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Thermal spin fluctuation effect on the elastic constants of paramagnetic Fe from first principles
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We investigate the impact of longitudinal thermal spin fluctuations on the temperature dependence of the elastic
constants of paramagnetic body-centered-cubic (bcc) and face-centered-cubic (fcc) Fe. Based on a series of
constrained local magnetic moment calculations, the spin fluctuation distribution is established using Boltzmann
statistics and involving the Jacobian weight, and a temperature-dependent quadratic mean moment is introduced
that accurately represents the spin fluctuation state as a function of temperature. We show that with increasing
temperature, c′ and c44 for the fcc phase and c44 for the bcc phase decrease at different rates due to different
magnetoelastic coupling strengths. In contrast, c′ in the bcc phase exhibits relatively high thermal stability.
Longitudinal thermal spin fluctuations diminish the softening of both elastic constants in either phase and have
comparatively large contributions in the fcc phase. In both bcc and fcc Fe, c44 has a larger temperature factor
than c′. On the other hand, c′ is more sensitive to the longitudinal thermal spin fluctuations, which balance the
volume-induced softening by 21.6% in fcc Fe.
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I. INTRODUCTION

The great variety of thermodynamic and mechanical prop-
erties of Fe and its alloys are basically related to magnetism,
which shows a high sensitivity to alloying and temperature.
At ambient pressure, paramagnetic (PM) Fe is stable above
1043 K (Curie temperature), and it exhibits two transitions
of the crystal structure from body-centered-cubic (bcc) to
face-centered-cubic (fcc) phases at 1183 K and from fcc to
bcc at 1667 K.

With increasing temperature, the excitations of atomic
magnetic moments essentially brought by transversal and
longitudinal spin fluctuations become an important question in
itinerant-electron systems. In addition to the transversal fluctu-
ations described by the Heisenberg model within the adiabatic
approximation [1], a sizable contribution from longitudinal
spin fluctuations to the Curie temperature of Fe, Co, and Ni
and the relative stability of ferromagnetic hexagonal Co has
been revealed by Uhl and Kübler using an improved Ginzburg-
Landau-type Hamiltonian [2]. A similar relative importance
of the longitudinal spin fluctuation was found by Sandratskii
et al. [3,4] for ferromagnetic metals such as bcc Fe, fcc Ni,
and even for half-metallic NiMnSb [5]. However, for PM Fe
and Fe-based alloys stabilized at relatively high temperatures,
and expectedly possessing large spin fluctuations, attempts to
understand the role of spin fluctuation in their basic properties
are still scarce. Among the limited number of works, the impact
of spin fluctuation on cohesive [6,7] and elastic properties [8]
of austenitic stainless steel at room temperature was discussed
by means of the stacking fault energy, and by accounting for
the local magnetic moment through contributions arising from
magnetic entropy and phonon free energy. Longitudinal spin
fluctuation distributions at certain temperatures were studied
for PM bcc Fe and fcc Ni by Ruban et al. [9] using a magnetic

*zhihuad@kth.se, stesch@kth.se, chendfu@cqu.edu.cn

Hamiltonian similar to that introduced by Shallcross et al. [10].
However, massive ab initio calculations are required to map out
the parameters in this Hamiltonian formalism, making it less
feasible to apply to complex systems such as multicomponent
alloys.

Fundamental knowledge of elastic constants and their
evolution with temperature contributes to the understanding
of the great variety of intrinsic properties of Fe and its alloys,
including the conspicuous magnetoelastic coupling. Despite
the aforementioned efforts, an accurate prediction of the elastic
properties of pure Fe at high temperatures remains elusive due
to the complicated magnetic excitations and their interplay
with the lattice expansion. In the present paper, the influence
of thermal spin fluctuations on the elastic constants of both PM
bcc and fcc Fe is introduced using a series of constrained dis-
ordered local magnetic moment calculations. Spin fluctuation
distributions at various temperatures are described efficiently
within the classical statistical thermodynamics via the Boltz-
mann distribution, and they are modeled as a multicompo-
nent alloy described using the mean-field coherent-potential
approximation [11,12]. To reduce the computational load, a
mean local magnetic moment is introduced in a quadratic form,
which is shown to accurately represent the spin fluctuation
distribution as a function of temperature. Here we demonstrate
the proposed methodology in the case of PM Fe. We show that
the effect of longitudinal thermal spin fluctuations on the tem-
perature factors of the two cubic shear elastic constants is not
negligible compared to the changes driven merely by volume
expansion. Due to its simplicity and efficiency, our methodol-
ogy can easily be extended to multicomponent alloys contain-
ing several magnetic species. The extension will be evidenced
in the case of Fe-Cr-Ni alloys in a further publication [13].

The rest of the paper is organized as follows. In Sec. II,
we elaborate on the first-principles approach used in our
calculations and the methodological details to establish both
the spin fluctuation distributions and the mean local magnetic
moment as a function of thermal excitations. The main results
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are presented and discussed in Sec. III. The evolution of local
magnetic moments and elastic constants with temperature
considering the lattice expansion effect in combination with
thermal spin fluctuations is presented and discussed for PM
bcc and fcc Fe.

II. FIRST-PRINCIPLES CALCULATIONS

A. Total energy method

The self-consistent calculations were performed using
density-functional theory (DFT) [14] in combination with
the local-density approximation (LDA) [15], and the gradient
terms were included in the total energy within the perturbative
approach [16]. The Kohn-Sham equations were solved em-
ploying the exact muffin-tin orbitals (EMTO) method [17–20].
In this method, the effective potential is treated via the
optimized overlapping muffin-tin approximation and the total
energy is computed by using the full charge-density technique
[18]. In the present application, the one-electron equations
were solved within the scalar-relativistic approximation and
the soft-core scheme.

