example, that the transition from magnetic disorder at T > 0
to Néel antiferromagnetic (AFM) order at T = 0 is not
accompanied by a reduction in the spatial symmetry for the
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honeycomb lattice, whereas it is for the square lattice. For
the spin- 1

2 square-lattice HAF, with one site per unit cell, the
Lieb-Schultz-Mattis-Hastings theorem [14,15] then applies.
The theorem broadly asserts that a system with half-odd-
integer spin in the unit cell cannot have a gap and a unique
ground state. Thus, for the square lattice, any gapped state must
be accompanied by a symmetry breaking. By contrast, for a
lattice, such as the honeycomb lattice, with an even number
of sites per unit cell, the generalization by Hastings [15] of
the Lieb-Schultz-Mattis theorem [14] does not apply. In the
case of spin- 1

2 models on the honeycomb lattice, unlike on the
square lattice, one can in principle have a gapped magnetically
disordered GS phase that does not break any symmetry, and
which has only trivial topological properties.

It is also interesting to note that several spin- 1
2 honeycomb-

lattice systems have been realized experimentally. For exam-
ple, recent calculations [16] of the low-dimensional magnetic
material β-Cu2V2O7 have shown that its magnetic properties
can be described by a spin- 1

2 anisotropic honeycomb HAF
model, albeit with two inequivalent NN bonds arising from
the anisotropic exchange interactions. Another example is the
compound Na3Cu2SbO6 in which the apparently hexagonal
arrangement of the spin- 1

2 Cu2+ ions in the copper oxide layers
has been taken as evidence of honeycomb-lattice magnetism
[17]. However, it has also been pointed out [16] that the
structural distortion of the lattice and the orbital states of the Cu
ions again conspire to make different NN AFM bonds on the
lattice sufficiently inequivalent as to induce 1D-type magnetic
behavior. Another compound with spin- 1

2 Cu2+ ions arranged
in a honeycomb lattice in the copper oxide layers is InCu2/3

V1/3 O3 [18,19]. This is probably the only known substance
described by a spin- 1

2 HAF on the honeycomb lattice with
equivalent NN exchange interactions. Nevertheless, even here
decisive comparison between experiment and theory is made
difficult by the tendency of the material to disorder structurally,
due to the mixing of the magnetic spin- 1

2 Cu2+ ions with the
nonmagnetic V5+ ions [20,21].

Although the Néel order in the spin- 1
2 HAF on the

honeycomb lattice with AFM bonds on NN sites only, all with
the same strength J1, is stable against quantum fluctuations,
the much reduced value of the staggered magnetization order
parameter from its classical value suggests that it is likely to
be rather fragile against the onset of frustrating interactions.
In recent years, therefore, it has become of great interest to
investigate the corresponding model where the NN bonds
with strength J1 > 0 are augmented by frustrating next-
nearest-neighbor (NNN) bonds with strength J2 > 0, possibly
also in conjunction with next-next-nearest-neighbor (NNNN)
bonds of strength J3. The resulting spin- 1

2 J1-J2-J3 model
on the honeycomb lattice, or special cases of it (e.g., when
J3 = 0, or J3 = J2), have been intensively investigated by
many authors (see, e.g., Refs. [5,22–44] and references cited
therein). In particular, the CCM has been used extensively
to study the GS phase structure of the model [29,35–39].
In these earlier studies, the system was mainly investigated
via accurate calculations of the ground-state energy per spin
E/N , the staggered magnetization M , and the coefficients
of susceptibility against the formation of various forms of
valence-bond crystalline order. In the current paper, we wish
to extend the work to calculate both the spin gap and the

complete set of fundamental parameters that determines the
low-energy physics of this magnetic system.

The low-energy properties of any strongly correlated
system with a spontaneous symmetry breaking are governed
by the properties and dynamics of the corresponding emergent
massless Goldstone bosons. For such 2D HAFs as are studied
here, these are simply the spin-wave (or magnon) excitations.
The interactions between such massless Goldstone modes, the
existence of which in this case is due to the spontaneous break-
ing of the SU(2) spin symmetry down to its U(1) subgroup, are
strongly constrained by symmetry considerations. A consistent
description of the physics of the ensuing low-energy magnons
in terms of an effective theory was pioneered by Chakravarty
et al. [45].

After the advent of the chiral perturbation theory (χPT) for
the (pseudo-)Goldstone pions in quantum chromodynamics,
a systematic low-energy effective field theory for magnons
was quickly developed in complete analogy [46–50]. The
results obtained by χPT are exact, order by order, in a
consistent and systematic low-energy expansion. They are
universally applicable to models in the same underlying
symmetry class, and where the symmetry is broken in the
same way. The corresponding low-energy properties of such
classes of systems are thus determined in terms of a (small)
set of low-energy physical parameters that enter the effective
Lagrangian or effective action, for example. These low-energy
parameters are not themselves determined by the generic
effective field theory but depend instead on the specific
model.

The fundamental low-energy parameter set that completely
determines in this way the low-energy physics of magnetic
systems comprises the GS energy per particle E/N , the
average local on-site magnetization (viz., here the staggered
magnetization) M that plays the role of the order parameter,
the zero-field (uniform, transverse) magnetic susceptibility
χ , the spin stiffness ρs , and the spin-wave velocity c. In
previous studies [29,35,37] of the spin- 1

2 J1-J2-J3 model on
the honeycomb lattice along the particularly interesting line
J3 = J2, we have used the CCM implemented to high orders
to give very accurate calculations for the quantities E/N

and M in the magnetically ordered phases, and used them
to investigate in detail the T = 0 phase diagram of the model.

One of our aims here is to use the CCM now to directly cal-
culate also the remaining low-energy parameters χ and ρs (and
hence also �c = √

ρs/χ , with standard AFM hydrodynamics,
and in units for χ where the gyromagnetic ratio gμB/� = 1).
Together with our earlier work, a knowledge of these quantities
will provide a complete and consistent description of the
model via low-energy χPT. Furthermore, as we shall see, the
parameters χ and ρs themselves provide further information on
the T = 0 phase structure of the model, both for the quantum
critical points (QCPs) at which quasiclassical ordering melts,
and also for the paramagnetic phases with no magnetic order
into which the system passes. Finally, we also calculate the
spin gap for the model, using the same CCM methodology, in
an attempt to provide even more information about the model.

The plan of the remainder of the paper is as follows. In
Sec. II, we first describe the model itself, including its classical
(s → ∞) counterpart. The CCM technique is then briefly
reviewed in Sec. III, where we concentrate on its key features,
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before presenting our detailed numerical results in Sec. IV.
We end in Sec. V with a summary and conclusions.

II. THE MODEL

The J1-J2-J3 model on the honeycomb lattice is described
by the Hamiltonian

H = J1

∑
〈i,j〉

si · sj + J2

∑
〈〈i,k〉〉

si · sk + J3

∑
〈〈〈i,l〉〉〉

si · sl , (1)

in which the index i runs over all N lattice sites, and the indices
j , k, and l run respectively over all NN, NNN, and NNNN sites
to i, and where in each sum each bond is counted once and
once only. Each site i of the lattice carries a spin- 1

2 particle
described by the spin operator si ≡ (sx

i ,s
y

i ,sz
i ). The lattice and

the Heisenberg exchange bonds are illustrated in Fig. 1. In the
present paper, we will be interested in the case where each
of the three types of bonds is AFM in nature, i.e., Jn > 0;
n = 1,2,3.

The honeycomb lattice is bipartite with two triangular
Bravais sublattices A and B. If the lattice spacing on the
honeycomb lattice (i.e., the distance between NN sites) is d,
then sites on sublattice A are at positions Ri = ma + nb =√

3(m − 1
2n)dx̂ + 3

2ndẑ, in terms of real-space basis vectors
a = √

3dx̂ and b = 1
2d(−√

3x̂ + 3ẑ) for the honeycomb
lattice, which is defined to lie in the xz plane, as shown in
Fig. 1. Each unit cell i at position vector Ri comprises a pair of
sites, situated at Ri ∈ A and (Ri + dẑ) ∈ B. The parallelogram
formed by a and b defines the honeycomb Wigner-Seitz unit
cell. The Wigner-Seitz cell may itself equivalently be taken
as being centered on a point of sixfold symmetry so that it is
bounded by the sides of a primitive hexagon of side d. The first
Brillouin zone is then itself also a hexagon, which is rotated
by 90◦ with respect to the Wigner-Seitz hexagon, and which
has a side of length 4π/(3

√
3d).

