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We numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional
sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when
both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation,
the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the
washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to
previous observations in superconducting vortex systems. In the case of skyrmions, the additional contribution
to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher
dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For
a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro
steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with
complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal
and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We
examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both
longitudinal and transverse ac drives. At higher skyrmion densities, the system undergoes a series of dynamical
order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating
dynamical liquid in regimes between the steps.
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I. INTRODUCTION

Phase locking or synchronization effects can arise in cou-
pled oscillators when the different frequencies lock together
over a certain range of parameter space, an effect that was first
reported by Huygens for the synchronization of pendulum
clocks [1]. Phase locking has been extensively studied for
numerous dynamical systems ranging from a pair of coupled
oscillators to an entire coupled oscillator array [2,3]. A single
particle moving over a tilted one-dimensional washboard
potential can also experience phase locking when an additional
ac driving force is applied. The substrate periodicity produces
intrinsic periodic modulations of the particle velocity in the
absence of an ac drive, which increase in frequency as the
magnitude of the tilt or dc drive increases. Addition of an
external fixed-frequency ac drive produces locking regimes
in which the average dc velocity remains constant even as
the magnitude of the dc drive is increased. The same picture
can be applied to Josephson junctions, where the analog of
a velocity-force curve is the voltage-current curve, which
exhibits a series of phase locking regions called Shapiro steps
under an applied ac drive for single junctions [4,5] and coupled
arrays of junctions [6]. One of the hallmarks of Shapiro steps
is that the step width oscillates as a function of the ac drive
amplitude [4–6]. Shapiro step phenomena also arise in dc and
ac driven charge density waves [7–9], spin density waves [10],
and Frenkel-Kontorova models consisting of commensurate
or incommensurate arrangements of particles moving over
ordered or disordered substrates [11–13]. In the case of vortex
motion in type-II superconductors, Martinoli et al. reported the
first observation of Shapiro steps for dc and ac driven vortices
interacting with a periodic one-dimensional (1D) substrate
created by periodic thickness modulations of the sample
[14,15], while similar effects were observed for vortices driven

over 1D [16,17] or two-dimensional (2D) [18,19] periodic
substrates. More recently, Shapiro steps have been found for
ac and dc driven colloidal particles moving over a quasi-1D
periodic substrate [20].

Shapiro steps can also occur when a lattice of collectively
interacting particles moves over a random substrate under
combined dc and ac drives. Here, the effective elastic coupling
between the particles comprising the lattice generates an
intrinsic washboard frequency that can lock to the applied
ac driving frequency. Such steps have been studied for
vortices moving over random disorder [21–25] or through
confined channel geometries [26]. For particles confined to
2D and moving over a quasi-1D substrate, both the ac and
dc drives must be applied in the same direction to produce
Shapiro steps; however, for vortices moving over 2D periodic
or egg-carton substrates, it is possible to obtain what are
called transverse phase locking steps when the ac drive is
perpendicular to the direction of the dc drive [27–29]. These
phase locking steps are distinct from Shapiro steps, and their
widths grow quadratically with increasing ac amplitude rather
than showing the oscillatory behavior associated with Shapiro
steps. Phase locking effects can also occur for overdamped
particle motion in 2D periodic systems under combinations
of two perpendicular ac drives, producing localized and
delocalized motion as well as rectification effects [30–35].

In systems such as vortices and colloidal particles, an
overdamped description of the equations of motion is ap-
propriate. In contrast, the skyrmions that were recently
discovered in chiral magnets have particlelike properties and
many similarities to superconducting vortices, but have the
important distinction that there is a strong nondissipative
Magnus force in their motion [36–45]. The skyrmions can
be set into motion by an applied current and are observed
to have a very small depinning threshold [38–41,46,47], in
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part because the effectiveness of the Magnus force can be up
to ten times stronger than the dissipative force component.
The Magnus force introduces a velocity component of the
skyrmion that is perpendicular to the direction of an imposed
external force, so a skyrmion deflects from or spirals around
an attractive pinning site rather than moving directly toward
the potential minimum as would occur for systems governed
by overdamped dynamics [40,41,47–51]. Since skyrmions
are particlelike objects, many of their dynamical properties
can be captured using a point particle model based on a
modified Theile’s equation that takes into account repulsive
skyrmion-skyrmion interactions, the Magnus force, damping,
and substrate interactions [47,52]. Such an approach has been
shown to match well with micromagnetic modeling [47] of
the depinning of skyrmions in periodic [48] and random
pinning arrays [49]. Particle-based skyrmion models were
used to describe the motion of skyrmions interacting with
single pinning sites [50,51] as well as skyrmion motion in
confined regions [53]. Since skyrmions can easily be driven
with an applied external drive they potentially open a new
class of experimentally accessible dynamical systems where
the Magnus force has a dominant effect. It should be possible
to create various types of potential energy landscapes for
skyrmions through techniques such as thickness modulations,
periodic applied stain, controlled irradiation, or spatially
periodic doping. An open question is how known phase locking
phenomena would be affected by the inclusion of a Magnus
force, and whether new types of phase locking effects might
appear that are absent in overdamped systems. Skyrmions also
have potential for various spintronic applications [54], which
would require the skyrmions to move in a controlled manner, so
an understanding of skyrmion phase locking dynamics could
be useful for producing new methods for precision control of
skyrmion motion.

