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Two-dimensional magnetostatic cloaks, even when perfectly designed to mitigate the magnetic field disturbance
of a scatterer, may be still detectable with Aharonov-Bohm (AB) measurements, and therefore may affect
quantum interactions and experiments with elongated objects. We explore a multilayered cylindrical cloak
whose permeability profile is tailored to nullify the magnetic-flux perturbation of the system, neutralizing its
effect on AB measurements, and simultaneously optimally suppress the overall scattering. In this way, our
improved magnetostatic cloak combines substantial mitigation of the magnetostatic scattering response with zero
detectability by AB experiments.
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I. INTRODUCTION

Making an electromagnetic object of arbitrary shape and
texture invisible to certain portions of the frequency spec-
trum is one of the most intriguing possibilities offered by
metamaterials. Several attempts have been made to achieve
substantial mitigation of scattering by passive objects, from
the modification of optical ray paths using inhomogeneous
and anisotropic cloaks [1] to scattering cancellation by
destructive interference using anti-scattering covers [2,3]. For
passive cloaking systems, the electrical size of the cloaked
object is the fundamental bottleneck to suppress scattering
over a broad spectral range [4], as may be expected from
simple causality arguments. Quite interestingly, it was recently
shown that the overall scattering cross section of an arbitrary
passive object, when integrated over all frequencies, becomes
larger when cloaked than in the uncloaked scenario [4].
This conclusion stems from the general relation between
the static scattering signature of an object and its integrated
scattering cross section [5,6]. An intriguing exception to
this general limitation of passive cloaks was found in the
case of certain classes of magnetostatic superconducting
cloaks [7], which may be able not only to suppress the
static distortion to the applied field, but also to reduce the
overall scattering cross section integrated over all frequen-
cies. This brings attention to magnetostatic superconducting
cloaks, which become a particularly important class for the
entire field of cloaking and scattering manipulation with
metamaterials.

In one attempt [8] to design a magnetic cloak at zero fre-
quency, variable, anisotropic magnetic permeability with both
paramagnetic and diamagnetic components was considered. A
metamaterial geometry that can be used to tailor the required
magnetic response has been presented [9], while another
implementation of transformation optics in magnetostatics was
pushed forward [10]. Experimental verification of a magneto-
static cloak [11] has been based on the scattering cancellation

approach, for which no anisotropic or inhomogeneous media
are necessary. An alternative experimental demonstration [12]
was reported in the quasistatic regime, and a magnetostatic
carpet cloak [13] to hide objects over a superconducting plane
is based again on transformation optics.

Interestingly, a vanishing scattering magnetostatic field
does not necessarily imply that the cloaked object is unde-
tectable for an observer placed around the object. As observed
several decades ago by Aharonov and Bohm [14,15], a nonzero
magnetic flux through a closed loop (C) can be detectable even
in regions around the loop for which the magnetostatic field is
zero. In the original work [14] of Aharonov and Bohm, a com-
pletely shielded structure containing axial magnetic currents
was detected measuring the phase difference (

∮
(C) A · dl �= 0)

between electron beams traveling around the enclosed region
(C), on a path over which no fields were recorded (B =
0). The so-called Aharonov-Bohm (AB) effect, associated
with the nonlocalized wave nature of electron beams, still
remains a source of surprising and thought-provoking results
[16], while many different versions and variations have been
formulated [17].

In this study, we explore whether an ideal two-dimensional
(2D) magnetostatic cloak, despite having identically zero
magnetostatic scattering, may be detected using electron
beams, based on an analog of the AB experiment. Since
the Aharonov-Bohm effect is at the basis of several sensing
schemes [18–20], it is relevant to consider whether the
cloaked object would actually perturb a sensing measurement
performed in its vicinity, or whether it may be detected with a
quantum-sensing scheme. After verifying its detectability, we
look for solutions to mitigate it. More specifically, we develop
a multilayered, perturbed version of the magnetostatic cloak
[11] to suppress the magnetic flux through the object while
we simultaneously retain an overall low scattering response.
We observe the magnitude of scattering suppression caused
by the cloak in the presence of homogeneous background
magnetic fields of arbitrary direction, and the variation of
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FIG. 1. (Color online) Schematic of the two mechanisms to
detect the superconducting (μI = 0) 2D cylindrical volume ρ < RI.
Due to the presence of a suitable (μII) cladding (RI < ρ < RII), the
magnetic field lines (red in figure) “avoid” the internal object and a
perfect restoration of the background field Bback is achieved from the
other side; therefore Bscat,III = 0 into region III (ρ > RII). However,
the line integral of the magnetic vector potential along a closed loop
(C) (green line) is nonzero (

∮
(C) Ascat · dl �= 0) which makes the rod

of region I (ρ < RI) detectable through AB measurements.

the magnetic flux when the cloaked superconducting object
contains inclusions.