The PM state of bcc and fcc Fe was described by the
disordered local magnetic moment (DLM) approach [21]
in combination with the coherent-potential approximation
(CPA) [11,12]. Hence, all magnetic short-range-order effects
were omitted, modeling at each temperature a completely
random PM state.

The ab initio total energies were computed within the quasi-
nonuniform gradient-level exchange-correlation approxima-
tion (QNA) introduced by Levämäki et al. [22,23]. The power
and feasibility of this recently developed density-functional
approximation to produce both highly accurate equilibrium
volumes and bulk moduli of metals and alloys have been
demonstrated in our previous work [23]. In the current
paper, the QNA scheme designed for ferromagnetic bcc Fe
was extended to PM bcc and fcc Fe. The present results
demonstrate the transferability of the QNA from one magnetic
and crystallographic system to another.

The theoretical equilibrium Wigner-Seitz radii (w) were de-
termined from an exponential Morse-type function [24] fitted
to the ab initio total energies. To calculate the two cubic shear
moduli c′ and c44, we used volume-conserving orthorhombic
and monoclinic deformations, respectively, as presented in
Refs. [17,25]. The Brillouin zone sampling was done using
uniformly distributed k points with density, which ensures the
necessary numerical accuracy for elastic constant calculations.

B. Longitudinal thermal spin fluctuation model
for the DLM state

At finite temperature (T ), the magnitude of the disordered
local magnetic moments (μ) fluctuates around the mean value.
The continuous probability distribution for the magnitude
of the random variable μ is replaced in our model by a
distribution of discrete probabilities, xJ

1 , xJ
2 , . . . , xJ

n . These
probabilities involve the Jacobian weight μ2

i as originally
introduced in Ref. [5], and they are discussed briefly below. At
each temperature, we have

∑
i x

J
i = 1. Assuming single-site

fluctuations, a PM state in the presence of longitudinal spin
fluctuations may be modeled within a multicomponent DLM

picture, viz.,

Fe↑μ1

xJ
1 /2

Fe↓μ1

xJ
1 /2

· · · Fe↑μi

xJ
i /2

Fe↓μi

xJ
i /2

· · · Fe↑μn

xJ
n /2Fe↓μn

xJ
n /2 (1)

with randomly distributed up (↑) and down (↓) local magnetic
moments μi (i = 1,2, . . . ,n) on each alloy component. Thus,
the probabilities xJ

i can be identified with the atomic fractions
of the multicomponent random alloy in (1). The spin fluctua-
tion distributions at each thermal excitation corresponding to
temperature T are formulated using Boltzmann’s factor,

xJ
i = 1

ZJ

(
μi

μB

)2

exp

[−Ei

kBT

]
, (2)

where ZJ = ∑n
i=1 (μi/μB)2 exp [−Ei/kBT ] is the partition

function including the Jacobian weight μ2
i , μB is the Bohr

magneton, and kB is the Boltzmann constant. Here Ei stands
for the total energy of the single-impurity thermal spin
fluctuation. That is, Ei represents the relative energy of the
configuration where site i has the local magnetic moment
μi embedded in a medium with mean magnetic moment
〈μ〉. This energy is directly accessible from a series of
multicomponent DLM calculations. In the present application,
we approximate Ei by the energy of the binary Fe↑μi

0.5 Fe↓μi

0.5
alloy with constrained magnetic moment μi , which is easily
described by the regular constrained two-component DLM
model. In the numerical calculations, an atomic moment scale
ranging from 0 to 3.0μB with an interval of 0.5μB (i.e., n = 7)
was adopted to map Ei . A convergence test for the partition of
the probability distribution into n discrete values is presented
in Sec. III B.

To reduce the computational load in studying the impact
of thermal spin fluctuations on the bulk properties of complex
multicomponent systems (not considered here), a mean mag-
netic moment, mJ

sf(μ
2
i ), is proposed in the quadratic form of

the atomic moment as

mJ
sf

(
μ2

i

) =
√√√√ n∑

i=1

μ2
i x

J
i . (3)

By employing the mean moment from Eq. (3), the multicom-
ponent spin fluctuation alloy model from (1) may be replaced
by a binary alloy,

Fe
↑mJ

sf
0.5 Fe

↓mJ
sf

0.5 . (4)

The physical picture behind the above approximation is that
the energy depends approximately on the square of the local
magnetic moment and thus the total energy obtained for the
binary alloy (4) with local magnetic mJ

sf should be the best
possible representation of the total energy calculated for the
detailed distribution in (1). The accuracy of this approximation
is established in Sec. III C by monitoring the predicted elastic
constants of PM Fe at various temperatures using the original
multicomponent scheme (1) and the binary one (4).

For comparison, we also consider the case when the
Jacobian weight is excluded. The corresponding probabilities
of spin density, xi , and mean moment, msf(μ2

i ), are

xi = 1

Z
exp

[−Ei

kBT

]
(5)
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and

msf(μ
2
i ) =

√√√√ n∑
i=1

μ2
i xi, (6)

where the partition function without the Jacobian weight reads
Z = ∑n

i=1 exp (−Ei/kBT ). In addition to the quadratic mean
moments from Eq. (3), we define an arithmetical mean moment

mJ
sf (μi) =

n∑
i=1

μix
J
i . (7)

The average moment applied in Ref. [5] corresponds to the
arithmetical moments defined above.