In this work, we examine Shapiro steps for skyrmions mov-
ing over a quasi-1D periodic washboard substrate. In Sec. II,
we describe the system geometry and simulation details for
our model of individual and collectively interacting skyrmions
driven over a periodic substrate, as illustrated in Fig. 1. In
Sec. III, we examine longitudinal Shapiro steps for a single
skyrmion subjected to superimposed dc and ac driving forces
applied along the direction of the substrate periodicity, and find
that increasing the magnitude of the Magnus term generates
an increasing skyrmion velocity component in the direction
transverse to the driving direction and gradually shifts the
Shapiro steps to higher values of the dc drive. In Sec. IV, we
examine Shapiro steps for individual skyrmions when the ac
drive is applied perpendicular to the dc drive and the substrate
periodicity direction. In this geometry, Shapiro steps are absent
in the overdamped limit; however, when there is a finite
Magnus term, then what we term Magnus-induced Shapiro
steps can occur. On the steps, the skyrmion follows periodic
2D orbits, and the number of observable steps increases as
the Magnus term increases. In Sec. IV A, we show that as the
strength of the substrate increases, the transitions between the
step and nonstep regions become sharper. In Sec. V, we exam-
ine collectively interacting skyrmions for a dc drive applied
parallel to the substrate periodicity direction combined with a
parallel or perpendicular ac drive, and find that both the lon-
gitudinal and transverse Shapiro step phenomena are robust.

We also show that the skyrmion lattice is much more ordered
on the Shapiro steps, while outside of the steps the skyrmion
lattice is disordered. In Sec. VI, we summarize our results.

II. SIMULATION AND SYSTEM

We consider a 2D system of size L × L with periodic
boundary conditions in the x and y directions containing
Ns skyrmions at a density of ρs = Ns/L

2. Single (Ns = 1)
or multiple skyrmions interact with a quasi-1D periodic
sinusoidal potential with a periodicity direction running along
the x direction, as illustrated in Fig. 1. The equation of motion
for a single skyrmion i with velocity vi = dri/dt moving in
the x-y plane is

αdvi + αmẑ × vi = Fss
i + Fsp

i + Fdc + Fac. (1)

Here, ri is the location of the skyrmion and αd is the prefactor
of the damping force that aligns the skyrmion velocity in the
direction of the net external forces. The second term is the
Magnus force with prefactor αm, which rotates the velocity
into the direction perpendicular to the net external forces.
In order to maintain a constant magnitude of the skyrmion
velocity, we impose the constraint α2

d + α2
m = 1 and vary the

relative importance of the Magnus force to the damping force

x(a)

y

x(b)

y

x(c)

y

FIG. 1. (Color online) Skyrmions (red dots) at a density of ρs =
0.001 on a periodic quasi-1D substrate with Ap = 1.0. The darker
regions are potential maxima and the lighter regions are potential
minima, while lines indicate the skyrmion trajectories. (a) For an ac
drive F ac

x = 1.0 applied in the longitudinal or x direction at αm/αd =
1.0 and F dc = 0, the skyrmions oscillate in 1D paths at a 45◦ angle
to the x axis. (b) For an ac drive F ac

y = 0.75 applied in the transverse
or y direction with F dc = 0 at αm/αd = 0.0 or the overdamped limit,
the skyrmions move in 1D paths along the y direction. (c) The same
as in (b) with αm/αd = 1.0, where the skyrmions form elliptical 2D
counterclockwise orbits.
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by changing the ratio αm/αd . In the overdamped limit αm =
0.0, while for skyrmions αm/αd can be ten or larger [41,47].

The skyrmion-skyrmion interaction force is Fss
i =

∑Ns

j=1 K1(Rij )r̂ij where Rij = |ri − rj |, r̂ij = (ri − rj )/Rij ,
and K1 is the modified Bessel function. This interaction is
repulsive and falls off exponentially for large Rij . For most of
this work, we remain in the limit where skyrmion-skyrmion
interactions are weak so that we can consider the dynamics of a
single skyrmion; however, we show that most of our results are
robust under the inclusion of skyrmion-skyrmion interactions.
The substrate force Fsp

i = −∇U (xi)x̂ arises from a washboard
potential

U (x) = U0 cos(2πxi/a), (2)

where xi = ri · x̂, a is the periodicity of the substrate, and we
define the substrate strength to be Ap = 2πU0/a. Unless other-
wise noted, we take Ap = 1.0. The dc driving term Fdc = F dcx̂
is slowly increased in magnitude to avoid any transient effects.
The ac driving term is either Fac

x = F ac
x cos(ωt)x̂ for longitu-

dinal driving or Fac
y = F ac

y cos(ωt)ŷ for transverse driving.
We measure the time-averaged skyrmion velocities in the

x direction 〈Vx〉 = ∑Ns

i=1 2π〈vi · x̂〉/Nsωa and y direction
〈Vy〉 = ∑Ns

i=1 2π〈vi · ŷ〉/Nsωa. Here, due to the periodicity
of the substrate, phase locked steps occur when the skyrmions
travel integer multiples of the substrate periodicity na during
each ac drive cycle, allowing us to label the steps n = 0
for the pinned phase and n = 1,2 . . . for the higher order
steps. We focus on the two ac frequencies ω = 8 × 10−4

inverse simulation time steps for the longitudinal ac driving
and ω = 1.6 × 10−3 inverse simulation time steps for the
transverse ac driving, and use a substrate lattice constant of
a = 3.272.