The classical version of the honeycomb model of Eq. (1)
(i.e., when s → ∞) has been studied by several authors
[22–24]. For example, Rastelli et al. [22] searched for coplanar
or uniformly canted spin configurations that minimize the
classical energy and found the former to be energetically
favored. Generally they correspond to spiral configurations

described by a wave vector Q, plus an angle θ that describes
the relative orientation of the two spins in the same unit cell
i, both of which are now characterized by the same triangular
Bravais lattice vector Ri . The classical spins (of length s) in
unit cell i are thus given by

si,τ = s[cos(Q · Ri + θτ )x̂s + sin(Q · Ri + θτ )ẑs] , (2)

where x̂s and ẑs are two orthogonal unit vectors that define
the plane of the spins in spin space, as shown in Fig. 1. The
index τ labels the two sites in the unit cell. Clearly, we may
choose the angles θτ so that θA = 0 for spins on sublattice A
and θB = θ , say, for spins on sublattice B.

In our regime of interest (i.e., when Jn > 0; n = 1,2,3) the
classical model has a (T = 0) GS phase diagram comprising
three distinct phases [23,24]. One value of the spiral wave
vector that minimizes the classical GS energy is

Q = 2√
3d

cos−1

[
J1 − 2J2

4(J2 − J3)

]
x̂ , (3)

together with θ = π . Clearly, the wave vector Q of Eq. (3) is
only properly defined when

−1 � J1 − 2J2

4(J2 − J3)
� 1 , (4)

or, equivalently, when

y � 3
2x − 1

4 ; y � 1
2x + 1

4 , (5)

where x ≡ J2/J1 and y ≡ J3/J1. The region in the positive
quadrant (i.e., x � 0, y � 0) of the xy plane that satisfies both
inequalities of Eq. (5) is where the classical J1-J2-J3 model
on the honeycomb lattice has the spiral phase described by
the wave vector Q of Eq. (3), and θ = π , as the stable GS
phase. Along the line y = 3

2x − 1
4 , Q = 
 ≡ (0,0), and the

phase described by Eq. (2) simply becomes (continuously)
the collinear Néel AFM phase illustrated in Fig. 1(a). The
phase transition between the Néel and spiral phases is thus
a continuous one. Similarly, along the line y = 1

2x + 1
4 ,

Q = 2π/(
√

3d)x̂, and the phase described by Eq. (2) becomes
(continuously) the collinear striped AFM phase illustrated
in Fig. 1(b). The phase transition between the striped and
spiral phases is thus also a continuous one. The above two

J

J3
J

1
2

O

(a) (b)

FIG. 1. (Color online) The J1-J2-J3 honeycomb model with J1 > 0; J2 > 0; J3 > 0, showing (a) the bonds (J1 = —–; J2 = − − −;
J3 = − · −) and the Néel state, and (b) triangular Bravais lattice vectors a and b and one of the three equivalent striped states. Sites on
sublattices A and B are shown by filled black and green circles, respectively, and spins on the lattice are represented by the (red) arrows.
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phase boundaries meet at the point (x,y) = ( 1
2 , 1

2 ), which is the
classical tricritical point. There is a first-order phase transition
between the two collinear states (i.e., the Néel and striped
states) along the boundary line x = 1

2 , for y > 1
2 . In summary,

when J1 > 0 and x > 0, y > 0, the classical J1-J2-J3 model
on the honeycomb lattice has three stable GS phases (at
T = 0): a Néel AFM phase for y > 3

2x − 1
4 , 1

6 < x < 1
2 and

y > 0, 0 < x < 1
6 ; a striped AFM phase for y > 1

2x + 1
4 ,

x > 1
2 ; and a spiral phase for 0 < y < 3

2x − 1
4 , 1

6 < x < 1
2

and 0 < y < 1
2x + 1

4 , x > 1
2 .

We note that the spiral and the striped states described
by Eq. (3) and θ = π have two other similar states rotated
by ± 2π

3 in the honeycomb plane. When x → ∞ for a fixed
finite value of y (i.e., when the J2 bond dominates), the spiral
pitch angle φ = cos−1[ 1

4 (J1 − 2J2)/(J2 − J3)] → 2
3π . In this

limiting case, the classical model thus becomes two HAFs
on disconnected interpenetrating triangular lattices with the
classical 3-sublattice Néel ordering of NN spins oriented at
angle 2

3π to each other on each sublattice. In this limiting case
the wave vector Q of Eq. (3) becomes one of the six corners of
the first Brillouin zone, K(1) = 4π/(3

√
3d)x̂. Clearly, there are

only two distinct such corner vectors, and these describe the
two inequivalent three-sublattice Néel orderings for a classical
triangular HAF.

We also note that when the spiral pitch angle φ takes a value
in the range 2

3π < φ � π the wave vector Q of Eq. (3) lies out-
side the first Brillouin zone. It can equivalently be mapped back
into the first Brillouin zone in this case, when Q moves contin-
uously from a corner K(3) = −2π/(3

√
3d)x̂ + 2π/(3d)ẑ of

the Brillouin zone along one of its edges to the midpoint
M(2) = 2π/(3d)ẑ. The striped state shown in Fig. 1(b) may
thus be equivalently described by the ordering wave vector
Q = M(2) (with the relative angle between sublattices A and
B given by θ = π ). The other two striped states are thus given
by the wave vectors of the two other inequivalent midpoints of
edges of the first Brillouin zone, M(1) = π/(

√
3d)x̂ + π/(3d)ẑ

and M(3) = −π/(
√

3d)x̂ + π/(3d)ẑ (and in both of these cases
with θ = 0).

Although the spin ordering of Eq. (2) usually suffices to
find all classical GS configurations [51], there is an assumption
that the GS order is either unique (up to the trivial degeneracy
associated with a global spin rotation) or exhibits, at most, a
discrete degeneracy. However, exceptions can arise for special
sets {Q} of wave vectors [23,51]. These include the case when
Q is equal to one half or one quarter of a reciprocal lattice
vector G. This is precisely the case for the striped states where
the wave vectors Q = M(i), i = 1,2,3 are just one half of
corresponding reciprocal lattice vectors. As explained by Fouet
et al. [23], the GS ordering in this case spans a 2D manifold
of nonplanar GS configurations, all degenerate in energy.

It is well known that classical models that exhibit such an
infinitely degenerate family (IDF) of GS phases in some region
of the T = 0 phase space often lead to the emergence of novel
quantum phases in the corresponding quantum-mechanical
model. A typical scenario then finds that quantum fluctuations
lift this (accidental) GS degeneracy, either completely or in
part by the well-known order by disorder mechanism [51–53],
so that just one or several members of the classical IDF are
favored. Indeed, thermal or quantum fluctuations do select the

collinear striped states out of the 2D IDF manifold, according
to Ref. [23], wherein it is also explicitly shown in an ED study
of the finite-lattice spectra that the degeneracy is lifted in favor
of the collinear ordering.

In the extreme s = 1
2 quantum limit, one may also ex-

pect that quantum fluctuations might be strong enough to
destroy any quasiclassical magnetic long-range order (LRO)
completely in some region of the T = 0 GS phase space.
The goal of finding any such novel quantum phases with
no magnetic LRO, and delimiting their region of stability in
the T = 0 phase space, has provided the impetus for much
recent work [5,22–44] on the spin- 1

2 J1-J2-J3 model on the
honeycomb lattice. A particularly challenging, yet potentially
fruitful, regime is to consider the case J3 = J2 ≡ κJ1 since
it includes the point of maximum classical frustration, viz.,
the tricritical point at κ = κcl ≡ 1

2 . Henceforth, therefore, we
restrict ourselves to this regime.