Before closing this section, we briefly comment on the mean
magnetic moments. Omitting the Jacobian weight corresponds
to a model in which the longitudinal fluctuations of a moment
are considered separately for each direction of the moment,
and thus the statistical weight of the fluctuations does not
depend on the size of the moment. It was found [5] that
the actual size of the mean moments for NiMnSb and
especially their temperature dependence depend sensitively on
the Jacobian. Hence, we expect that the present mean moments
mJ

sf and msf should also show different trends. On the other
hand, the quadratic mean moment (3) used for the auxiliary
binary system (4) should be a better approximation for the
multicomponent spin fluctuation state (1) than the arithmetical
mean moment (7), which is demonstrated below.

III. RESULTS AND DISCUSSION

A. Volume of PM Fe versus temperature

The theoretical volumes (represented here by the Wigner-
Seitz radius wtheor) at various temperatures were obtained
by rescaling the calculated equilibrium Wigner-Seitz radius
obtained for PM bcc and fcc Fe (corresponding to static
conditions) using the experimental linear thermal expansion
coefficient of 15.02 and 23.56 × 10−6 K−1 for PM bcc and
fcc Fe, respectively [26]. The results are shown in Table I.
Here we also list a few experimental values (wexpt) that should
be used to establish the accuracy of the present approach for
the volume of PM Fe.

The theoretical volumes of bcc and fcc Fe are slightly lower
than the experimental values, however the maximum of the

TABLE I. Theoretical Wigner-Seitz radii wtheor for PM bcc and
fcc Fe compared with the available experimental data wexpt from
Ref. [26]. Temperature is in K, the Wigner-Seitz radius is in Bohr,
and the relative deviation is in %.

System T wtheor wexpt Relative deviation

PM bcc 0 2.6513
1043 2.6928 2.6965 −0.14
1120 2.6959 2.6993 −0.13
1189 2.6986 2.7023 −0.14

PM fcc 0 2.6090
1189 2.6821 2.6931 −0.41
1457 2.6986 2.7100 −0.42
1661 2.7111 2.7228 −0.43

absolute relative deviation is 0.43%. Such a good agreement
between theory and experiment is not often seen, especially
if one recalls the typical errors of common DFT schemes.
The nearly perfect agreement in the present case is due to the
QNA. The parameters of the QNA functional were obtained
for ferromagnetic bcc Fe [22,23] and are extended here to
PM bcc and PM fcc phases. The excellent performance of
the QNA for these phases is a spectacular example showing
the transferability of the QNA and that this scheme is flexible
enough to produce highly accurate volumes even though both
the magnetic state and the crystal structure of Fe vary.

B. Local magnetic moments of PM Fe

The Boltzmann formula is a simple and elegant way
to obtain the distribution of the longitudinal thermal spin
fluctuation without performing time-consuming calculations
of the parameters of a magnetic Hamiltonian. The input is
the energy versus configuration, which is accessible from
constrained DLM calculations. First we computed the total
energy �E(μ) = Etot(μ) − Etot

0 as a function of the DLM
moment μ. Here Etot

0 represents the total energy of the
nonmagnetic state. Then using this energy, we constructed
the spin density distributions of PM bcc Fe at 1100 K and PM
fcc Fe at 1400 K. For comparison, here we adopt both Eqs. (2)
and (5). The results are presented in Fig. 1. These calculations
were carried out at the corresponding theoretical Wigner-Seitz
radius wbcc(1100 K) = wfcc(1400 K) = 2.6951 Bohr. The red
and black transparent areas in the figure indicate the continuous
distributions of spin density with (xJ

i ) and without (xi)
involving the Jacobian weight, respectively. In the treatment
of the three-dimensional fluctuations of atomic moments, for
both PM bcc and fcc Fe, the Jacobian pushes the statistical
weight to a larger magnitude of the local magnetic moment. In
other words, spin fluctuations with large moment are more
easily excited if the Jacobian weight is included, whereas
fluctuations with small moment are more probable if the
Jacobian weight is excluded. Compared to PM bcc Fe, a rather
shallow minimum of the total energy curve is observed for PM
fcc Fe, which makes excitation energetically more favorable
and consequently produces a more uniform spin distribution,
especially for the spin fluctuation in Eq. (5).

The mean magnetic moments calculated at constant volume
are shown in Fig. 2 as a function of temperature between
1000 and 1500 K. Results from both spin densities including
[mJ

sf(μ
2
i )] and excluding [msf(μ2

i )] the Jacobian weight are
presented for comparison. Excluding the Jacobian weight in
the partition function, the mean magnetic moment [msf(μ2

i )]
in PM bcc Fe declines smoothly from 1.960μB to 1.886μB

with the temperature increasing from 1000 to 1500 K. The
corresponding average decreasing rate of the local magnetic
moment is around 1.5 × 10−4μB K−1. The value is satisfy-
ingly close to 1.4 × 10−4μB K−1 obtained at high temperature
(between 1300 and 1500 K) using the magnetic Hamiltonian
formalism [9]. For PM fcc Fe, the mean magnetic moment
msf(μ2

i ) decreases slightly from 1.554μB to 1.539μB in the
same temperature range. Comparing the two crystallographic
phases, the local magnetic moment in PM bcc Fe exhibits a
slightly larger temperature slope than in PM fcc Fe.
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FIG. 1. (Color online) Total energy as a function of the local magnetic moment (lower panel) and the corresponding spin density distributions
including and excluding the Jacobian weight (upper panel). Panel (a) is for PM bcc Fe at 1100 K and panel (b) is for PM fcc Fe at 1400 K.
Calculations were performed for the theoretical Wigner-Seitz radii wbcc(1100 K) = wfcc(1400 K) = 2.6951 Bohr. The continuous spin density
distributions are shown by the transparent areas.