We use two different driving protocols as illustrated in
Fig. 1. For longitudinal driving, we have

Fdrive = F dcx̂ + F ac
x cos(ωt)x̂, (3)

corresponding to the conditions under which Shapiro steps
arise for an overdamped system. For transverse driving, we
have

Fdrive = F dcx̂ + F ac
y cos(ωt)ŷ, (4)

which would produce no Shapiro steps in the overdamped
limit. Experimentally, skyrmion motion can be induced by
applying a spin-polarized current, so the drive geometry we
describe here can be produced by applying a dc current
to the sample along the substrate periodicity direction and
superimposing a parallel or perpendicular ac current, similar to
parallel or crossed current studies performed in vortex systems.

In Fig. 1(a), we show the skyrmion trajectories for
F ac

x = 1.0, F dc = 0.0, αm/αd = 1.0, and a skyrmion density
of ρs = 0.001. In this case, the skyrmions are pinned and form
a triangular lattice that is commensurate with the substrate.
The ac drive causes the skyrmions to oscillate in the potential
minima; however, their motion is not strictly in the x direction
but is tilted at an angle of θ = 45◦ with respect to the x direction
due to the Magnus force, which induces a velocity component
perpendicular to the ac driving direction. In the absence of a
substrate, a dc or ac drive applied in the x direction causes
the skyrmions to move at an angle θ = arctan(αm/αd ) with

respect to the driving direction, so that in the overdamped limit
of αm = 0.0 the skyrmion moves parallel to the direction of the
net external driving force. In Fig. 1(b), we rotate the direction
of the ac drive to be in the transverse direction with F ac

y = 0.75
and F dc = 0 for a sample with αm/αd = 0.0. In this case, the
skyrmion motion follows strictly 1D paths aligned with the
y direction that pass through the potential minima of the sub-
strate. For αm/αd = 1.0, as shown in Fig. 1(c), the skyrmions
rotate in counterclockwise elliptical patterns, showing that the
Magnus force can induce x-direction motion even when
the drive is applied only in the y direction. In the absence of the
substrate, the ac drive would produce only 1D trajectories at
an angle with respect to the y axis. This highlights the fact
that the Magnus force affects how the skyrmions move when
interacting with forces induced by the substrate.

III. LONGITUDINAL AC DRIVING

We first consider the case illustrated in Fig. 1(a) of ac
driving in the longitudinal direction. We conduct a series of
simulations for increasing αm/αd and focus on the single
skyrmion limit. In general we find that the Shapiro steps
we observe remain robust when finite skyrmion-skyrmion
interactions are included; however, additional features can
arise for varied fillings when the skyrmion structure is
incommensurate with the substrate, as we discuss in Sec. V. In
Fig. 2(a), we plot 〈Vx〉 and 〈Vy〉 versus F dc for the system in
Fig. 1(a) at F ac

x = 1.0 in the overdamped limit of αm/αd = 0.
Here, 〈Vy〉 = 0 while 〈Vx〉 shows a series of steps indicative
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FIG. 2. (Color online) 〈Vx〉 (upper blue curves) and 〈Vy〉 (lower
red curves) vs F dc for the system in Fig. 1(a) in the single skyrmion
limit at F ac

x = 1.0. (a) In the overdamped limit of αm/αd = 0,
〈Vy〉 = 0 and a series of steps appear in 〈Vx〉 indicating phase locking.
(b) At αm/αd = 0.58, 〈Vy〉 is finite. (c) αm/αd = 3.042 and (d)
αm/αd = 9.962 show the increase of skyrmion motion in the direction
transverse to the substrate and the shift in the locking phases.
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FIG. 3. (Color online) (a) 〈Vx〉 vs F dc at Ap = 1.0 for αm/αd =
0.0 (brown), 0.577 (light blue), 0.98 (dark purple), 1.33 (light purple),
2.06 (dark orange), 3.042 (light orange), 4.0 (dark red), 4.92 (light
red), 7.0 (dark green), 8.407 (light green), 9.962 (dark blue), and
11.147 (black), from left to right. Here, 〈Vx〉 exhibits quantized values
corresponding to specific steps. (b) The corresponding values of 〈Vy〉
vs F dc, which contains steps that are not quantized.

of the phase locking. These features are similar to those
observed for other overdamped systems moving over quasi-1D
periodic substrates such as vortices in type-II superconductors
moving over quasi-1D substrate modulations. In Fig. 2(b),
when αm/αd = 0.58, both 〈Vy〉 and 〈Vx〉 are finite and have
a ratio of |〈Vy〉/〈Vx〉| ≈ 0.58. Here, the phase locking is
still occurring, but the intervals of F dc in which the phase
locking steps appear are shifted. Figure 2(c) shows that at
αm/αd = 3.042, both |〈Vy〉| and some of the step widths have
increased in size, and there are no clear regions between the
steps where no phase locking is occurring. In Fig. 2(d), at
αm/αd = 9.962, there is only a single phase locking step.