In our earlier paper [29], we presented results for the GS
energy and magnetic order parameter of the spin- 1

2 J1-J2-J3

model on the honeycomb lattice along the line J3 = J2 ≡ κJ1,
with J1 > 0 and κ > 0, using the CCM implemented in high
orders. We found that the first-order transition in the classical
(s → ∞) model at κ = κcl ≡ 1

2 between the Néel and collinear
striped AFM phases is split into two transitions for the s = 1

2
model. The Néel phase was found to survive for κ < κc1 ≈
0.47, and the striped phase for κ > κc2 ≈ 0.60. In the region
κc1 < κ < κc2 between the two quasiclassical phases, we found
a paramagnetic phase with no discernible magnetic order. By
further calculating within the same CCM methodology, the
susceptibilities of the two AFM phases against the formation
of a state with plaquette valence-bond crystalline (PVBC)
order, we concluded that the intermediate state was one with
PVBC order. The evidence from those calculations was that
the quantum phase transition (QPT) at κc2 appears to be a
first-order one, while that at κc1 is of continuous type. Since
the Néel and PVBC phases break different symmetries, we
concluded that the quantum transition at κc1 between these
two phases is of the deconfined type [54].

Our aim in the present paper is to shed further light on
the model by calculating other physical properties within the
same CCM methodology as used previously. Firstly, in order to
gain more evidence about the nature of the intermediate phase
we calculate the spin gap, i.e., the energy gap between the
ground state and the lowest-lying (magnon) triplet excitation.
Secondly, as discussed previously, we also calculate for both
quasiclassical phases the spin stiffness ρs and the zero-field
(uniform, transverse) magnetic susceptibility χ , in order both
to provide a complete set of low-energy parameters for both
phases of the model and to use these parameters to provide
more numerical evidence for the two QPTs at κc1 and κc2 .

The spin stiffness (or helicity modulus) of a spin-lattice
system is a measure of the energy required to rotate the order
parameter of a magnetically ordered thermodynamic system
by an (infinitesimal) angle θ per unit length in a given direction.
Thus, if E(θ ) is the GS energy as a function of the imposed
twist and N is the number of lattice sites, we have

E(θ )

N
= E(θ = 0)

N
+ 1

2
ρsθ

2 + O(θ4). (6)
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(a) (b)

FIG. 2. (Color online) The twisted reference states for the calcu-
lation of the spin stiffness coefficient, ρs , for the J1-J2-J3 honeycomb
model, showing the twist applied in the x direction to the (a) Néel
and (b) striped states, shown in Fig. 1. The spins on lattice sites are
represented by the (red) arrows.

Note that θ has the dimensions of an inverse length. In the
thermodynamic limit (N → ∞) a nonzero (positive) value
of ρs implies that the system has magnetic long-range order
(LRO), while the magnetic LRO melts at the point where
ρs → 0. Clearly, for the Néel AFM state of Fig. 1(a), for which
the ordering wave vector Q = 
 = (0,0), the quantity ρs is
independent of the direction of the applied twist, whereas for
the particular striped AFM state shown in Fig. 1(b), for which
Q = 2π/(

√
3d)x̂, the physically relevant direction in which to

apply the twist is the x direction. Figure 2 thus illustrates the
two twisted AFM states (i.e., the Néel and striped states) used
in our calculations for the spin stiffness coefficient.

The definition of Eq. (6) easily leads to the corresponding
values of ρs for the classical (s → ∞) J1-J2-J3 model on the
honeycomb lattice,

ρNéel
s; cl = 3

4 (J1 − 6J2 + 4J3)d2s2 , (7)

and

ρ
striped
s; cl = 3

4 (−J1 − 2J2 + 4J3)d2s2 . (8)

The lines along which the spin stiffness coefficients given by
Eqs. (7) and (8) vanish are, as expected, just the classical phase
boundaries for the two AFM states with the spiral state.

It is also interesting to note that in the limiting case J3 →
∞, for fixed values of J1 and J2, the J1-J2-J3 model reduces
to four decoupled honeycomb-lattice HAFs, each with NN
coupling J3 and lattice spacing 2d. Thus the GS energy in
the case {J1 = 0, J2 = 0, J3 = 1} should be equal to that of
the case when {J1 = 1, J2 = 0, J3 = 0}. Similarly, the spin
stiffness in the former limit should equal four times that in the
latter limit, due to the doubling of the lattice size of each of the
four decoupled honeycomb sublattices. Just, as this result holds
for the classical model (s → ∞), from Eq. (7), so it should
also hold for general values of the spin quantum number s.

In order to calculate the zero-field magnetic susceptibility
χ , we now place our system in an external transverse magnetic
field h. For the two collinear AFM states shown in Fig. 1, both
with spins aligned along the xs direction, we apply the field in
the zs direction, h = hẑs . The Hamiltonian H = H (h = 0) of
Eq. (1) thus becomes

H (h) = H (h = 0) + h
∑

l

sz
l , (9)

(a) (b)

FIG. 3. (Color online) The canted reference states for the calcu-
lation of the zero-field magnetic susceptibility, χ , for the J1-J2-J3

honeycomb model. The external magnetic field is applied in the zs

direction to the (a) Néel and (b) striped states, shown in Fig. 1. The
spins on lattice sites are represented by the (red) arrows.

in units where the gyromagnetic ratio gμB/� = 1. In the
presence of the field, the spins will now cant at an angle α

to the xs axis with respect to their zero-field configurations, as
shown in Fig. 3 for the two classical AFM states illustrated in
Fig. 1.

The classical (s → ∞) value of α for each of the states
is easily calculated by minimizing the classical energy, E =
E(h), corresponding to Eq. (9) with respect to α. The uniform
magnetic susceptibility is then defined, as usual, by

χ (h) = − 1

N

d2E

dh2
, (10)

and its zero-field limit as χ ≡ χ (0). The corresponding analog
of Eq. (6) is thus,

E(h)

N
= E(h = 0)

N
− 1

2
χh2 + O(h4) . (11)

These relations readily yield the values of χ for the two
collinear AFM states of the classical (s → ∞) J1-J2-J3 model
on the honeycomb lattice,

χNéel
cl = 1

6(J1 + J3)
(12)

and

χ
striped
cl = 1

2(J1 + 4J2 + 3J3)
, (13)

with both parameters independent of s in the classical case.
The two values of χ become equal (but nonzero, note) along
the line J2 = 1

2J1 (independent of J3), which is the classical
phase boundary between the two AFM states.

We note that our definitions for both ρs and χ are per
unit site, as is more usual for a discrete lattice description.
On the other hand, in continuum field-theoretic terms, such
as in descriptions using χPT, it is more natural to define
corresponding quantities, ρ̄s and χ̄ , per unit area. Since
the honeycomb lattice has 4/(3

√
3d2) sites per unit area,

ρs = 3
4

√
3d2ρ̄s and χ = 3

4

√
3d2χ̄ .

III. THE COUPLED CLUSTER METHOD

The CCM is one of only a very few universal methods
of ab initio quantum many-body theory (QMBT) that are
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capable of systematic improvement in well-defined hierarchies
of approximations. It is nowadays one of the most perva-
sive, most powerful, and most accurate at attainable levels
of computational implementation, of all fully microscopic
formulations of QMBT. It has been applied with considerable
success to a wide range of physical systems [55–59], ranging
from the electron gas to atoms and molecules of interest in
quantum chemistry, from nuclear matter and finite atomic
nuclei to strongly interacting quantum field theories, and from
models in quantum optics, quantum electronics, and solid
state optoelectronics to diverse condensed matter systems.
The CCM has thus yielded accurate numerical results for a
very wide range of both finite and extended systems defined
either in a spatial continuum or on a regular discrete lattice.
Of particular relevance to the present paper is the fact that the
method has already been applied with demonstrable success to
a large number of spin-lattice problems of interest in quantum
magnetism (and see, e.g., Refs. [12,13,29,35–39,60–70] and
references cited therein).

Two characteristic and rather unique features of the CCM
that are immediately worthy of mention are (i) its ability
to deal with infinite (N → ∞) systems from the outset,
hence obviating the need for any finite-size scaling, which
is required in most competing methods; and (ii) the fact that it
exactly preserves the important Hellmann-Feynman theorem
at all levels of approximate implementation. The method is
implemented in practice, as we explain below, at various levels
of approximation in a well-defined truncation hierarchy, with
each level specified by a truncation index n = 1,2,3, . . . . The
only approximation made is then to extrapolate the values
obtained for the physical observables at the nth level to the
n → ∞ limit where the CCM becomes exact.

The CCM has been described in detail in earlier papers
(and see, e.g., Refs. [13,57–59,61,62,68,69] and references
cited therein), and hence we briefly outline only its most salient
features here. Every implementation of the method begins with
the choice of a suitable normalized reference (or model) state,
with respect to which the quantum correlations present in the
exact GS phase under study can then be incorporated at the
next stage. For this study suitable choices of the model state
|〉 will be the two quasiclassical AFM states (viz., the Néel
and collinear striped states) shown in Figs. 1(a) and 1(b).