II. ANALYTICAL FORMULATION

A. Magnetostatic cloak

The idea of a magnetostatic cloak has been originally
proposed in [11] based on the scattering cancellation approach
[2]. The presented concept refers to an infinite cylindrical
structure with axis parallel to the ẑ axis of the Cartesian
coordinate system (x,y,z) [or alternatively the corresponding
cylindrical coordinate system (ρ,ϕ,z)], as sketched in Fig. 1.
The cloaked region (region I), of radius RI, is circular and
filled with a superconducting material (μI = 0) that makes it
impenetrable to any background magnetic field Bback, enabling
the designer to hide any object inside it. Around it, the
cylindrical cloak (region II) has relative magnetic permeability
μII and an external radius RII > RI. It is easy to verify that the
design rule

μII = R2
II + R2

I

R2
II − R2

I

(1)

makes the 2D magnetostatic scattering from the coated
structure identically zero Bscat,III = 0, i.e., the magnetostatic
field all around (region III) the cloaked object is identical to
the impressed one. The cloak is actually designed to suppress
the scattering originating from the applied magnetostatic field
normal to the cylinder axis, since the other polarization
(magnetic field parallel to the ẑ axis) does not have any effect
on the scattering for a 2D cylinder.

Even under the ideal conditions (1), for which the mag-
netostatic field distribution all around the object is identical
to the incident one, the cloak may be detected performing
an AB experiment [14], because, while the scattered fields
are identically zero around it, the scattered magnetic vector
potential is not. More specifically, the wave function of an
electron (charge q) beam traveling in a zero-scattering region
involves the line integral of the scattered magnetic vector
potential (Ascat) over the trajectory (T ) of the particle [14]:∫

(T ) Ascat · dl, which provides a nonzero contribution to the

total accumulated phase factor exp ( jq

�

∫
(T ) Ascat · dl), even in

the case of an ideally cloaked object (� is the reduced Planck
constant).

This implies that two identical particles with charge q trav-
eling in the outer zero-field region III would be characterized
by different wave functions if the magnetic vector potential
Ascat is different along their trajectories, even though the local
magnetostatic scattered field is equal to zero. Therefore, the
cloaked object, while producing no scattered fields in the
background (region III) is, interestingly, detectable by a pair of
electron beams, since their measured phase difference will be
different if the cloaked object is present or is not, provided that
the line integral of Ascat around a closed loop containing the
cloaked cylinder is nonzero:

∮
(C) Ascat · dl �= 0. After solving

the scalar boundary-value problem, we obtain∮
(C)

Ascat · dl =
∫

(S)
(∇ × Ascat) · ds

=
∫

(S)
Bscat · ds = π (ẑ · Bback)R2

I , (2)

where we choose the surface (S) in a way that it passes
through the cloaked cylinder perpendicular to the ẑ axis. This
is allowed because B is divergence free and deforming (S)
does not change the flux that passes through it. Therefore,
the integral reduces to an integral over the cross section of
the cloaked cylinder, because of the fact that Bscat = B −
Bback = μ0μrH − μ0Hback (μr is the local relative magnetic
permeability of each region) is identically zero outside the
cloaked cylinder by definition. Furthermore, the quantity
ẑ · Hback = ẑ · Bback/μ0 is equal to the ẑ component of H
everywhere due to the continuity of the tangential magnetic
components; therefore, the integral of the ẑ component of
the magnetic field B is proportional to the contrast of
the relative magnetic permeability across the cross section
of the cylindrical structure

∫
(S) (μr − 1)ds for an arbitrary

inhomogeneous μr .
The Aharonov-Bohm measurements result in the value of

flux
∫

(S) B · ds or
∫

(S) Bback · ds depending on whether the
cloaked object is present or not. The difference between these
two quantities, which is equal to

∫
(S) Bscat · ds, calculated by

(2), indicates the possibility of AB detection of the cloaked
object.