To more clearly demonstrate the behavior of the steps for
varied αm/αd , in Fig. 3(a), we plot 〈Vx〉 versus F dc for αm/αd

ranging from 0.0 to 11.147, with the evolution of the first
three locking steps n = 1 to 3 highlighted. For a given value
of n, the step in 〈Vx〉 has a fixed value regardless of the
choice of αm/αd , and each step shifts to higher values of
F dc with increasing αm/αd . The corresponding 〈Vy〉 versus
F dc plot in Fig. 3(b) shows that the steps in 〈Vy〉 are not
quantized in integer multiples of 2π/aω. The quantization of
the 〈Vx〉 arises from the periodicity of the substrate in the x

direction, and since the y direction has no periodicity, there is
no quantization of 〈Vy〉. In Fig. 4, we highlight the evolution
of the widths of the n = 0 through n = 8 steps as a function
of F dc and αm/αd at F ac

x = 1.0. At αm/αd = 0, the largest
number of phase locking steps can be resolved. We observe
two general trends as αm/αd increases. First, for n > 3, the
widths of the locking regions decrease and the intervals of F dc

over which the locking occurs shift to higher values of F dc,
with the magnitude of this shift increasing with increasing
n. Second, the width of the n = 1, 2, and 3 steps initially
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n = 5
n = 8,7,6

FIG. 4. (Color online) The regions of phase locking for the n = 0
to n = 8 steps as a function of F dc and αm/αd . The width of the steps
is reduced and the steps shift to higher values of F dc with increasing
αm/αd .

increases for increasing αm/αd before reaching a maximum
and then decreasing again. The width of the n = 0 step reaches
a maximum with increasing αm/αd and then saturates. The
shift in the locations of the phase locking regions arises because
the angle at which the skyrmions move with respect to the x

axis increases with increasing αm/αd , causing the skyrmions
to spend larger intervals of time interacting with the repulsive
portion of the substrate potential. As a result, higher values of
F dc must be applied to cause the skyrmion to translate in the
x direction at larger αm/αd .

We next determine if the phase locking steps at a high
Magnus force prefactor are of the Shapiro type. In Fig. 5, we
plot 〈Vx〉 versus F dc for αm/αd = 9.962 at F ac

x = 2.4, 4.2, and
6.2 to show the variation in the widths of the n = 0, n = 1, and
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FIG. 5. (Color online) 〈Vx〉 vs F dc for αm/αd = 9.962. (a) F ac
x =

2.4. (b) F ac
x = 4.2. (c) F ac

x = 6.2.
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FIG. 6. (Color online) (a) The width �0 of the n = 0 step vs F ac
x

for the system in Fig. 5 at αm/αd = 9.962. The solid line is a fit to
the |J0| Bessel function. (b) The width �1 of the n = 1 step vs F ac

x

for the same system. The solid line is a fit to the |J1| Bessel function.
In each case the width of step n shows an oscillation of the form of
the Bessel function |Jn(F ac

x )|, which is characteristic of Shapiro step
phase locking.

n = 2 steps. In Fig. 6, we plot the widths �0 and �1 of the n =
0 and n = 1 steps, respectively, versus F ac

x . Each step shows
the characteristic oscillation expected for Shapiro steps, where
the width of step n is proportional to |Jn(F ac

x )|, where Jn is the
nth-order Bessel function [5]. The solid lines in Figs. 6(a) and
6(b) are fits to |J0| and |J1|, respectively. The higher order steps
obey similar fits. This indicates that in the Magnus-dominated
limit, Shapiro step phase locking is occurring.

IV. TRANSVERSE AC DRIVING

We next consider the case illustrated in Figs. 1(b) and 1(c),
where the ac drive is applied transverse to the direction of
the substrate potential. In the overdamped limit of αm/αd = 0,
such a drive causes the skyrmion to oscillate in the y direction
as shown in Fig. 1(b), and when a finite dc drive is applied
in the longitudinal direction, a single washboard oscillation
frequency in the x direction is generated by the motion of the
skyrmion over the periodic substrate. Since only one frequency
is present, there is no coupling between two frequencies, so
mode locking does not occur. When the Magnus force is
finite, the transverse ac drive induces an oscillating velocity
component in the longitudinal or x direction as well as in the y

direction, as illustrated in Fig. 1(c), so that it is possible for the
dc-induced washboard frequency to couple to the transverse ac
frequency and generate a transverse Shapiro step. In Fig. 7, we
plot 〈Vx〉 vs F dc for a single skyrmion moving with F ac

y = 1.0.
At αm/αd = 0, shown in Fig. 7(a), there are no steps in 〈Vx〉,
indicating the lack of phase locking, while the corresponding
〈Vy〉 = 0. Depinning occurs at the threshold value Fc of
Fc = Ap = 1.0. Figure 7(b) shows that at αm/αd = 0.436,
the depinning threshold has dropped substantially to Fc = 0.4
and a series of steps are now visible for 0.4 < F dc < 2.0,
indicating that phase locking is occurring. For αm/αd > 0.0,
〈Vy〉 is finite and the |〈Vy〉| versus F dc curve has exactly the
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FIG. 7. (Color online) 〈Vx〉 vs F dc for a system with dc driving
in the x direction and ac driving F ac

y = 1.0 in the y direction. (a) At
αm/αd = 0.0, there are no steps in 〈Vx〉. (b) At αm/αd = 0.436, steps
are present. (c) αm/αd = 2.06. (d) αm/αd = 3.04. (e) αm/αd = 4.0.
(f) αm/αd = 9.962.