The exact GS ket- and bra-state wave functions, which
satisfy the respective Schrödinger equations,

H |�〉 = E|�〉 ; 〈�̃|H = E〈�̃| , (14)

are chosen to have normalization conditions such that
〈�̃|�〉 = 〈|�〉 = 〈|〉 = 1. These exact states are then
parametrized in terms of the respective model state as

|�〉 = eS |〉 ; 〈�̃| = 〈|S̃e−S , (15)

with the exponential parametrization being a key characteristic
feature of the CCM. The two correlation operators are then
themselves formally decomposed as

S =
∑
I �=0

SIC
+
I ; S̃ = 1 +

∑
I �=0

S̃IC
−
I , (16)

where we define C+
0 ≡ 1 to be the identity operator, and

where the set index I denotes a complete set of single-particle

configurations for all of the particles. In our present spin-lattice
application it defines a specific multispin-flip configuration
with respect to the model state |〉, such that C+

I |〉 is the
corresponding wave function for this configuration of spins.
The model state |〉 thus acts as a fiducial (or cyclic) vector
or, in other words, as a generalized vacuum state, with respect
to the complete set of mutually commuting creation operators
{C+

I }, and which hence satisfy the conditions 〈|C+
I = 0 =

C−
I |〉 , ∀I �= 0, where the destruction operators C−

I ≡
(C+

I )†.
It is very convenient for spin-lattice problems to consider

each lattice site i as totally equivalent to all others, whatever
the choice of model state |〉, and one simple way to do this
is to make a passive rotation of each spin so that in its own
local spin-coordinate frame it points, say, in the downward
(i.e., negative zs) direction as in the spin coordinate frame
shown in Fig. 1. Such choices of local spin coordinates
clearly do not affect the basic SU(2) spin commutation
relations. However, all independent-spin product model states
now take the universal form |〉 = |↓↓↓ · · · ↓〉. Thus C+

I

can simply be expressed as a product of single-spin raising
operators, s+

k ≡ sx
k + is

y

k , such that C+
I ≡ s+

k1
s+
k2

· · · s+
kn

; n =
1,2, . . . ,2sN . For the present study, where we consider s = 1

2 ,
each site index included in the corresponding set index
I ≡ {k1,k2, . . . ,kn; n = 1,2, . . . ,2sN} may appear no more
than once. Once the local spin coordinates have been chosen
for the particular model state |〉, the Hamiltonian H simply
needs to be re-expressed in terms of them.

In principle, what remains is then to calculate the CCM cor-
relation coefficients {SI ,S̃I }. This is achieved by minimization
of the GS energy expectation functional,

H̄ = H̄ [SI ,S̃I ] ≡ 〈|S̃e−SHeS |〉 , (17)

with respect to each of the coefficients {SI ,S̃I ; ∀I �= 0}. From
Eqs. (16) and (17), variation with respect to S̃I yields the
coupled set of nonlinear equations,

〈|C−
I e−SHeS |〉 = 0 , ∀I �= 0 , (18)

for the coefficients {SI }. Similarly, variation of Eq. (17) with
respect to SI yields the corresponding set of linear equations

〈|S̃e−S[H,C+
I ]eS |〉 = 0 , ∀I �= 0 , (19)

for the coefficients {S̃I }, once Eq. (18) has been solved for the
coefficients {SI }. The GS energy eigenvalue E, which is the
value of H̄ at the minimum, is then simply

E = 〈|e−SHeS |〉 = 〈|HeS |〉 . (20)

Equation (19) may then be written in the equivalent form,

〈|S̃(e−SHeS − E)C+
I |〉 = 0 , ∀I �= 0 , (21)

of a set of generalized linear eigenvalue equations for the
coefficients {S̃I }.

Having built in the correlations into our CCM parametriza-
tion of the GS wave function |�〉, it now suffices to apply
a linear excitation operator Xe to |�〉 to parametrize the
excited-state wave function |�e〉 as

|�e〉 = XeeS |〉 , Xe =
∑
I �=0

X e
I C+

I . (22)
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By suitably combining the GS Schrödinger equation (14) with
its excited-state counterpart,

H |�e〉 = Ee|�〉 , (23)

and realizing that the operators Xe and S commute, by
construction, we readily deduce the equation

e−S[H,Xe]eS |〉 = �eX
e|〉 , (24)

where �e ≡ Ee − E is the excitation energy. By taking the
overlap of Eq. (24) with the state 〈|C−

I , we find

〈|C−
I e−S[H,Xe]eS |〉 = �eX e

I , ∀I �= 0 , (25)

when the states labeled by the indices {I } are, as usual,
orthonormalized, 〈|C−

I C+
J |〉 = δ(I,J ). The generalized

eigenvalue equation (25) is then solved for �e.
In the present case, the configurations chosen in the

expansion of Eq. (22) for the excitation operator Xe are
restricted to those that change the z component of the total
spin, Sz

T , by one. The value we thus obtain for �e is then the
spin-triplet gap, which we henceforth denote as �.

Up to this point no approximations have been made.
Nevertheless, the equations (18) for the coefficients {SI } are
intrinsically nonlinear and one may wonder if truncations
are needed in the evaluation of the exponential functions.
We note that these appear, however, only in the combination
of the similarity transform e−SHeS of the Hamiltonian,
which may be expanded in terms of the well-known nested
commutator sum. Another key feature of the CCM is that
this otherwise infinite sum now actually terminates exactly
with the double commutator term. This is due to the basic
SU(2) commutation relations and because all of the terms in
Eq. (16) comprising S commute with one another and are
simple products of spin-raising operators. All terms in the
expansion of e−SHeS are thus linked, and the Goldstone linked
cluster theorem is exactly preserved, even if the expansion
of Eq. (16) is truncated in any way, thereby guaranteeing
size-extensivity at any such level of truncation and our ability
to work from the outset in the thermodynamic (N → ∞) limit.
Similar considerations also apply to Eqs. (19) and (25).

Thus the only approximation made in practice for the
GS calculation is to restrict the set of indices {I } retained
in the expansions of Eq. (16) for the operators {S,S̃}.
Here we utilize the well-tested localized (lattice-animal-based
subsystem) LSUBn scheme used in our earlier work on this
model [29,35,37] and in many other studies too. The LSUBn

scheme is defined so that at the nth level of approximation we
retain all multispin-flip configurations {I } in Eq. (16) that are
defined over n or fewer contiguous lattice sites. Such cluster
configurations are said to be contiguous in this sense if every
site in the cluster is NN to at least one other. The number,
Nf = Nf (n), of such distinct fundamental configurations may
be reduced by utilizing the space- and point-group symmetries
of the model, together with any conservation laws that pertain
to both the Hamiltonian and the specific model state being
used. Even so, the number Nf (n) increases rapidly as the
truncation index n is increased, and the need eventually arises
to use massive parallelization together with supercomputing
resources for the highest-order calculations [62,71].

For the excited-state calculation of the spin gap �, the
choice of clusters for the excitation operator Xe, which are

retained in Eq. (22) is different from that of the GS, since we
restrict ourselves now to those that change the z component,
Sz, of total spin by one unit. Nevertheless, we use the same
LSUBn scheme for both the GS and excited-state calculations,
thereby ensuring comparable accuracy for both. The number
Nf = Nf (n) at a given level n of truncation is appreciably
higher for the excited state than for the corresponding GS
calculation. Nevertheless, the corresponding CCM equations
have been solved for the present model using both quasiclas-
sical (Néel and striped) AFM states as model states in LSUBn

approximations with n � 12.
Clearly, the CCM LSUBn approximations become exact,

by construction, in the n → ∞ limit. There exist well-tested,
accurate extrapolation rules for the GS quantities E/N and M ,
as we have described and used in our earlier paper [29] for this
model. Similarly, for the spin gap, we use the extrapolation
scheme [70,72],

�(n) = d0 + d1n
−1 + d2n

−2 , (26)

to obtain the extrapolated value � ≡ �(∞) = d0 from the
CCM LSUBn approximations, �(n). Similar schemes have
also been successfully used previously for both the spin
stiffness ρs [64,65],

ρs(n) = s0 + s1n
−1 + s2n

−2 , (27)

and the zero-field magnetic susceptibility, χ [65,66],

χ (n) = x0 + x1n
−1 + x2n

−2 . (28)

In the latter case, as a check on the validity and accuracy of
the scheme, we also utilize the completely unbiased scheme,

χ (n) = x̄0 + x̄1n
−ν , (29)

in which the leading exponent ν is itself a fitting parameter,
along with x̄0 and x̄1. Finally, since the lowest-order LSUBn

approximants (particularly that with n = 2) are less likely
to conform well to these extrapolation rules than those
with higher values of n, and also since the hexagon is the
fundamental structural element of the honeycomb lattice, we
prefer to use LSUBn data with n � 6, whenever practicable,
to perform each of the extrapolations in practice.