The relevant geometry of interest is shown in Fig. 1: the
red arrows show the direction of the magnetic field, which
cannot penetrate the 2D superconducting cylinder (ρ < RI,
blue region). The properly selected cloak (RI < ρ < RII,
light green region) deforms the path of the magnetic lines
and the background field is restored all around the object. In
this way, the scattered magnetic field in region III (ρ > RII,

224414-2



AHARONOV-BOHM DETECTION OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 92, 224414 (2015)

white region) is identically zero. However, due to the presence
of the axial (ẑ) component of the background field Bback

the magnetic flux through an open surface [defined by the
closed boundary (C)] crossing the infinite cylinder is nonzero
(
∮

(C) Ascat · dl �= 0), and thus the presence of the cloaked object
is detectable in an Aharonov-Bohm experiment, by comparing
two AB measurements with and without cloaked object.

B. Immunity to Aharonov-Bohm effect

Our goal now is to design an improved magnetostatic
cloak that, while retaining a low scattering, does not affect
Aharonov-Bohm measurements. In order to pursue such a goal,
we need more degrees of freedom than just the two provided by
the cloak permeability and thickness. For this reason, we split
region II into U concentric layers, the uth of which occupies
the shell ru−1 < ρ < ru. The selection of the thickness of each
2D layer is not a crucial parameter and thus we make the
assumption that each concentric cross section has the same
area (R2

II − R2
I )/U , namely

ru =
√

R2
IIu + R2

I (U − u)

U
, (3)

where u = 1, . . . ,U . The magnetic permeabilities μu are
chosen to cancel the perturbation of the flux of B and restore
a zero scattered potential. In order to avoid multiparametric
nonlinear constraints whose global optimum is not easy to be
determined, we consider permeabilities at each layer close to
the optimal for scattering cancellation [11], namely we adopt
the following perturbation form:

μu = μII(1 + su) = R2
II + R2

I

R2
II − R2

I

(1 + su), (4)

where |su| � 1 for u = 1, . . . ,U .
For technical reasons [21], we fix the permeability of the

first and the last layer equal to the one of the 2D magnetostatic
cloak (1), namely we take s1 = sU = 0. Under assumption (4),
the zero contrast condition that secures immunity to the AB
effect is written as

U−1∑
u=2

su = − g2U

g2 + 1
, (5)

where g = RI/RII is the radii ratio. The condition (5) is
obtained if we plug the expressions of the permeabilities
from (4) into the equation

∑U
u=1(μu − 1)(R2

II − R2
I )/U +

(μI − 1)R2
I = 0. As far as the cloaking condition (zero scat-

tering) is concerned, we follow the well-reported linearization
procedure [21] of well-known objective functions of layered
cylinders [22], obtaining the following constraint [valid only
if |su| � 1 for u = 2, . . . ,(U − 1)]:

U−1∑
u=2

Fusu = 0, (6)

where Fu = (g2−1)2(u−1)u−g2(g2−1)(2u−1)U+2g4U 2

[u+g2(U−u)][(u−1)+g2(U−u+1)] .
It should be stressed that a solution {s2, . . . ,sU−1} which

satisfies (5) has zero contrast, and thus the corresponding
structure certainly exhibits full immunity to the Aharonov-
Bohm effect. On the contrary, if a combination of perturbation

parameters satisfies (6), it does not necessarily mean that
their cylinders do not scatter the applied magnetostatic field,
since the solution is a linear approximation of the far more
complicated exact condition. However, we are considering a
solution that is sufficiently close to the originally proposed
(1) for cloaking. To be sure that we choose the solution
{s2, . . . ,sU−1} as close as possible to the magnetostatic cloak,
μ2 = · · · = μU−1 = μII, and at the same time satisfy exactly
(5) and (6), we require the minimization of the norm of the
vector of the solution:

Minimize
U−2∑
u=2

s2
u. (7)

Conditions (5)–(7) formulate an analytically solvable opti-
mization problem which yields

su = g2U

g2 + 1

�2 − (U − 2)�1Fu

(U − 2)
(
�2

1 − �2
) , (8)

where �1 = ∑U−2
u=2 Fu and �2 = ∑U−2

u=2 F 2
u .