When the Jacobian weight is included in the construction
of the spin density distribution, the mean magnetic moment
mJ

sf(μ
2
i ) becomes higher than msf(μ2

i ) due to the large fraction
of thermal excitations having large local moments (in Fig. 1).
More importantly, the temperature dependences are reversed
if the Jacobian weight is taken into account. Namely, the
mean magnetic moment of PM bcc Fe shows a relatively
weak temperature dependence, while that of PM fcc Fe
clearly shows a positive slope with increasing temperature.
As the temperature rises from 1000 to 1500 K, mJ

sf(μ
2
i )

increases linearly from 1.960μB to 2.015μB at a rate of
1.1 × 10−4μB K−1 for PM fcc Fe, and it remains nearly
constant (2.112μB–2.120μB) for PM bcc Fe.

The different temperature behaviors obtained with and
without the Jacobian weight indicate two possible scenarios

FIG. 2. (Color online) Mean local magnetic moments of PM bcc
and fcc Fe from Eqs. (3) and (6) as functions of temperature. Both
the mean magnetic moments with [mJ

sf(μ
2
i )] and without [msf(μ2

i )]
the Jacobian weight are presented. Calculations were performed for
the theoretical Wigner-Seitz radii wbcc(1100 K) = wfcc(1400 K) =
2.6951 Bohr.

of thermal spin fluctuations. For the spin fluctuations treated
separately for each direction, i.e., without the Jacobian weight,
the probability of an atomic magnetic moment merely depends
on the total energy of the configuration. In the spirit of
Landau theory, we express the total energy as �E(μ) ≈
−aμ2 + bμ4 + cμ6 . . . , where a, b, and c are the usual Landau
coefficients. For simplicity, we truncate the expansion after
the sixth-order term (i.e., both a and c are positive). For
the energies in Fig. 1, we find abcc/fcc ≈ 8.2/2.6 mRy/μ2

B,
bbcc/fcc ≈ 0.4/(−0.2) mRy/μ4

B, and cbcc/fcc ≈ 0.1 mRy/μ6
B.

Since the total energy is a strongly asymmetric function around
the minimum, the atomic moments with small length are
more likely to be excited with respect to the moments with
large length. In PM fcc Fe, most of the atomic magnetic
moments with small length are excited already at relatively
low temperatures due to the very shallow minimum. This
leads to a rather insensitive temperature dependence of the
mean magnetic moment in the considered temperature interval
(1000–1500 K). In PM bcc Fe, due to the deep total energy
curve (notice abcc � afcc), the spin fluctuations are relatively
difficult to excite at low temperatures. With increasing tem-
perature, thermal spin fluctuations are continuously enhanced,
especially in the low-moment range, and hence the mean bcc
magnetic moment shows a negative temperature slope. On the
other hand, including the Jacobian weight actually reflects
the fact that the magnetic moments with large magnitude
are preferably excited, i.e., the statistical weight is shifted
toward larger μ values. This regime is dominated by the
higher-order terms in the Landau expansion. Since bbcc > bfcc

and cbcc ∼ cfcc, it is comparatively more difficult to induce
large moments in the bcc phase as compared to the fcc
phase. This explains the nearly vanishing thermal coefficient
of mJ

sf(μ
2
i ) for bcc Fe as compared to the positive slope in the

fcc phase (Fig. 1).
Before ending this section, we assess the influence of the

spin fluctuation distributions corresponding to various n in
Eqs. (3) and (6) on the mean moment and single-crystal elastic
constants of PM Fe. The results of these tests are presented
in Fig. 3 and listed in Table II. For simplicity, in these
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TABLE II. Single-crystal elastic constants for two sets of magnetic moments involved in the spin fluctuation distribution without the
Jacobian weight at 1100 and 1400 K for PM bcc and fcc Fe (corresponding to wbcc(1100 K) = wfcc(1400 K) = 2.6951 Bohr). The atomic
moment range from 0 to 3.0μB was used in both calculations (n = 7 and 16). The elastic constants are in GPa, temperature is in K, and the
relative deviation is in %.

interval = 0.5μB interval = 0.2μB

(n = 7) (n = 16) Relative deviation

System T c′ c44 c′ c44 c′ c44

PM bcc 1100 7.99 111.25 8.14 111.23 1.86 −0.02
PM fcc 1400 40.57 127.46 39.67 126.57 −2.21 −0.70

additional calculations we used the spin density distribution
excluding the Jacobian weight as in Eqs. (5) and (6). The
calculations were carried out for the same magnetic moment
region from 0 to 3.0μB and employing different intervals
corresponding to n values ranging from 7 to 120. Fitting an
eighth-order Landau expression to the energies computed for
n = 7, we also performed an analytical integration to get the
“converged” mean moments, which are used for reference in
Fig. 3 (dashed lines). We find that for small n values, the mean
moments are slightly underestimated by Eq. (6) as compared
to the values obtained by integration. However, the relative
deviations are small. Namely, the maximum deviation in the
mean moment at n = 7 is 0.37% and 2.94% for PM bcc
and fcc Fe, respectively. We notice that when the Jacobian
term is included, the convergence of the magnetic moment
in terms of n is even better than the one shown in Fig. 3. In
addition, very small variations in the elastic constants for both
bcc and fcc Fe are obtained (Table II) as we go from n = 7
(modeled as a 14-component alloy) to n = 16 (modeled as a
32-component alloy). Based on these findings, we conclude
that it is reasonable to use the initial scheme with the interval
of 0.5μB (n = 7) to study the effect of thermal spin fluctuation
on the elastic constants.

FIG. 3. (Color online) Mean local magnetic moment of PM bcc
and fcc Fe from the spin density distributions excluding the Jacobian
weight as a function of the number of distinct magnetic moments
involved in the summation in Eq. (6). Calculations were performed
for the atomic moment range from 0 to 3.0μB using the theoretical
Wigner-Seitz radius wbcc(1100 K) = wfcc(1400 K) = 2.6951 Bohr.