IV. RESULTS

In our earlier work on the spin- 1
2J1-J2-J3 model on the

honeycomb lattice along the line J3 = J2 (=κJ1) in phase
space [29], we employed the CCM and computed LSUBn

results for both the GS energy per spin E/N and magnetic
order parameter M with values of the truncation index n � 12,
using both the Néel and striped collinear AFM states as
CCM model states. Although the number of fundamental
configurations Nf , at a given LSUBn level of approximation
is greater for the triplet excited state than for the ground state
for the corresponding CCM calculations based on both model
states, we are still able to calculate the spin gap � at LSUBn

levels with n � 12, even with the increased computational
difficulty. We are thus able to achieve comparable accuracy
for both the ground and excited states.

We show in Fig. 4(a) our “raw” LSUBn results for the
spin gap � with n = {6,8,10,12}, based on both the Néel
and striped collinear states used separately as the CCM model
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FIG. 4. (Color online) The spin gap � vs the frustration parameter κ ≡ J2/J1, for the spin- 1
2 J1-J2-J3 model on the honeycomb lattice

(with J1 = 1, J3 = J2 > 0). (a) CCM results based on the Néel and the striped AFM states as CCM model states. The LSUBn results are shown
with n = {6,8,10,12}. The extrapolated LSUB∞ results using Eq. (26) are shown, together with the error bars associated with the fit. (b) ED
results for lattices with N = 24 and 32 spins.

state. We also show the corresponding (LSUB∞) extrapolated
values, as obtained using the scheme of Eq. (26). For the Néel
results our method of solution is as follows. We first solve for
the pure Heisenberg AFM in the case κ = 0, where we find a
stable physical solution to the CCM equations at each LSUBn

level of truncation. For a given value of the truncation index n

the corresponding LSUBn solution is tracked as the frustration
parameter κ is increased incrementally, just to the point where
this stable solution terminates, as shown in Fig. 4(a). These
termination points for the excited-state CCM equations are
completely analogous to those also found for the GS CCM
equations, which have been well described and documented
previously (see, e.g., Refs. [36,39,63,68]). They are direct
manifestations of the respective QCP in the physical system
under study, at which the corresponding form of magnetic
order in the associated model state melts. As is usually the
case, we find that each LSUBn Néel solution with a fixed
(finite) value of n terminates at a higher value of κ than
the corresponding actual critical value, κc1 , which is just the
LSUB∞ limiting value. The outcome is that we may thereby
consider a range for the parameter κ that is appreciably beyond
the (seemingly continuous) transition at κc1 from the Néel
phase to the quantum paramagnetic phase.

On the other side of the phase diagram we similarly track
each LSUBn solution based on the collinear striped state
as CCM model state from high values of κ down to some
respective lower transition point, corresponding to the actual
transition at κc2 . Again, for each value of the transition index n,
we may enter into the region below the (seemingly first-order)
transition at κc2 into the quantum paramagnetic phase. Of
course, if the transition at κc2 is indeed of first-order type,
as seems likely from all prior available evidence, one might
possibly query the validity of our CCM results based on the
striped collinear state in the region κ < κc2 .

In Fig. 4(a) for the LSUB∞ extrapolated values of � based
on our LSUBn results with n = {6,8,10,12}, we also show the
error bars associated with the assumed scheme of Eq. (26). It
is clear that the fit on the Néel side of the phase diagram
is markedly better than that on the striped collinear side.

Very interestingly, very similar behavior was also observed
in a recent CCM study of the spin gap in the spin- 1

2 J1-J2

model on the square lattice [70], where possible reasons for
the difference in accuracy of the fits for small and large values
of κ were discussed. Despite this difference in the quality of
the extrapolations for the Néel and striped phases, the results in
Fig. 4(a) are clearly compatible with � being zero in the ranges
κ < κc1 and κ > κc2 for the two quasiclassical GS phases with
magnetic LRO, where the spin gap must be zero.

Conversely, we see from Fig. 4(a) that � > 0 for a
considerable range of values in the range κc1 < κ < κc2 on
both the Néel (κ > κc1 ) and striped (κ < κc2 ) sides of the
region, over which the LSUBn solutions with n � 12 persist,
before their respective termination points. The values of κ

at which the LSUB∞ curves for � become nonzero are
also completely compatible with the values for κc1 and κc2

determined by us previously [29], at which the magnetic order
parameter vanishes, M → 0. Our results are incompatible with
the entire intermediate phase for κc1 < κ < κc2 being a gapless
spin liquid. By contrast they provide supporting evidence to
our earlier findings [29] that the quantum paramagnetic phase
in this regime has PVBC order. On the other hand, our results
for � would not, by themselves, rule out a gapped spin liquid
in the intermediate regime.

It is interesting to note that our results for � being
nonzero over (at least part of) the intermediate regime for
the present honeycomb model, are in contrast to the equivalent
CCM results [70] for the corresponding intermediate quantum
paramagnetic regime in the spin- 1

2J1-J2 model on the square
lattice. For the latter case, the extrapolated values of � over the
entire parameter region accessible were found to be zero (or
very close to zero). For the spin- 1

2 J1-J2 model on the square
lattice, the Néel order is found to melt at a comparable value
of the frustration parameter, κ ≡ J2/J1, at κc1 ≈ 0.45, with a
paramagnetic state in the region κc1 < κ < κc2 ≈ 0.59. In this
case, the CCM based on the Néel state as a model state can
access the region κc1 < κ � 0.49 in LSUBn approximations
with n � 12 [70], and in this region around the seemingly
continuous transition at κc1 the extrapolated CCM value of �
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is zero within computational accuracy. A very recent, accurate,
density-matrix renormalization group calculation [73] also
finds good evidence for a near-critical state in the region
κc1 < κ � 0.5, with a very small gap for the finite-sized
systems studied, and also for a gapped PVBC state in the
remainder of the paramagnetic regime, 0.5 � κ < κc2 .

Finally, on the issue of the spin gap, we also present
corresponding results in Fig. 4(b) for the current model
obtained by ED, for lattices containing N = 24,32 spins.
Clearly, neither lattice is large enough to show clearly the N →
∞ behavior of � = 0 over both quasiclassical regimes (i.e.,
Néel and striped collinear). Nevertheless, there is evidence
(interestingly, more marked for the smaller lattice) of a gap
opening up around κ ≈ 0.6 (i.e., at κc2 ) as κ is decreased
from above. The steep decay around this value (seen most
clearly in the N = 32 data) is due to a level crossing in
the triplet state. While the ED data are clearly indicating the
first-order transition at κ = κc2 , they are, unsurprisingly, quite
smooth around the continuous transition at κ = κc1 . Thus,
while the ED results certainly do not contradict our CCM
results, by themselves they are certainly much less predictive
than the corresponding CCM results. Certainly, they do not,
by themselves, contradict the appearance of a gap in the
intermediate regime κc1 < κ < κc2 with a sizable peak value,
� ≈ 0.4, as shown by the CCM results.

We turn now to our results for the low-energy parameters,
ρs and χ . In view of the lower symmetries of the twisted
and canted CCM model states used respectively for these
parameters, as illustrated in Figs. 2 and 3, the numbers Nf

of fundamental configurations at a given LSUBn level of
approximation are greater than those for the GS parameters
E/N and M and for the spin gap �. For example, for the
calculation of �, Nf ≈ 104 (2 × 105) for LSUBn approxi-
mations based on the Néel model state with n = 10 (12).
Corresponding values based on the striped model state are
Nf ≈ 2.5 × 104 (5 × 105) with n = 10 (12). By contrast, for
the twisted model states used for the calculation of ρs , as
shown in Fig. 2, Nf ≈ 3.5 × 105 at the LSUB10 level of
approximation, and it becomes computationally infeasible to
perform LSUBn calculation for ρs at higher truncation levels,
n � 12.