The procedure is described in the inset of Fig. 2. We
consider a map onto which we represent the device perfor-
mance in terms of cloaking efficiency (how small the scattered
magnetic field is) and in terms of immunity to the AB effect
(how small the permeability contrast compared to vacuum
is). Our goal is to get as close as possible to the origin
of the plane. The proposed magnetostatic cloak corresponds
to the purple point (ideal cloak but substantial permeability
contrast). The linearization and optimization solution send
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FIG. 2. (Color online) The ratio of the squared field produced by
the cloaked object over the corresponding quantity in the uncloaked
case wscat/w

′
scat as a function of the radii ratio g = RI/RII for several

numbers of layers U . In the inset we show the description of the
adopted design approach. We start from an ideal magnetostatic cloak
with substantial contrast (purple point) and, by linearizing and solving
the obtained optimization problem we move along the green arrow to
the green point indicating ideal fulfillment of the design conditions
(one of which is approximate). The same situation is represented by
the red point, when the exact scattering is considered instead. We
manage to make the structure with zero permeability contrast and
relatively low scattering response.
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us (via the green arrow) to the origin of the second map,
whose horizontal axis is the linearized version of the scattered
field (green point). In fact, the proposed object has nonzero
scattering response, represented (via the red arrow) by the
red point in the first map. In this way, we have converted a
perfect cloak detectable by Aharonov-Bohm measurements
to a structure totally immune to this effect, which still
has a significantly reduced scattering response. Alternatively
to the aforementioned procedure, one may employ other
numerical optimization routines, implementing for instance
genetic algorithms or a scanning along the domain of initial
guesses. A fully optimized design goes beyond the scope of
the present paper since our intention is to provide an analytical
solution based on a physics inspired strategy with respect to
the linearized objective function.

Recent papers have looked at solutions to neutralize the
magnetic flux through certain regions of space in order to
realize two-dimensional quantum cloaks, which may improve
quantum experimental setups or bias measurements related to
the paths of matter waves [23]. Similarly, transformation optics
has been applied [24] on the quantum mechanics platform
to design a cloak for quantum particles under AB effect.
These studies ignore the classical electromagnetic aspects,
and are not suitable for cloaking objects from magnetostatic
or electromagnetic waves, while our proposed cloaks achieve
magnetostatic cloaks that are also not detectable by quantum
measurements.

Prior to concluding this section, we point out that the
analysis presented here relies on the fact that the object under
analysis is 2D and infinite. Interestingly, it is easy to realize
that a 3D object of any size and shape, but of finite extent,
would not be AB detectable if ideally cloaked. This is because
the total flux of B through any closed surface is always
zero (∇ · B = 0). This implies that the flux of Bscat through
any surface intersecting a 3D fully cloaked object has to be
identically zero, because closing the surface around the object
without further intersections would add zero to the flux of
Bscat. In the 2D scenario, on the contrary, one cannot close
the intersecting surface without crossing again the object. In a
realistic scenario, AB detectability refers to elongated objects
(such as long cylinders), that are cloaked far from their edges,
but that are not cloaked at the edge truncations. Far from the
edges, and sufficiently close to the object, the scattered fields
are consistent with the analysis presented here.

III. NUMERICAL RESULTS

A. Performance indicators

Without loss of generality (due to the cylindrical sym-
metry), we can assume that the background field does not
possess an x̂ component. In the cylindrical coordinate system,
the applied field is expressed as follows:

Bback = ρ̂By sin ϕ + ϕ̂By cos ϕ + ẑBz. (9)

Due to the homogeneous nature of the excitation and the
finite cross section of the scatterer, the form of the scattering
component in region III is written in the form

Bscat,III = M

ρ2
(−ρ̂ sin ϕ + ϕ̂ cos ϕ), (10)

where M is a constant depending on the strength of the
background field and the structure of the cylinder (measured
in T m2). Since our design procedure achieves ideal unde-
tectability by Aharonov-Bohm measurements, based on (6),
we should measure the performance of the proposed device
as a cloak. Two indicators are used: the first one gives us a
metric of how much scattering is reduced by the presence of
the cloak, defined as the ratio of the scattered energy density in
the presence and in the absence of the cloak at any observation
radius ρ (the result is independent from ρ):

wscat

w′
scat

= |Bscat,III|2
|B′

scat,III|2
= M2

M ′2 . (11)

The primed quantities correspond to (10) when only
the superconducting core scatters the incoming illumination
(μII = 1). The second metric for our cloak is related to how
much the spatial distribution of the overall field changes due to
the (cloaked) scattering component. Therefore, we evaluate the
ratio of scattered energy density of the cloaked object (along
the worst-case surface ρ = RII) over the energy density in the
background field, namely

wscat

wback
= |Bscat,III|2

|Bback|2 = M2R2
II

B2
y + B2

z

. (12)