C. Elastic constants of PM Fe due to thermal spin fluctuation

The temperature dependence of the elastic parameters of
PM stainless steel alloys was shown to have contributions
from both volume expansion and spin fluctuation terms [8].
In the present work, first we computed the elastic constants of
PM bcc and fcc Fe for a given constant volume by means of the
spin fluctuation distribution and also by the average moment
approximation. This test is expected to shed light on the impact
of thermal spin fluctuation on the elastic constant of PM Fe
(when excluding the volume effect), and also to establish the
accuracy of our approach based on the mean moment in Eq. (3)
used to represent the spin fluctuation distribution.

Results of the test performed for distributions including the
Jacobian weights are presented in Table III. These calcula-
tions were performed at constant volume corresponding to
wbcc(1100 K) = wfcc(1400 K) = 2.6951 Bohr. We find that
for both fcc and bcc phases, c44 calculated using the arithmetic
[mJ

sf(μi)] or the quadratic [mJ
sf(μ

2
i )] average in (4) are relatively

close to that obtained from the spin fluctuation distribution, i.e.,
using xJ

i in (1). The relative deviations are below 0.53% for
the bcc structure and 2.61% for the fcc structure. Somewhat
larger deviations of c′ computed with mJ

sf(μi) and mJ
sf(μ

2
i )

are observed for both PM bcc and fcc Fe. However, the
quadratic mean magnetic moment [Eq. (3)] turns out to have
substantially higher accuracy than the arithmetical average
[Eq. (7)]. The former leads to 0.68% and 2.36% relative
deviations for the bcc and fcc phases, respectively, compared
to 8.24% and 6.50% obtained for the latter.

TABLE III. Single-crystal elastic constant c′ and c44 of PM Fe
calculated for the spin fluctuation distribution including the Jacobian
weight (xJ

i ) and the mean moment from Eq. (7) [i.e., mJ
sf(μi)] and

the mean moment from Eq. (3) [i.e., mJ
sf(μ

2
i )] for the same volume

[corresponding to the theoretical Wigner-Seitz radii wbcc(1100 K) =
wfcc(1400 K) = 2.6951 Bohr]. The relative deviations (RD) with
respect to the predictions of the spin fluctuation distribution are
presented in % and the elastic constants are in GPa.

System Method c′ RD of c′ c44 RD of c44

PM bcc (1100 K) xJ
i 15.85 111.26

mJ
sf(μi) 14.55 −8.24 110.67 −0.53

mJ
sf(μ

2
i ) 15.75 −0.68 110.70 −0.50

PM fcc (1400 K) xJ
i 24.00 114.70

mJ
sf(μi) 25.56 6.50 112.85 −1.61

mJ
sf(μ

2
i ) 23.44 −2.36 111.72 −2.61
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FIG. 4. (Color online) Single-crystal elastic constant c′ (a) and c44 (b) of PM bcc Fe (upper panels) and PM fcc Fe (lower panels) calculated
for the spin fluctuation distribution without the Jacobian weight and the mean moment [Eq. (6)] for the same volume [corresponding to
the theoretical Wigner-Seitz radii wbcc(1100 K) = wfcc(1400 K) = 2.6951 Bohr] as a function of temperature. Absolute relative deviations
between the results are shown by bars.

Similar assessments were carried out at various tempera-
tures using the quadratic mean magnetic moment [msf(μ2

i )]
with the spin density distribution excluding the Jacobian
weight. As shown in Fig. 4, at constant volume, c′ from the
mean local magnetic moment is in good agreement with that
from the spin fluctuation distribution for both bcc and fcc
Fe. The absolute relative deviations (presented by bars) are
below 1.62% for fcc and 13.02% for bcc phases. Although
the maximum relative deviation of bcc Fe seems to be large,
we should point out that the absolute deviation remains below
0.8 GPa for all temperatures considered here.

It is interesting to point out that while c′ of bcc Fe decreases
at a rate of ∼7.2 × 10−3 GPa K−1 with increasing temperature,
c′ of fcc Fe indicates a weak increase (∼1.1 × 10−3 GPa K−1)
with temperature. Using the quadratic mean moment approach,
nearly identical temperature factors of −6.5 × 10−3 and 1.0 ×
10−3 GPa K−1 are obtained for bcc and fcc Fe, respectively.
Similarly, c44 from the spin fluctuation distribution and the
quadratic mean moment approach are consistent with each
other, the largest relative deviation being less than 3.23%, as

shown in Fig. 4(b). With increasing temperature, c44 of bcc
and fcc Fe increases at a rate of ∼0.5 × 10−3 and ∼2.0 ×
10−3 GPa K−1, respectively.

Based on the above results, one may conclude that the
mean magnetic moment approach introduced in Eq. (3) is a
feasible representation of the spin fluctuation distribution. The
obtained deviations between the two schemes are very small,
which allows us to use the simplified scheme (binary alloy with
mean local magnetic moment corresponding to the particular
spin fluctuation distribution) to describe the impact of thermal
spin fluctuation on the elastic parameters of PM bcc and fcc Fe.

Looking at the trends from Fig. 4, we observe that, for
the spin fluctuations considered separately for each direction,
except for c′ of bcc Fe, the other single-crystal shear elastic
parameters (c44 of PM bcc Fe and c′ and c44 of PM
fcc Fe) increase with temperature as a result of thermal
longitudinal spin fluctuations (considered at fixed volume).
These trends can be understood by combining the results for
the thermal effect on the mean magnetic moment (see Sec. II B)
with additional fixed-spin calculations, as illustrated below.