Figure 5 shows our “raw” CCM LSUBn results with
n = {6,8,10} for ρs , together with the corresponding LSUB∞
values using the extrapolation scheme of Eq. (27) together with
this data set. For comparison purposes, we also show in Fig. 5
the corresponding classical values obtained from Eqs. (7) and
(8) by putting J3 = J2 = κJ1 and s = 1

2 , viz., ρNéel
s; cl /(J1d

2) =
3

16 (1 − 2κ), and ρ
striped
s; cl /(J1d

2) = 3
16 (−1 + 2κ). We see clearly

that the extrapolated values for ρs for both (the Néel and striped
collinear) quasiclassical phases lie somewhat lower than their
classical counterparts for all values of the frustration parameter
κ . Based on LSUBn extrapolations of ρs with n = {6,8,10},
the critical values at which ρs → 0 on the Néel and striped
sides of the phase diagram, respectively, are κc1 ≈ 0.433 and
κc2 ≈ 0.621. These may be compared with the corresponding
values in our earlier paper [29], based on LSUBn extrapola-
tions of the corresponding points where the magnetic order
parameter M → 0, of κc1 ≈ 0.448 and κc2 ≈ 0.601 based on
the same data set n = {6,8,10}, and the presumably even more
accurate values κc1 ≈ 0.466 and κc2 ≈ 0.601 based on the
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FIG. 5. (Color online) CCM results for the spin stiffness ρs (in
units of J1d

2) vs the frustration parameter κ ≡ J2/J1, for the
spin- 1

2 J1-J2-J3 model on the honeycomb lattice (with J1 = 1, J3 =
J2 > 0). We show results based on the Néel AFM and the striped
AFM states as CCM model states. The LSUBn results are shown
with n = {6,8,10}, together with the extrapolated LSUB∞ results
using Eq. (27) with this data set. The classical results from Eqs. (7)
and (8) are also shown for the value s = 1

2 .

larger data set n = {6,8,10,12} available in this case. Clearly,
the totally independent estimates of the two QCPs from the
places where M → 0 and ρs → 0 are in good agreement
with one another, within very small errors arising from the
extrapolations.

In order to estimate the accuracy of our results for ρs

independently, we may compare with those of others for
the special case of a pure honeycomb-lattice HAF with NN
interactions only, i.e., when κ = 0. Our LSUB∞ extrapo-
lated value using the LSUBn data set with n = {6,8,10} is
ρs(κ = 0) ≈ 0.1324J1d

2. To our knowledge, the best available
alternative result for ρs(κ = 0) comes from a first-principles
QMC method using a highly efficient loop-cluster algorithm
[9,11]. The most accurate value quoted by Jiang [11] is ρ̄s(κ =
0) = 0.1012(2)J1, equivalent to ρs(κ = 0) = 0.1315(3)J1d

2,
which is in excellent agreement with our own result.

Figure 6 shows our corresponding results for the zero-field
magnetic susceptibility χ . For the striped collinear state used
as the CCM model state, the number Nf of fundamental
configurations at the LSUB10 level is Nf ≈ 3.5 × 105, and
once again, just as for ρs it is computationally infeasible
to perform LSUBn calculations for this phase with n � 12.
By contrast, for the Néel state used as our CCM model
state, Nf ≈ 6 × 104 at the LSUB10 level and Nf ≈ 1.1 × 106

at the LSUB12 level. In order to be consistent with our
treatment of the two quasiclassical phases, we show the “raw”
LSUBn results in Fig. 6 with n = {6,8,10} and corresponding
LSUB∞ extrapolations based on this data set. However, on
the Néel side we have also performed an LSUB12 calculation
for the unfrustrated limiting case κ = 0. Once again, for
comparison purposes, we also show in Fig. 6 the corresponding
classical values obtained from Eqs. (12) and (13) by putting
J3 = J2 = κJ1 and s = 1

2 , viz., χNéel
cl = 1/[6J1(1 + κ)], and

χ
striped
cl = 1/[2J1(1 + 7κ)].
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FIG. 6. (Color online) CCM results for the zero-field magnetic
susceptibility (in units of J −1

1 ) vs the frustration parameter κ ≡ J2/J1,
for the spin- 1

2 J1-J2-J3 model on the honeycomb lattice (with J1 = 1,
J3 = J2 > 0). We show results based on the Néel and the striped
AFM states as CCM model states. The LSUBn results are shown
with n = {6,8,10}, together with the extrapolated LSUB∞(1) and
LSUB∞(2) results using Eqs. (28) and (29), respectively, with this
data set. The classical results from Eqs. (12) and (13) are also shown
for the value s = 1

2 .

Once again we see that quantum fluctuations act to reduce
the value of χ considerably from its classical value in
both quasiclassical AFM phases. Perhaps the most important
feature of Fig. 6 is that, unlike in the classical case where
χcl takes the (nonzero) value 1

9 at the phase transition point
κcl = 1

2 , in the quantum s = 1
2 case χ now vanishes at the two

QCPs, which is a very clear indication of a spin gap opening
up at these points [74,75].

We show in Fig. 6 extrapolated LSUB∞ results based
on the schemes of both Eqs. (28) and (29). The two sets
of results shown are seen to be in excellent agreement with
each other except in very narrow regimes close to the two
QCPs at κc1 and κc2 . Based on the scheme of Eq. (28), the
two critical values obtained from extrapolating the LSUBn

values with n = {6,8,10} are κc1 ≈ 0.469 and κc2 ≈ 0.583.
The corresponding values from using scheme of Eq. (29) are
κc1 ≈ 0.430 and κc2 ≈ 0.609. While both sets of results agree
quite well with the corresponding results cited above of κc1 ≈
0.448 and κc2 ≈ 0.601 from our earlier work on extrapolations
for the magnetic order parameter of corresponding LSUBn

results with n = {6,8,10}, there is clearly more uncertainty
in the critical values obtained from the zero-field magnetic
susceptibility.

As an aside here, we remark that the shapes (e.g., the slopes)
of the respective extrapolated (LSUB∞) curves for ρs and χ

in Figs. 5 and 6 appear to vary significantly near where they
vanish at the QCP κc1 , and also, but to a lesser extent, at the
QCP κc2 . Clearly, in turn, this would imply different values for
the critical indices for the two low-energy parameters at κc1 ,
in particular. However, we remain cautious about putting too
much weight on such an interpretation, since it is precisely in
the regions very close to the QCPs where the extrapolations
become most demanding. While we are rather confident of
the calculated values for κc1 and κc2 themselves, within errors
we can estimate (and also see the further discussion below in

Sec. V), the actual detailed shapes of the extrapolated curves
(including, e.g., their slopes) at the QCPs is more open to
doubt and the errors are more difficult to quantify. A close
comparison of the raw LSUBn families of curves and their
respective LSUB∞ extrapolations in Figs. 5 and 6 shows that
the slopes of the raw and extrapolated curves very near to a
supposedly continuous transition like that at κc1 can differ
appreciably. This difference is less marked at a first-order
transition like that at κc2 , although still present to a lesser
degree. For these reasons we are reluctant, with our present
methodology and accuracy, to make any claims to be able to
calculate, with any quantitative degree of accuracy, the critical
indices for the vanishing of ρs and χ at the two QCPs. Any
such interpretation drawn from our results about the critical
indices being different for ρs and χ at κc1 especially, should
be regarded as suggestive at best, in our opinion.