When we introduce an object with relative permeability μr

inside region I, the complete immunity to the AB effect breaks
down, since we modify the flux of B in the core, and thus
a performance indicator comparing our design with the one
of [11] should be defined. Since the phase shift experienced
by the electrons in the Aharanov-Bohm effect depends on the
magnetic flux concatenated with the path (C), we choose the
ratio of the magnetic flux �scat over the magnetic flux �̃scat

of the perfect cloak [11] as a measure of the detectability
of the cloaked object using the Aharanov-Bohm effect.
In particular, if we consider a two-dimensional cylindrical
inclusion with cross-sectional area (S) and permeability μr

inside the superconducting cylinder, this ratio is written as

�scat

�̃scat
= Sμr

SI + Sμr

, (13)

where SI = πR2
I is the area of region I (superconducting mate-

rial) and S < SI. Obviously, the closer to the superconducting
regime the inclusion material is (μr → 0) or the smaller is the
size of that inclusion compared to the cloaked region (S � SI),
the scattering effect becomes weaker and weaker.

B. Results and discussion

In Fig. 2, we represent the ratio wscat/w
′
scat defined in

(11), as a function of the radii ratio g = RI/RII varying the
number of layers U . Surprisingly, our linearized solution
yields better performance for thinner cloaks. In particular, for
g > 0.8 the result is the same regardless of the number of
segments U . The scattered power is reduced by over 85% in
such thin cloaks, which constitutes a quite efficient design.
For thick cloaks the performance deteriorates in the case of
more layers U , despite the fact that more free parameters are
simultaneously varying. Such an unexpected result is attributed
to the fact that the linearization of the cloaking condition is less

224414-4



AHARONOV-BOHM DETECTION OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 92, 224414 (2015)

radii ratio g=RI/RII

po
la

riz
at

io
n 

an
gl

e 
 (d

eg
)

0.5 0.6 0.7 0.8 0.9

10

20

30

40

50

60

70

80

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

FIG. 3. (Color online) The ratio of the squared fields produced by
the cloaked object over the squared magnitude of the (homogeneous)
background field wscat/wback in contour plot with respect to the radii
ratio g = RI/RII and the polarization angle θ . The definitions of g

and θ are shown in the embedded figure.

successful for larger U ; accordingly, the difference between
the actual scattering response and its linearized version gets
more significant.

In Fig. 3, we show the ratio wscat/wback defined in (12),
in contour plot with respect to the radii ratio g = RI/RII

and the polarization angle θ of the homogeneous background
magnetic field Bback = B0(ŷ cos θ + ẑ sin θ ). Obviously, the
scattering decreases for larger polarization angles θ since the
axial magnetostatic field does not respond to a permeability
contrast. On the other hand, for thinner cloaks the perturbation
of the background field is larger, although it always remains
limited below 10%. Accordingly, the cloaked object does not
substantially modify the background field distribution.

In Fig. 4, we show the distributions of the magnetic
permeability for 0 < ρ < RII for various numbers of segments
U of the clad and several radii ratios g = RI/RII. We notice
that the required permeabilities are larger for thinner cloaks, as
expected. Furthermore, the optimal permeabilities differ less
from the value μII, when more layers U are considered, a
conclusion which could be anticipated since more degrees
of freedom are available and thus a solution with smaller
perturbations from the standard permeability is achievable.
It should be noted that the layers are magnetically denser in
the inside layers than the outside, regardless of the choice
of the other parameters. The considered permeability values
in the examples presented here are quite reasonable, and
close to values available in natural materials. The optimization
may be adjusted by adding constraints on the permeability of
available materials, at the cost of adding more layers.
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FIG. 4. (Color online) Optimal permeability profiles μr (ρ) with
respect to the normalized radius ρ/RI for several discretization
numbers U with (a) g = RI/RII = 0.6, (b) g = RI/RII = 0.7, (c)
g = RI/RII = 0.8, and (d) g = RI/RII = 0.9.

IV. CONCLUSIONS

Magnetostatic cloaks constitute an interesting class of
cloaking devices, with relevant technological applications, and
with implications that govern also the cloak response at higher
frequencies. However, even if one can achieve perfect magne-
tostatic cloaking, we have shown here that a 2D object may
still be noninvasively detected from the outside by measuring
the modification of magnetic flux, regardless of its physical
size, exploiting Aharonov-Bohm measurements. Here we
have devised new designs that allow an optimal multilayered
cladding, with which the scattered magnetic flux vanishes, and
simultaneously the scattering response of the entire system gets
substantially suppressed. Such an approach can pave the way to
the design of equipment providing extremely low detectability
from both to magnetostatic and quantum measurements. We
stress again, as done in the main body, that AB detectability
does not hold for a fully cloaked 3D object, but it applies to
elongated objects that are not ideally cloaked at their edges, a
case of relevance in conventional AB setups.
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