FIG. 5. (Color online) Single-crystal elastic constant c′ (a) and c44 (b) of PM Fe as a function of the local magnetic moment on the Fe
atoms. The fixed-spin calculations were performed with a constant Wigner-Seitz radius of 2.58 Bohr for both bcc and fcc Fe.
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Fixed-spin DLM calculations for the local magnetic moment
of PM Fe shown in Fig. 5(a) signal that smaller local magnetic
moments favor larger c′ in PM fcc Fe. This behavior is similar
to that in PM Fe-Cr-Ni alloys [8]. However, c′ of PM bcc
Fe is found mostly to increase with increasing local magnetic
moment, and the PM bcc phase is mechanically stable only at
relatively large local magnetic moments. On the other hand,
c44 of PM Fe initially declines with increasing local magnetic
moment [in Fig. 5(b)], however the trend reverses when the
local magnetic moment is beyond a critical value. c44 of PM Fe
consequently indicates a minimum between 2.0μB and 2.5μB.
At fixed volume, the spin fluctuations considered separately for
each direction decrease the magnitude of the mean magnetic
moment as a function of temperature (Fig. 2). When combining
these two effects, we obtain that spin fluctuations yield
increasing (decreasing) c′ for PM fcc (bcc) Fe and increasing
c44 for PM Fe. These trends confirm nicely the results of the
direct calculations shown in Fig. 4.

Based on this knowledge, we can also estimate the trends
for the case when the Jacobian weight is included in the
distribution. Combining the corresponding data in Fig. 2
with those in Fig. 5, we can infer that at constant volume
when the spin fluctuations are treated in three dimensions,
the temperature dependence of the elastic constants of PM
Fe behaves in an opposite way. Namely, except for c′ of bcc
Fe, the other three single-crystal shear elastic parameters (c44

of PM bcc Fe and c′ and c44 of PM fcc Fe) decrease with
increasing temperature.

D. Temperature-dependent elastic constants of PM Fe

In the previous section, we investigated the impact of
thermal spin fluctuations on the elastic parameters at fixed
volume. To extend our study by taking into account additional
important temperature factors, we attempt to account for the
magnetovolume effect as well. Toward that end, first we
formulated the spin fluctuation distributions including the
Jacobian weight for various temperature-dependent volumes
based on a series of ab initio DLM calculations. The under-
lying volume-temperature relationship is based on thermal
expansion, as described in Sec. III A. Second, using the
quadratic mean magnetic moments scheme in Eq. (3), the
elastic constants of PM bcc and fcc Fe were computed
as a function of temperature (employing the corresponding
volume). We considered T = 1000, 1100, and 1200 K for bcc
Fe and T = 1200, 1300, 1400, and 1600 K for fcc Fe. The
present theoretical results are collected in Fig. 6, where we
also show the available experimental data.

In Fig. 6, the theoretical and experimental Wigner-Seitz
radii of the two PM phases are also shown. As already
discussed in connection with the few data listed in Table I,
the present theoretical Wigner-Seitz radii of PM Fe calculated
using the QNA density-functional approximation are very
close to the experimental values, especially for PM bcc Fe.
The drop in volume at the crystal structure transition from
bcc to fcc phase is obviously revealed. However, the volume
collapse with increasing temperature is slightly overestimated
by theory, which is due to the relatively large error found for
fcc Fe. Upon the crystal structure change from bcc to fcc,
c′ and c44 increase by about 11 and 10 GPa, respectively,

FIG. 6. (Color online) Single-crystal elastic constants, c′ and c44,
and Wigner-Seitz radii of PM Fe as a function of temperature. The
mean moments were calculated with Eq. (3) using the spin fluctuation
distributions involving the Jacobian weight. The available experi-
mental and former theoretical data are presented for comparison:
aRef. [26], bRef. [28], cRef. [29], dRef. [30], and eRef. [31]. The
vertical dashed line denotes the Curie temperature (TC = 1043 K) of
Fe, and experimental results obtained below TC in the ferromagnetic
state are marked with black. The measured value for c44 from Ref. [28]
is increased by 10 GPa, illustrated as “+10” in the figure to have a
clear presentation. Some results in the figure are also listed (boldface)
in Table IV for comparison.

indicating a strong structure dependence of the single-crystal
elastic parameters. The jump in c′ is in line with the total energy
contour map of PM Fe [27]. Namely, since c′ is connected with
the curvature of the total energy as a function of tetragonal
distortion (at constant volume), the smaller c′ in the bcc phase
compared to that of the fcc phase is an indication of the
shallower energy minimum near the bcc phase within the Bain
configurational space.

Compared to the limited experimental data and the former
theoretical results obtained in the dynamical mean-field theory
(DMFT) calculations [29], the present elastic constants show
relative high accuracy for both PM bcc and fcc phases.
Specifically, for the whole temperature range of the PM state,
the predicted c′ of PM bcc Fe are very close to the experimental
measurements from Ref. [31], while the predicted c44 lie in
the middle of the available experimental data. The temperature
dependence of c44 is also correctly predicted as discussed in the
following sections. For PM fcc Fe, in the present calculations
c′ is overestimated by around 7 GPa with respect to the
experimental result from Ref. [28], however the theoretical
prediction still falls within the limits of the error bar. Compared
to the calculation from DMFT, c′ is underestimated by ∼3 GPa
in our predictions. Similarly, the c44 predicted here for PM fcc
Fe lie between the experimental data and the DMFT value,
indicating relatively high accuracy.