It is also of interest to compare our results for χ for the limit-
ing case κ = 0 of a pure honeycomb HAF with NN interactions
only. Our extrapolated LSUB∞ results based on Eq. (28)
are χ (κ = 0) = 0.0847(4)/J1, using LSUBn data points n =
{6,8,10,12}, where the quoted errors is purely that associated
with the fit. Corresponding extrapolations based on LSUBn

results with n = {6,8,10} and n = {8,10,12} are, respectively,
χ (κ = 0) ≈ 0.0845/J1 and χ (κ = 0) ≈ 0.0837/J1. Other es-
timates are χ (κ = 0) ≈ 0.0756(10)/J1 from a linked-cluster
SE analysis [6]; χ (κ = 0) ≈ 0.1667/J1 and χ (κ = 0) ≈
0.0456/J1 from SWT at leading (classical) order and next-
to-leading order [viz., with O(1/s) corrections included],
respectively [6]; and χ (κ = 0) = 0.0666/J1 from SBMFT
[5]. The most accurate estimates for this unfrustrated limit
undoubtedly come from QMC calculations. For example, Löw
[10] used a continuous Euclidean time QMC algorithm to find
a value χ̂(κ = 0) = 0.05188(8)/J1. Presumably, in the QMC
calculations of the magnetic susceptibility the value χ̂ obtained
is an average over all directions of the applied field, since the
ground state is calculated for a finite system, i.e., with no
breaking of the rotational symmetry. By contrast, in the CCM
calculations, we start with a symmetry-broken state and apply
the field perpendicular to the axis of the order parameter, to ob-
tain χ⊥ (≡χ ) directly. Thus χ̂ = 1

3 (χ‖ + 2χ⊥), where χ‖ (=0)
is the parallel component of the magnetic susceptibility. Hence
we have χ = 3

2 χ̂ , and the QMC result of Löw is equivalent
to χ (κ = 0) = 0.0778(1)/J1. Another QMC estimate, using a
loop-cluster algorithm by Jiang [11], can also be quoted. While
Jiang does not quote a result for χ directly, he does provide the
result �c(κ = 0) = 1.2905(8)J1d. This may be combined with
his result for ρs cited above to calculate χ = ρs/(�c)2, yielding
the value χ (κ = 0) = 0.0789(3)/J1. Clearly, our own best
CCM estimate, χ (κ = 0) = 0.084(2)/J1, lies slightly higher
than those two QMC estimates.

It is also convenient to express the low-energy parameters
in terms of a multiplicative renormalization constant Z with
respect to the corresponding classical result. Thus we define
Zρs

and Zχ as

Zρs
≡ ρs/ρs; cl , Zχ ≡ χ/χcl . (30)

Since the spin-wave velocity is given by �c = √
ρs/χ , its

corresponding renormalization constant is

Zc = √
Zρs

/Zχ . (31)
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FIG. 7. (Color online) CCM results for the three renormalization
constants corresponding to the spin stiffness ρs , the zero-field
magnetic susceptibility χ , and the spin-wave velocity c, of the
spin- 1

2 J1-J2-J3 model on the honeycomb lattice with J1 > 0, in
the case J3 = J2 = κJ1. Results for Zc are unreliable in the regions
shown by thin lines, close to the critical points (and see text for
details).

Our extrapolated LSUB∞ results for the three renormalization
constants of Eqs. (30) and (31) are shown in Fig. 7, where
we employ the LSUB∞(1) results for χ obtained from the
extrapolation scheme of Eq. (28).

We should point out that the seeming vanishing of the
Goldstone spin-wave velocity at both critical points κc1 and κc2 ,
as shown in Fig. 7, is entirely an artefact of our calculational
scheme. Thus Zc has been calculated here indirectly via
Eq. (31) using our (separately) extrapolated results for ρs and
χ . In reality both of these parameters should go to zero at the
same points (at least for χ at a transition at which a spin gap
opens). However, as we have noted, our calculated results for
ρs and χ are completely independent of one another, and as
a consequence the critical values at which both parameters
vanish are not constrained to be the same. This is both
a strength and a weakness of the methodology. The main
advantage is that it provides an inbuilt error estimate for the
accuracy of our calculated values of κc1 and κc2 . However, it
is also clearly a disadvantage when we wish to take ratios, as
in Eq. (31), in regimes close to the QCPs. Thus, if ρs and χ

go to zero at slightly different values of κ , it is guaranteed
that the spin-wave velocity calculated in terms of them will,
quite artificially, approach either zero or infinity near the actual
QCP. We have thus indicated in Fig. 7, by thinner portions of

the curves for Zc, those regions near the two QCPs where the
results for Zc are correspondingly unreliable.

Finally, we collect in Table I our CCM results for the
full set of low-energy parameters for the unfrustrated (κ = 0)
limiting case of a pure spin- 1

2 HAF on the honeycomb lattice
with NN interactions only (of strength J1 > 0). We compare
our results there with values obtained from a linked-cluster
SE analysis [6], and two different QMC analyses [10,11],
which are expected to be very accurate in this case, where
the infamous minus-sign problem is absent. There is no reason
to expect that the evident accuracy of our results in this limit
will be any lower over the entire range of values of κ accessible
to us, by strong contrast with QMC techniques, which degrade
significantly in the presence of frustration.

V. SUMMARY AND CONCLUSIONS

In this paper, we have continued our prior investigation [29]
of the spin- 1

2J1-J2-J3 HAF model on the honeycomb lattice,
along the line J3 = J2 = κJ1, with J1 > 0, that includes the
point of maximum classical frustration at κ = κcl = 1

2 . Just
as in our prior work we have used the CCM based on both
the Néel and collinear striped AFM states as reference states,
with respect to which we have included quantum fluctuations
in the fully consistent LSUBn truncation scheme. We have
carried out calculations to high orders in the truncation index
n (typically with n � 10, but in some cases also with n � 12).
The only approximation made has been to extrapolate in the
truncation index n to the exact (n → ∞) LSUB∞ limit.

We have now calculated a complete set of low-energy
parameters (E/N,M,ρs,χ , and c) for the model, from which
we obtain independent pieces of evidence that provide a
clear and consistent description of its T = 0 quantum phase
diagram. In particular, we find compelling evidence that the
single phase transition in the classical (s → ∞) version of
the model at κcl = 1

2 is split in the s = 1
2 model into two

quantum phase transitions at κc1 and κc2 . In our prior work
[29], these two QCPs were identified independently by the
points at which both the magnetic order parameter M and the
inverse of the susceptibility coefficient against the formation
of a state with PVBC order, 1/χp, vanish. To those estimates,
we now add two more, based on the points at which both ρs

and χ vanish. The collected results are displayed together in
Table II, in which the results for M and 1/χp are obtained
[29] from LSUB∞ extrapolation based on LSUBn data points
with n = {6,8,10,12}, while those for ρs and χ are obtained

TABLE I. The low-energy parameters for the spin- 1
2 HAF on the honeycomb lattice with lattice spacing d and with exchange interactions

between NN pairs only, all with equal strength J1 > 0. The classical values are compared with our CCM results, and those using the alternative
techniques of linked-cluster SE [6] and two different QMC algorithms [10,11].

Classical SE QMC QMC
Parameter value CCM (Ref. [6]) (Ref. [10]) (Ref. [11])

E/(NJ1) − 0.375 − 0.54466(2) − 0.5443(3) − 0.54455(20)
M 0.5 0.2714(10) 0.266(9) 0.2681(8) 0.26882(3)
ρs/(J1d

2) 0.1875 0.1324(5) 0.1315(3)
J1χ 0.1667 0.084(2) 0.0756(10) 0.07782(12)
�c/(J1d) 1.0607 1.255(15) 1.2905(8)
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TABLE II. Values of the two quantum critical points κc1 and
κc2 of the spin- 1

2 J1-J2-J3 HAF model on the honeycomb lattice,
along the line J3 = J2 = κJ1 with (J1 > 0), as obtained from the
vanishing points of the magnetic order parameter M , the spin stiffness
ρs , the uniform magnetic susceptibility χ , and the inverse of the
susceptibility coefficient of the system against the formation of
PVBC order 1/χp , all evaluated by the extrapolation of CCM LSUBn

results.

Parameter (→ 0) κc1 κc2

M (see Ref. [29]) 0.466 0.601
ρs (this work) 0.433 0.621
χ (this work): LSUB∞(1)a 0.469 0.583
χ (this work): LSUB∞(2)b 0.430 0.609

1/χp (see Ref. [29]) 0.473 0.586

aUsing the extrapolation scheme of Eq. (28).
bUsing the extrapolation scheme of Eq. (29).

from data points with n = {6,8,10}. All of our results are fully
consistent with values κc1 = 0.45(2) and κc2 = 0.60(2).

Based on the shape of the curves for M and 1/χp as
functions of κ , we suggested in our earlier work that the QCP
at κc1 between the state with Néel order (for κ < κc1 ) and the
paramagnetic intermediate state was of continuous type, while
that at κc2 between the state with collinear striped order (for
κ > κc2 ) and the intermediate state is of first-order type. The
new evidence, based on ρs and χ , shown in Figs. 5 and 6,
respectively, is completely consistent with this interpretation,
as indeed is also the evidence based on the curves for the spin
gap � shown in Figs. 4(a) and 4(b).