same form as 〈Vx〉 versus F dc, but the magnitude of |〈Vy〉| is
multiplied by αm/αd . In Figs. 7(c) and 7(d), we plot 〈Vx〉 versus
F dc for samples with αm/αd = 2.06 and 3.04, respectively.
Here, the widths of the locking steps increase with increasing
αm/αd and the step locations are shifted to higher values of
F dc. In samples with αm/αd = 4.0 and 9.962, as shown in
Figs. 7(e) and 7(f), respectively, the steps extend out to larger
values of F dc, and the non-phase locking regions between the
steps are also extended. The steps in 〈Vx〉 once again occur
at quantized values of naω/2π due to the periodicity in the x

direction, while the steps in 〈Vy〉 do not have quantized values.
In Fig. 8, we plot the location of the upper edge of the n = 0

step as a function of F dc and αm/αd for the system shown
in Fig. 6 with Ap = 1.0. This is equivalent to the threshold
depinning force Fc. Here, F dc/Ap = 1.0 at αm/αd = 0.0 and it
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FIG. 8. (Color online) The location of the upper edge of the n =
0 step as a function of F dc and αm/αd for the system in Fig. 6 with a
transverse ac drive of F ac

y = 1.0. Here, there are several local minima
and maxima that are associated with changes in the skyrmion orbits,
as shown in Fig. 9 at the points marked a–d.
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FIG. 9. (Color online) Skyrmions (red dots), potential maxima
(darker regions), potential minima (lighter regions), and skyrmion
trajectories (lines) in a portion of the system in Fig. 8 along the n = 0
step at the points labeled (a-d) in Fig. 8. (a) At αm/αd = 0.0 for
F dc = 0.1, there is 1D motion in the y direction. (b) αm/αd = 0.75 at
F dc = 0.2. (c) At αm/αd = 1.54 and F dc = 0.1, the skyrmion moves
between two potential minima. (d) At αm/αd = 4.92 and F dc = 0.2,
the skyrmion moves between three potential minima.

decreases to zero at αm/αd = 1.226. There is a local maximum
in F dc/Ap at αm/αd = 1.55, followed by another minimum
near αm/αd = 2.2 and a broad plateau for higher values of
αm/αd . This oscillatory behavior in the n = 0 step width is
absent for longitudinal ac driving, as shown in Fig. 5 where Fc

exhibits only monotonic behavior. The dips and maxima in Fc

for the transverse ac driving are associated with transitions in
the shape of the skyrmion orbits during a single ac drive cycle
for increasing αm/αd .

In Fig. 9, we illustrate the skyrmion trajectories in a
subsection of the system on the n = 0 step at the points
labeled a–d in Fig. 8. Figure 9(a) shows that for αm/αd = 0
and F dc = 0.1, the skyrmion moves in a 1D path in the
y direction along the potential minimum. At αm/αd = 0.75
and F dc = 0.2, in Fig. 9(b), the skyrmion forms an elliptical
orbit that is confined within a single potential trough. On the
local maximum in the n = 0 step marked point c in Fig. 8,
at αm/αd = 1.54 and F dc = 0.1, Fig. 9(c) shows that the
skyrmion forms a more complicated 2D orbit that has three
lobes. In a single ac drive cycle, the skyrmion translates back
and forth by two substrate lattice constants. The dip in Fc at
αm/αd = 1.226 shown in Fig. 8 corresponds to the point at
which the skyrmion orbit transitions from being confined in
one potential minimum to traversing two potential minima.
Above the second local minimum at αm/αd = 2.2 in Fig. 8,
the skyrmion orbit becomes even more complex, as illustrated
in Fig. 9(d) for αm/αd = 4.92 and F dc = 0.2. The skyrmion
now moves between three substrate potential minima in a
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FIG. 10. (Color online) (a) Evolution of the regions in which the
n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 steps (from bottom to top)
appear as a function of F dc and αm/αd for F ac

y = 1.0. Increasing the
Magnus force produces enhanced phase locking. (b) A blowup of
panel (a) in the region of small αm/αd showing that the steps vanish
as αm/αd goes to zero.

single ac drive cycle. The local minimum in the n = 0 step
width at αm/αd = 2.2 then corresponds to the transition in
the skyrmion motion from traversing two substrate minima to
traversing three substrate minima. For higher values of αm/αd ,
additional minima in Fc could occur that would be correlated
with orbits traversing four or more substrate minima. We
expect that additional substrate minima would be resolvable
in samples with a smaller substrate lattice constant a.

In Fig. 10(a), we highlight the regions of phase locking as
a function of F dc and αm/αd for steps n = 0 through n = 11
for the system in Fig. 7. When αm/αd = 0, all the steps with
n � 1 vanish, as illustrated in Fig. 10(b) where we plot the
regime 0 � αm/αd � 1.0. As the Magnus force increases, a
larger number of steps can be resolved. In general, the step
widths increase with increasing αm/αd ; however, certain steps
such as n = 1, 2, and 3 show step width oscillations. In the
case of longitudinal ac driving, the skyrmion orbits along the
different locking steps are always 1D in nature. In contrast,
the orbits are much more complicated for transverse ac driving.
In Fig. 11(a), we show the n = 1 skyrmion orbit from Fig. 10 at
αm/αd = 0.75 and F dc = 0.6. The skyrmion translates in the
positive x direction and negative y direction, making an angle
close to θ = arctan(αm/αd ) = 36.9◦ with the x axis. During a
single orbit the skyrmion passes through a loop and translates
by one lattice constant in the x direction. Figure 11(b)
illustrates the n = 2 orbit for αm/αd = 0.75 at F dc = 0.7,
where the skyrmion translates two lattice constants in the x

direction per ac cycle. On the n = 2 step for αm/αd = 1.55,
and F dc = 0.5, shown in Fig. 11(c), the skyrmion moves at a
steeper angle of θ = 57.1◦ from the x axis. In Fig. 11(d), which
shows the n = 1 orbit at αm/αd = 2.06 and F dc = 0.3, during
a single ac drive cycle the skyrmion initially moves 2a in the
positive x direction before moving a in the negative x direction,
producing a net translation in the x direction of a distance a per
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FIG. 11. (Color online) Skyrmions (red dots), potential maxima
(darker regions), potential minima (lighter regions), and skyrmion
trajectories (lines) for the system in Fig. 9. (a) n = 1 orbit at αm/αd =
0.75 and F dc = 0.6. (b) n = 2 orbit at αm/αd = 0.75 and F dc = 0.7.
(c) n = 2 orbit at αm/αd = 1.55 and F dc = 0.5. (d) n = 1 orbit at
αm/αd = 2.06 and F dc = 0.3. Here, the skyrmion translates by 2a in
the positive x direction followed by a in the negative x direction for
a net transport by a distance a in the x direction during each ac cycle.
(e) n = 3 orbit at αm/αd = 2.06 and F dc = 0.67. (f) n = 1 orbit at
αm/αd = 5.92 and F dc = 0.67.