For comparison, the elastic constants of PM Fe were
calculated using several alternative schemes. In particular, in
addition to the spin fluctuation results [mJ

sf(μ
2
i )], we performed

floating spin calculations excluding (FS) and including (e-FS)
electron excitations (Fermi distribution), constrained floating
spin calculations without electron excitations (c-FS), and mean
moment calculations based on the spin density distribution
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TABLE IV. Single-crystal elastic constants of PM bcc and fcc Fe calculated using different schemes including floating spin excluding
(FS) and including (e-FS) electron excitations, constrained floating spin without electron excitation (c-FS), the mean moment scheme from
Eq. (3) based on the spin density distribution excluding the Jacobian weight [msf(μ2

i )] and including the Jacobian weight [mJ
sf(μ

2
i )]. The elastic

constants are in GPa, temperature is in K, and the Wigner-Seitz radius is in Bohr.

msf(μ2
i ) mJ

sf(μ
2
i ) FS c-FS e-FS

System T w c′ c44 c′ c44 c′ c44 c′ c44 c′ c44

PM bcc 1000 2.6911 8.8 112.8 15.6 112.6 14.3 112.6 14.2 112.5
1100 2.6951 8.5 111.0 15.7 110.7 14.4 110.8 14.3 110.6
1200 2.6991 8.2 109.2 15.8 108.9 14.5 108.9 14.4 108.8 14.0 108.7

PM fcc 1200 2.6828 43.1 131.9 26.6 119.1 27.9 120.0 33.3 123.6
1400 2.6951 39.9 123.6 23.4 111.7 24.9 112.4 29.3 115.2
1600 2.7074 36.9 115.8 20.7 104.9 22.1 105.4 25.8 107.5 22.9 106.9

excluding the Jacobian weight [msf(μ2
i )]. In the c-FS calcu-

lations, the atomic moment was fixed to the value from the
self-consistent calculation without allowing for the magnetic
relaxation upon lattice deformation. We notice that in spin
fluctuation calculations, we always used a constrained scheme,
i.e., the magnetic moment is conserved upon lattice distortion,
and hence we speculate that comparing the FS and c-FS results
could help us to estimate the size of the error associated with
this constraint. The results of these additional calculations are
collected in Table IV, and in the following we compare and
discuss the various effects.

First, we consider the effect of electron excitations by
comparing the results corresponding to the FS and e-FS
schemes. The negligible influence of electron excitations
on the elastic constants is signaled by the small deviations
between the results for both bcc and fcc structures. Because
of that, electron excitations were not included in the thermal
spin fluctuation calculations in this work.

Second, we compare the FS results with those obtained in
the c-FS scheme. The difference between the FS and c-FS
results in Table IV shows how much the elastic constants
change by keeping the magnetic moment fixed with lattice
deformation compared to the case when the small deformation-
induced magnetic relaxation is allowed. The differences are
negligible for the bcc phase, but they are relatively large
(∼3–5 GPa) for the fcc phase. Using this information, one can
define a correction to the spin fluctuation results. Namely, we
could eliminate the positive deviation in the elastic constants
coming from the unrelaxed magnetic moment by decreasing c′
and c44 of fcc Fe by ∼5 and ∼3 GPa, respectively (at relatively
high temperatures). Notice that the so obtained “corrected”
spin fluctuation values would come even closer to the reported
experimental measurements.

Next, we consider the influence of thermal spin fluctuations
by comparing the full results [mJ

sf(μ
2
i )] to those obtained in

the c-FS scheme. It is found that thermal spin fluctuations
favor larger c′ in bcc Fe and smaller c′ in fcc Fe than the
corresponding c-FS data. Namely, thermal spin fluctuations
lead to ∼1.4 GPa (∼ 9.0%) larger c′ in bcc Fe and to ∼6.7 GPa
(∼ 20.1%) smaller c′ in fcc Fe as compared to the c-FS values.
The opposite behavior for the two structures can be understood
considering that thermal spin fluctuations give larger mean
magnetic moments than the equilibrium (c-FS) moments
(Figs. 1 and 2). Since c′ increases (decreases) as the magnetic
moment increases in the bcc (fcc) structure (Fig. 5), the above

changes in the magnetic moments suggest larger (smaller) c′
in bcc (fcc) upon allowing for thermal spin fluctuations. The
c44 elastic parameter of fcc Fe decreases by ∼4.5 GPa due to
thermal spin fluctuations, but little variation is observed in bcc
Fe, which is due to the insensitive magnetoelastic coupling for
c44 at relatively high local magnetic moments around 2.0μB

for the bcc phase (Fig. 5).
Finally, we consider the effect of the Jacobian weight by

comparing the results corresponding to msf(μ2
i ) and mJ

sf(μ
2
i ).

Omitting the Jacobian weight significantly decreases c′ of bcc
Fe (by ∼7.6 GPa) and increases c′ of fcc Fe (by ∼16.5 GPa),
yielding an even larger deviation relative to the experimental
data. Thus, it seems to be a better treatment for the thermal
spin fluctuation to include the Jacobian weight by considering
the fluctuation in three dimensions rather than separately for
each direction.

In the following section, we establish the temperature
coefficients for the two cubic elastic constants for PM bcc and
fcc Fe. As shown in Fig. 6, with increasing temperature, the
theoretical c′ increases in the bcc phase and decreases in the fcc
phase at a rate of 0.116 × 10−2 and 1.469 × 10−2 GPa K−1,
respectively. Compared to the experimental measurements
presented in Table V, the negative temperature dependence of
c′ for PM bcc Fe [(2.3–5.5) × 10−2 GPa K−1] is not confirmed
in the present thermal spin fluctuation calculations. We think

TABLE V. Theoretical volume expansion (Cvol) and spin fluctua-
tion (Cspinf ) contributions to the temperature dependence of the elastic
constants (C) of PM bcc and fcc Fe. The temperature coefficients
are expressed in units of 10−2 GPa K−1. The total temperature
dependence of the elastic constants (Ctot) is also shown. The numbers
in parentheses are the fractions (in %) contributed from the thermal
spin fluctuations, i.e., Cspinf/Cvol for c44 in bcc Fe, c′ and c44 in fcc
Fe, and Cspinf/Ctot for c′ in bcc Fe. For comparison, the available
experimental coefficient (Cexpt) in Ref. [31] for iron and Ref. [33] for
steel Fe15Cr15Ni are also included.