Since at a QCP the quantum fluctuations present in a system
are sufficiently strong to make the system infinitely susceptible
to multiple forms of order, the vanishing of 1/χp at κc1 and κc2

cannot be taken as strong evidence that PVBC order is present
over the entire intermediate regime, κc1 < κ < κc2 . However,
just as we could in this work find values of � into this regime
in regions around both QCPs, so in our earlier work [29] could
we calculate χp in similar regions. The shape of the curves for
1/χp as a function of κ was consistent with 1/χp vanishing in
those regions. It was on this evidence that we made the tentative
conclusion that the entire region κc1 < κ < κc2 contained a
quantum phase with PVBC order.

The results of the present paper provide strong support for
such an interpretation. Firstly, the vanishing of χ at κc1 and
κc2 provides compelling evidence for a gapped state opening
up at these points. Secondly, our results displayed in Fig. 4
provide positive and conclusive evidence of a gapped state
over a considerable range of the intermediate regime, which
is accessible using both quasiclassical AFM states as CCM
model states. The values at which � becomes nonzero are also
wholly consistent with the values for κc1 and κc2 cited above,
as obtained from the GS low-energy parameters.

We note that Goldstone’s theorem implies that any state that
breaks spin-rotational symmetry must have a vanishing gap.
Thus the nonvanishing of the triplet gap � in the intermediate
phase completely rules out the possibility of any type of
magnetic order being present in this regime, not only the Néel
and striped forms considered explicitly here. Similarly, the fact
that � �= 0 in the intermediate phase also precludes other more

exotic forms of order that break SU(2) symmetry. Examples
include spin-nematic states, which break SU(2) symmetry
while preserving translational and time-reversal symmetries.

Finally, we note that it might also be interesting in
future work to calculate the singlet excitation gap within the
disordered regime, in order to compare it with the triplet gap
calculated here. While the singlet gap can certainly also be cal-
culated within the CCM framework, the calculations are more
challenging, since the excited state now lies in the same sector
as the ground state, viz., with Sz

T = 0, where Sz
T ≡ ∑N

i=1 sz
i .

A possible motivation for doing so would be to compare with
the corresponding results for the spin- 1

2 J1-J2 HAF on the
square lattice, the phase diagram for which is qualitatively
similar to that for the spin- 1

2 J1-J2-J3 Heisenberg model on
the honeycomb lattice, in the case J3 = J2 considered here.

For example, a recent highly accurate density-matrix
renormalization group (DMRG) simulation of the spin- 1

2 J1-J2

Heisenberg model on the square lattice [76] found that the
singlet gap remains consistently below the triplet gap over the
intermediate disordered regime in this case. The authors took
this finding as an indication of the formation of short-range
singlets in the intermediate phase. In turn, this would be
consistent with the intermediate phase being a spin liquid or
one with only weak valence-bond crystalline (VBC) order. By
contrast, a phase with stronger VBC order would be expected
to have a triplon excitation as the lowest-energy excited state,
since such a state corresponds to the breaking of only one
singlet bond, compared to a singlet excitation that requires
the breaking of two singlet bonds. If our conclusion for the
present case of a spin- 1

2 J1-J2-J3 Heisenberg model on the
honeycomb lattice (with J3 = J2), that the intermediate phase
has PVBC order, is correct, we would then expect the singlet
excitation gap to lie higher than the triplet gap, by contrast with
the above DMRG findings for the spin- 1

2 HAF on the square
lattice.

In conclusion, the present paper revisits a model to which
the CCM had previously been applied, with the joint aims
(and outcomes) to improve the conceptual framework and to
yield new physics, particularly with regard to the nature of the
intermediate phase. Thus the calculation of a complete set of
low-energy parameters for the model within a single, unified,
and consistent theoretical CCM framework, has not only given
more detailed information about each of the ordered magnetic
phases and more accurate values for their boundaries with
the intermediate (nonclassical) disordered phase, but has also
opened the possibility for a full (quantitative) χPT treatment
of the model. Similarly, the CCM calculation of the triplet
gap � has now definitively ruled out the intermediate phase
from having any form of order that breaks SU(2) symmetry,
including such exotic states as spin nematics.
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[5] A. Mattsson, P. Fröjdh, and T. Einarsson, Phys. Rev. B 49, 3997
(1994).

[6] J. Oitmaa, C. J. Hamer, and Z. Weihong, Phys. Rev. B 45, 9834
(1992).

[7] J. D. Reger, J. A. Riera, and A. P. Young, J. Phys. Condens.
Matter 1, 1855 (1989).

[8] E. V. Castro, N. M. R. Peres, K. S. D. Beach, and A. W. Sandvik,
Phys. Rev. B 73, 054422 (2006).
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[72] S. E. Krüger, J. Richter, J. Schulenburg, D. J. J. Farnell, and
R. F. Bishop, Phys. Rev. B 61, 14607 (2000).

[73] S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A.
Fisher, Phys. Rev. Lett. 113, 027201 (2014).

[74] F. Mila, Eur. J. Phys. 21, 499 (2000).
[75] B. Bernu and C. Lhuillier, Phys. Rev. Lett. 114, 057201

(2015).
[76] H.-C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86, 024424

(2012).

224434-14

http://dx.doi.org/10.1103/PhysRevB.78.214415
http://dx.doi.org/10.1103/PhysRevB.78.214415
http://dx.doi.org/10.1103/PhysRevB.78.214415
http://dx.doi.org/10.1103/PhysRevB.78.214415
http://dx.doi.org/10.1088/0953-8984/21/40/406002
http://dx.doi.org/10.1088/0953-8984/21/40/406002
http://dx.doi.org/10.1088/0953-8984/21/40/406002
http://dx.doi.org/10.1088/0953-8984/21/40/406002
http://dx.doi.org/10.1103/PhysRevB.84.224428
http://dx.doi.org/10.1103/PhysRevB.84.224428
http://dx.doi.org/10.1103/PhysRevB.84.224428
http://dx.doi.org/10.1103/PhysRevB.84.224428
http://dx.doi.org/10.1103/PhysRevB.89.214413
http://dx.doi.org/10.1103/PhysRevB.89.214413
http://dx.doi.org/10.1103/PhysRevB.89.214413
http://dx.doi.org/10.1103/PhysRevB.89.214413
http://dx.doi.org/10.1103/PhysRevB.91.014426
http://dx.doi.org/10.1103/PhysRevB.91.014426
http://dx.doi.org/10.1103/PhysRevB.91.014426
http://dx.doi.org/10.1103/PhysRevB.91.014426
http://dx.doi.org/10.1140/epjb/e2014-50589-x
http://dx.doi.org/10.1140/epjb/e2014-50589-x
http://dx.doi.org/10.1140/epjb/e2014-50589-x
http://dx.doi.org/10.1140/epjb/e2014-50589-x
http://www-e.uni-magdeburg.de/jschulen/ccm/index.html
http://dx.doi.org/10.1103/PhysRevB.61.14607
http://dx.doi.org/10.1103/PhysRevB.61.14607
http://dx.doi.org/10.1103/PhysRevB.61.14607
http://dx.doi.org/10.1103/PhysRevB.61.14607
http://dx.doi.org/10.1103/PhysRevLett.113.027201
http://dx.doi.org/10.1103/PhysRevLett.113.027201
http://dx.doi.org/10.1103/PhysRevLett.113.027201
http://dx.doi.org/10.1103/PhysRevLett.113.027201
http://dx.doi.org/10.1088/0143-0807/21/6/302
http://dx.doi.org/10.1088/0143-0807/21/6/302
http://dx.doi.org/10.1088/0143-0807/21/6/302
http://dx.doi.org/10.1088/0143-0807/21/6/302
http://dx.doi.org/10.1103/PhysRevLett.114.057201
http://dx.doi.org/10.1103/PhysRevLett.114.057201
http://dx.doi.org/10.1103/PhysRevLett.114.057201
http://dx.doi.org/10.1103/PhysRevLett.114.057201
http://dx.doi.org/10.1103/PhysRevB.86.024424
http://dx.doi.org/10.1103/PhysRevB.86.024424
http://dx.doi.org/10.1103/PhysRevB.86.024424
http://dx.doi.org/10.1103/PhysRevB.86.024424