ac cycle. Figure 11(e) shows the αm/αd = 2.06 system in the
n = 3 orbit at F dc = 0.67, where the skyrmion translates by
3a in a single ac cycle. On the n = 1 step at αm/αd = 4.92 and
F dc = 0.67, plotted in Fig. 11(f), the skyrmion moves 3a in the
positive x direction during the first portion of the ac drive cycle
followed by 2a in the negative x direction during the second
portion of the ac drive cycle, producing a net translation of a

in the x direction during a single ac cycle. We observe similar
orbits for the other values of n, and find that the net angle of
the skyrmion motion with respect to the x axis increases with
increasing αm/αd .

A. Dependence on substrate strength and ac amplitude

We next consider the effect of the substrate strength on the
transverse locking steps at αm/αd = 9.962 and F ac

y = 1.0. In
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FIG. 12. (Color online) (a) 〈Vx〉 vs F dc for F ac
y = 1.0, αm/αd =

9.962, and Ap = 0.5 (black), 2.0 (green), 4.0 (blue), and 7.0 (red).
(b) The evolution of the n = 0, 1, 2, and 3 step widths as a function
of F dc and Ap for the system in panel (a).

Fig. 12(a), we plot 〈Vx〉 versus F dc for Ap = 0.5, 2.0, 4.0, and
7.0. At the lower values of Ap, the phase locking steps decrease
in width, and the steps completely vanish when Ap = 0. This
is highlighted in Fig. 12(b) where we plot the widths of the
n = 0, 1, 2, and 3 steps as a function of F dc and Ap. The width
of the locking regions oscillates with increasing Ap, and for
Ap > 8.0 all the locking phases shift linearly to higher values
of F dc with increasing Ap. The step width oscillations arise
due to variations in the number of potential minima through
which the skyrmion orbit passes during a single ac drive cycle,
similar to what was observed for fixed Ap and varied αm/αd .
This result shows that the transverse phase locking is a generic
feature that appears in both the strong and weak substrate
regimes, and that it is more pronounced for stronger substrates.

We next examine the dependence of the step widths at a
fixed Ap on the ac driving amplitudes, as shown in Fig. 13
where we plot �0 and �1 versus F ac

y for Ap = 1.0 and
αm/αd = 9.962. The solid lines are fits to �n ∝ |Jn(F ac

y )|,
indicating that the transverse phase locking steps are also
of the Shapiro step type, similar to the longitudinal phase
locking steps.

V. COLLECTIVE EFFECTS

We next consider assemblies of interacting skyrmions for
the system shown in Fig. 1. In general, when the skyrmion
density is commensurate with the substrate and the skyrmions
can form a triangular lattice, skyrmion-skyrmion interactions
cancel and we find the same types of phase locking observed
in the single skyrmion systems. For incommensurate fillings
where dislocations are present or when the skyrmion structure
becomes distorted or anisotropic in the pinned phase, we find
that it is possible for additional fractional phase locking to
occur between the integer phase locking steps. These fractional
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FIG. 13. (Color online) (a) The width �0 of the n = 0 step vs
F ac

y for the system in Fig. 12 at αm/αd = 9.962 and Ap = 1.0. The
solid line is a fit to the |J0| Bessel function. (b) The width �1 of the
n = 1 step vs F ac

y for the same system. The solid line is a fit to
the |J1| Bessel function.

locking steps occur when a portion of the skyrmions are locked
to step n and the remainder of the skyrmions are locked
to step n − 1. In Fig. 14(a), we plot 〈Vx〉 versus F dc for a
system with ac driving in the x direction at αm/αd = 2.06
and F ac

x = 1.0 to compare the results for a single skyrmion
with a system at a skyrmion density of ρs = 0.04. There are
no fractional steps in the single skyrmion system; however,
when interacting skyrmions are present we find fractional
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FIG. 14. (Color online) 〈Vx〉 vs F dc at αm/αd = 2.0. (a) ac
driving in the x direction with F ac

x = 1.0 for a single skyrmion (dark
blue line) and a sample containing multiple skyrmions at a density of
ρs = 0.04 (light orange line), showing that fractional phase locking
steps can arise. (b) The same for ac driving in the y direction at
F ac

y = 1.0.
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FIG. 15. (Color online) (a) 〈Vx〉 vs F dc at F ac
y = 1.0 and

αm/αd = 2.06 for a sample with a skyrmion density of ρs = 0.4. (b)
The fraction of sixfold coordinated particles P6 vs F dc for the same
system showing that along the phase-locked steps the skyrmions form
a much more ordered state.

steps n/m, where n and m are integers. Figure 14(b) shows
the same system for ac driving in the y direction, where
the same types of fractional steps arise. The fractional steps
appear at incommensurate fields when it is possible to have
two effective particle species in the system. One species is
commensurate and the other is associated with interstitials,
dislocations, or vacancies. In overdamped systems such as
superconducting vortices moving over 2D periodic substrates,
similar integer steps for individual or noninteracting vortices
appear at commensurate matching fillings while additional
fractional locking steps arise at nonmatching fields [19].