System C Cvol Cspinf Ctot Cexpt

PM bcc c′ 0.103 0.013 (11.3) 0.116 −2.3∼ − 5.5
c44 −1.850 0.030 (−1.6) −1.820 −1.6

PM fcc c′ −1.874 0.405 (−21.6) −1.469 −2.1a

c44 −4.019 0.490 (−12.2) −3.529 −4.9a

aThe temperature coefficients are derived at room temperature for the
Fe15Cr15Ni alloy.
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that the actual physical mechanism behind the increasing
temperature coefficient as the temperature approaches the
Curie temperature (TC) from above is the enhancement of
the magnetic short-range order. Namely, with decreasing
temperature in the PM state, the magnetic ordering in the
bcc phase gradually increases and transforms to a completely
ordered ferromagnetic state below TC. The decisive role of
the magnetic short-range order in stabilizing the bcc phase
above the magnetic transition temperature has indeed been
demonstrated by recent DMFT [29] and DFT [32] calculations.
The temperature coefficient consequently increases with the
magnetic ordering and produces a relatively high-temperature
coefficient of 8.6 × 10−2 GPa K−1 in ferromagnetic bcc Fe
as shown in Fig. 6. During the thermal spin fluctuation
calculations, a completely random PM state was assumed
by adopting the DLM picture. We suggest that omitting the
effect of magnetic short-range order close to TC is the reason
for the different temperature slope in the present theory as
compared to the observations. In the fcc structure, despite the
deviations due to the thermal and alloying effects, the predicted
temperature coefficient of c′ indicates a better agreement
with the experimental result for steel Fe15Cr15Ni (2.1 ×
10−2 GPa K−1) than that in the bcc structure. For c44 of PM Fe,
the theoretical predictions for the bcc and fcc phases decrease
linearly at a rate of 1.820 × 10−2 and 3.529 × 10−2 GPa K−1,
respectively. The temperature coefficient of c44 for PM bcc
Fe shows good agreement with 1.6 × 10−2 GPa K−1 from
experiment, and the influence of magnetic ordering near TC

on this temperature coefficient seems to be less pronounced.
In the fcc phase, the theoretical temperature coefficient of c44 is
also comparable to the experimental data of steel Fe15Cr15Ni
presented in Table V.

To understand the temperature coefficient C ≡ �c/�T of
the elastic constant c of PM Fe and its dependence on thermal
spin fluctuations, the contributions from volume expansion
and spin fluctuation are quantitatively estimated. These results
are presented in Table V. The contribution from the volume
expansion is built up from the c-FS calculations to eliminate the
effect of constrained atomic moment during deformation. Then
the spin fluctuation contribution to the temperature coefficient
is conveniently extracted from the difference between the full
results [mJ

sf(μ
2
i )] and the c-FS results, i.e., Cspinf = Ctot − Cvol.

Here Ctot is the total temperature coefficient of the elastic
constants, Cspinf and Cvol represent the partial temperature
factors arising from the thermal spin fluctuation and the volume
expansion, respectively.

From the temperature factors presented in Table V, we infer
that Cspinf is positive, diminishing the softening of both elastic
constants as the temperature increases in fcc and bcc phases.
Furthermore, they show a comparatively large contribution in
fcc structure, indicating consistency with the trends shown

in Fig. 2. In fcc Fe, the relatively high decreasing rate of c′
is primarily related to the volume-induced softening, whereas
thermal spin fluctuations balance by 21.6% approximately. The
weak increase of c′ for bcc Fe is determined by the positive
contribution from the volume expansion. Compared to c′, c44

shows relatively larger temperature factors for both PM bcc
and fcc Fe, however the thermal spin fluctuations give smaller
relative contributions. In bcc Fe, almost the whole decrease in
c44 is due to the volume softening, which completely screens
the small positive effect from the spin fluctuations. However,
the contribution from spin fluctuation is increased to around
12.2% in fcc Fe.

IV. CONCLUSIONS

Using the exact muffin-tin orbital method in combination
with the coherent-potential approximation and the disordered
local moment scheme, we have investigated the effect of
thermal spin fluctuations on the local magnetic moments
and elastic parameters of PM bcc and fcc Fe. The spin
fluctuation distribution was formulated using the Boltzmann
factor including the Jacobian weight. The mean local magnetic
moment in quadratic form has been demonstrated to be a
feasible representation of the spin fluctuation distribution.
Coupling the spin fluctuation and the volume expansion ef-
fects, the temperature dependence of the mean local magnetic
moments and elastic constants of PM bcc and fcc Fe have
been discussed. The elastic constants of PM Fe except for c′
of the bcc phase decrease with increasing temperature, and
c44 shows a faster decreasing rate. In both bcc and fcc Fe,
the spin fluctuations diminish the decreasing process and have
a relatively large contribution in fcc Fe. Compared to c44,
thermal spin fluctuations have a stronger relative effect on
the temperature dependence of c′ in PM Fe. The presently
introduced calculational scheme is based on thermodynamics
in combination with alloy theory, and it offers a simple
and transparent route that can easily be extended to more
complicated cases such as multicomponent PM steel alloys
or high-entropy alloys.
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