At much higher skyrmion densities and for sufficiently
strong substrate strengths, the pinned skyrmion structures
become highly anisotropic due to the confinement in the 1D
pinning rows. In the moving phase just above depinning, the
effectiveness of the pinning is partially reduced and the re-
pulsive skyrmion-skyrmion interactions favor a more uniform
structure. The competition between skyrmion-skyrmion and
skyrmion-substrate interactions produces a series of order-
disorder transitions in the moving state. On the phase-locked
steps, the skyrmions form an ordered moving anisotropic
lattice and travel in a synchronized fashion, while between
the phase locking steps the skyrmions adopt a more isotropic
or liquid like configuration.

In Fig. 15(a), we plot 〈Vx〉 versus F dc for a sample
with F ac

y = 1.0, αm/αd = 2.06, and a skyrmion density of
ρs = 0.4, showing the n = 1, 3, and 4 phase locking steps.
Figure 15(b) illustrates the corresponding fraction of sixfold
coordinated skyrmions P6 = N−1

s

∑Ns

i=1 δ(6 − zi), where zi

is the coordination number of skyrmion i obtained from a
Voronoi construction. On the phase locking steps, P6 increases
to P6 = 0.92, while between the steps P6 ≈ 0.5 on average
and shows strong fluctuations. In Figs. 16(a) and 16(b),
we show the real space locations of the skyrmions and the
corresponding structure factor S(k) on the n = 1 step at F dc =
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FIG. 16. (Color online) (a), (c), and (e) The real space positions
of the skyrmions from Fig. 15 and (b), (d), and (f) the corresponding
structure factors S(k). (a) and (b) The n = 1 phase locked step at
F dc = 0.25 from the point labeled a in Fig. 15(a) shows a partially
ordered anisotropic structure. (c) and (d) On the nonstep region at
F dc = 0.6 labeled b in Fig. 15(a), the skyrmions form a disordered
liquid like structure. (e) and (f) On a nonstep region at F dc = 9.0, the
system forms a moving lattice.

0.25 from Fig. 15. The skyrmions are all moving together and
form a partially ordered but anisotropic lattice. Even though
the system is anisotropic, most of the skyrmions have six
neighbors, so that P6 ≈ 0.9. Figures 16(c) and 16(d) shows
the same sample at F dc = 0.6, corresponding to the non-phase
locking region labeled b in Fig. 15. Here, the skyrmions
form a disordered structure that is less anisotropic than the
phase locked state. We observe similar sets of dynamical
order-disorder transitions between step and nonstep regions
for increasing F dc and find similar effects for ac driving in
the x direction. Studies in overdamped systems of collections
of interacting vortices also show that the vortices are more
ordered and exhibit suppressed noise fluctuations in a phase
locked region [23,25]. At higher F dc, the effectiveness of
the substrate gradually diminishes, the phase locking steps
disappear, and the skyrmions can reorder into a more uniform
moving crystal state as shown in Figs. 16(e) and 16(f) at
F dc = 9.0. Similar dynamical reordering to a triangular lattice
for high drives has been observed for skyrmions interacting

with random pinning [49] as well as for vortices driven over
random pinning arrays [55,56]. The vortex lattice normally
aligns with the driving current when the dynamical reordering
occurs on a random pinning array [2,23,55–59] or a quasi-1D
pinning array [60,61]. In contrast, Fig. 16 indicates that the
skyrmion lattice remains aligned with the substrate troughs
along the y direction even though the dc drive is applied
along the x direction. This results from a channeling effect
caused when the skyrmions flow at an angle to the applied
dc drive due to the Magnus term. Since the skyrmions enter
each substrate trough at an angle instead of perpendicularly, the
quasi-1D substrate channels their motion along the y direction,
similar to the flow that can occur for overdamped vortices
interacting with a line defect such as a twin boundary [62]. As
a result, the dynamically reordered skyrmion lattice is oriented
perpendicular to the dc driving direction.

These results show that Shapiro steps for skyrmions
interacting with a periodic substrate are a robust feature
that occurs for a variety of skyrmion densities and substrate
strengths. The change in the skyrmion lattice structure as the
system passes in and out of phase locked states as a driving
current is swept could be observed using neutron scattering or
noise measurements.

VI. SUMMARY

We have analyzed Shapiro steps for skyrmions interacting
with periodic quasi-one-dimensional substrates in the presence
of combined dc and ac drives, with a specific focus on the
role of the Magnus force in the dynamics. When the dc
and ac drives are both applied in the longitudinal direction,
which is aligned with the substrate periodicity, phase locking
occurs, and as the role of the Magnus force increases, the
phase locking steps gradually reduce in width and shift to
higher values of the driving force. The skyrmions move
at an angle to the direction of the external dc drive that
increases as the contribution of the Magnus force increases.
When the ac drive is applied perpendicular to the dc drive
and the substrate periodicity direction, there is no phase
locking in the overdamped limit; however, when there is a
finite Magnus force, phase locking can occur. On the phase
locked steps the skyrmions move in intricate two-dimensional
periodic orbits. We map out the evolution of the phase locked
regions for the transverse and longitudinal ac driving for
varied contribution of the Magnus force, ac driving amplitudes,
and substrate strength. When collective interactions between
skyrmions are introduced, fractional Shapiro steps can appear.
For strong substrate strengths and higher skyrmion densities,
both longitudinal and transverse phase locking steps occur that
are associated with dynamically induced transitions between
an ordered anisotropic solid on the steps to a fluctuating liquid
state in the non-phase locked regimes. Such transitions could
be observed with neutron scattering.
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B. Hu, Noise-induced Bessel-like oscillations of Shapiro steps
with the period of the ac force, Phys. Rev. B 78, 104305 (2008).

[12] C. Thomas and A. Middleton, Irrational Mode Locking in
Quasiperiodic Systems, Phys. Rev. Lett. 98, 148001 (2007).

[13] O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model:
Concepts, Methods, and Applications (Springer-Verlag, Berlin
Heidelberg, 2010).

[14] P. Martinoli, O. Daldini, C. Leemann, and E. Stocker, A. C.
quantum interference in superconducting films with periodically
modulated thickness, Solid State Commun. 17, 205 (1975).

[15] P. Martinoli, O. Daldini, C. Leemann, and B. Van den Brandt,
Josephson Oscillation of a Moving Vortex Lattice, Phys. Rev.
Lett. 36, 382 (1976).

[16] P. Martinoli, Static and dynamic interaction of superconducting
vortices with a periodic pinning potential, Phys. Rev. B 17, 1175
(1978).

[17] O. V. Dobrovolskiy, AC quantum interference effects in nanopat-
terned Nb microstrips, J. Supercond. Novel Mag. 28, 469
(2015).

[18] L. Van Look, E. Rosseel, M. J. Van Bael, K. Temst, V.
V. Moshchalkov, and Y. Bruynseraede, Shapiro steps in a
superconducting film with an antidot lattice, Phys. Rev. B 60,
R6998(R) (1999).

[19] C. Reichhardt, R. T. Scalettar, G. T. Zimányi, and N. Grønbech-
Jensen, Phase-locking of vortex lattices interacting with periodic
pinning, Phys. Rev. B 61, R11914(R) (2000).

[20] M. P. N. Juniper, A. V. Straube, R. Besseling, D. G. A. L. Aarts,
and R. P. A. Dullens, Microscopic dynamics of synchronization
in driven colloids, Nat. Commun. 6, 7187 (2015).

[21] A. T. Fiory, Interference effects in a superconducting aluminum
film: vortex structure and interactions, Phys. Rev. B 7, 1881
(1973).

[22] J. Harris, N. Ong, R. Gagnon, and L. Taillefer, Washboard
Frequency of the Moving Vortex Lattice in YBa2Cu3O6.93

Detected by ac-dc Interference, Phys. Rev. Lett. 74, 3684 (1995).
[23] A. B. Kolton, D. Domı́nguez, and N. Grønbech-Jensen, Mode

Locking in ac-Driven Vortex Lattices with Random Pinning,
Phys. Rev. Lett. 86, 4112 (2001).

[24] N. Kokubo, K. Kadowaki, and K. Takita, Peak Effect and
Dynamic Melting of Vortex Matter in NbSe2 Crystals, Phys.
Rev. Lett. 95, 177005 (2005).

[25] S. Okuma, J. Inoue, and N. Kokubo, Suppression of broadband
noise at mode locking in driven vortex matter, Phys. Rev. B 76,
172503 (2007).

[26] N. Kokubo, R. Besselilng, V. M. Vinokur, and P. H. Kes,
Mode Locking of Vortex Matter Driven Through Mesoscopic
Channels. Phys. Rev. Lett. 88, 247004 (2002).

[27] C. Reichhardt, A. B. Kolton, D. Domı́nguez, and N. Grønbech-
Jensen, Phase-locking of driven vortex lattices with transverse
ac force and periodic pinning, Phys. Rev. B 64, 134508
(2001).

[28] C. Reichhardt and C. J. Olson, Transverse phase locking for
vortex motion in square and triangular pinning arrays, Phys.
Rev. B 65, 174523 (2002).

[29] V. I. Marconi, A. B. Kolton, D. Domı́nguez, and N. Grønbech-
Jensen, Transverse phase locking in fully frustrated Josephson
junction arrays:a different type of fractional giant steps, Phys.
Rev. B 68, 104521 (2003).

[30] C. Reichhardt, C. J. Olson, and M. B. Hastings, Rectification and
Phase Locking for Particles on Symmetric Two-Dimensional
Periodic Substrates, Phys. Rev. Lett. 89, 024101 (2002).

[31] C. Reichhardt and C. J. Olson Reichhardt, Absolute transverse
mobility and ratchet effect on periodic two-dimensional sym-
metric substrates, Phys. Rev. E 68, 046102 (2003).

[32] P. Tierno, T. Johansen, and T. Fischer, Localized and Delocalized
Motion of Colloidal Particles on a Magnetic Bubble Lattice,
Phys. Rev. Lett. 99, 038303 (2007).

[33] D. Speer, R. Eichhorn, and P. Reimann, Directing Brownian
Motion on a Periodic Surface, Phys. Rev. Lett. 102, 124101
(2009).

[34] J. M. Sancho and A. M. Lacasta, The rich phenomenology of
Brownian particles in nonlinear potential landscapes, Eur. Phys.
J. Spec. Top. 187, 49 (2010).

[35] Y. Yang, W.-S. Duan, L. Yang, J.-M. Chen, and M.-M. Lin,
Rectification and phase locking in overdamped two-dimensional
Frenkel-Kontorova model, Europhys. Lett. 93, 16001 (2011).
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