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Magnon instability driven by heat current in magnetic bilayers
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We theoretically demonstrate that, in a ferromagnet/paramagnet bilayer, a magnon instability accompanied by
a gigahertz microwave emission can be driven simply by means of a temperature bias. Employing many-body
theory for investigating the effects of a phonon heat current on the magnon lifetime, we show that the magnon
instability occurs upon the suppression of the umklapp scattering at low temperatures, leading to microwave
emission. The present finding provides crucial information about the interplay of spin current and heat current.
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I. INTRODUCTION

The concept of the spin-transfer torque has enabled the
establishment of a quantum-mechanical way of controlling
spin-based electronic devices [1–3]. Although these spintronic
devices are driven by spin-polarized electric currents, a recent
trend among other important issues in spintronics is the thermal
manipulation of these devices. Indeed, the spin Seebeck effect
[4–8] has enabled a thermal spin injection from insulating
magnets into paramagnets, and the discovery has opened up a
new research field known as spin caloritronics [9]. The field has
continuously expanded and given rise to a number of intriguing
phenomena emerging from the interplay between spin and heat
[10–13].

The basic building block of the spin Seebeck device is a
bilayer composed of a ferromagnet and a paramagnetic heavy
metal. This simple ferromagnet/paramagnet bilayer differs
from the conventional spin-transfer torque device in that unlike
the latter system, the former does not possess the so-called
spin valve structure and thus the device structure can be
much simpler. Given the increasing attention focused on the
thermal effects in spintronics and the versatility of the simple
ferromagnet/paramagnet bilayer, theoretical clarification of
the thermal manipulation of ferromagnet/paramagnet bilayers
[14–17] is of crucial importance.

In this work, we theoretically address the issue of thermally
driven microwave emission from the ferromagnet/paramagnet
bilayer system. Using a diagrammatic perturbation calculation
with respect to the external temperature bias as well as the
interfacial magnetic interaction, we show that phonon heat
current has remarkable influences on the magnon lifetime in
the bilayer via the phonon drag mechanism, enabling thermal
manipulation of the Gilbert damping. The theory explains the
experiment reported in Ref. [14], where thermal control of the
Gilbert damping in a prototypical Y3Fe5O12/Pt bilayer was
demonstrated. Moreover, we predict that the Gilbert damping
constant in the same bilayer system can become negative
provided that umklapp scattering of phonons is sufficiently
suppressed at low temperatures, thereby causing an instability
in the magnon system, leading to the microwave emission.

The present paper is organized as follows. In Sec. II,
we define our theoretical model to deal with a ferromag-
net/paramagnet bilayer system and outline how the enhanced

Gilbert damping in the system is calculated. In Sec. III,
we introduce a temperature bias to our model and discuss
its effects on the enhanced Gilbert damping. Based on this
result, in Sec. IV, we predict that thermally driven microwave
emission from the bilayer is possible at low temperatures.
Finally, in Sec. V, we discuss the physics behind the predicted
microwave emission and then summarize our result.

II. MODEL AND ENHANCED GILBERT DAMPING

The system under consideration is a bilayer composed of
an insulating ferromagnet (F ) and a metallic paramagnet (P )
under a temperature bias (Fig. 1). An external static magnetic
field H0 is applied in the lateral direction, and the anisotropy
field Han is assumed to be in the same direction, with its
strength being much weaker than H0. The physics of F and P

are, respectively, described by the localized spins and the spin
accumulation, and the interaction between them is given by the
s-d exchange coupling at the interface. Since, in our approach,
the nonequilibrium dynamics of these quantities play a key
role, it is convenient to employ a diagrammatic perturbation
approach [18,19] formulated in terms of the quantum action.
We use the matrix form of the propagators represented in terms
of the retarded, advanced, and Keldysh components [20].

Our starting point is the following action [18,21]:

A0 =
∫

C

dt

{∑
q

a†
q(t)G−1

q (i∂t )aq(t)

+
∑

k

s+
k (t)χ−1

k (i∂t )s
−
k (t)

+
∑
q,k

[Jsd(k − q)s+
k (t)a†

q(t) + H.c.]

⎫⎬⎭, (1)

where the integration is performed along the Keldysh contour
C. The first term in Eq. (1) describes the dynamics of
magnons, represented by the Holstein-Primakoff operators
aq and a

†
q. Here the retarded part of the magnon propagator

is given by GR
q (ω) = 1/(ω − ωq + iα(0)ω), with ωq and α(0)

being the magnon excitation energy and the intrinsic Gilbert
damping constant, respectively. In the following, the uniform
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FIG. 1. (Color online) Schematic of the magnetic bilayer and a
physical picture of thermally driven microwave emission, where H0

is an applied static magnetic field and Han is the anisotropy field
(Han � H0). (a) In the absence of a temperature bias, a precessing
magnetization in the ferromagnet F , or a magnon, creates spin current
I

pump
S pumped into the adjacent paramagnet, P . This effect always

results in an enhancement of the Gilbert damping constant because the
magnons lose their spin angular momenta. (b) When the paramagnet
is heated, the pumped spin current tends to diffuse back into the
ferromagnet because of the drag effect of the phonon heat current
Qph, and hence produces a forced spin backflow. This spin backflow
reduces the Gilbert damping constant, as the magnons gain additional
spin angular momenta, thereby causing a magnon instability, leading
to microwave emission.

magnon frequency is denoted as ω0. The second term in
Eq. (1) describes the dynamics of the paramagnetic spin
density [22] (spin accumulation), represented by s±

k = sx
k ±

is
y

k , and the retarded part of the propagator is given by
χR

k (ω) = χP /(1 + λ2k2 − iωτsf), where χP is the uniform
paramagnetic susceptibility, λ is the spin diffusion length,
and τsf is the spin-flip relaxation time [23]. The third term
in Eq. (1) describes the s-d exchange interaction at the
F /P interface, where Jsd(k − q) is the Fourier transform of
Jsd

∑
r0∈interface v0δ(r − r0) with Jsd and v0 being the strength

of the s-d interaction and the cell volume, respectively.
We begin by explaining how the damping of magnons in

this bilayer system, conventionally represented by the effective
Gilbert damping constant, is calculated in our approach.
Guided by the experimental observation that the use of a poor
spin sink such as Cu makes the temperature bias effect invisible
[14,17], we assume that P is a good spin sink with sizable
spin-orbit scattering, such as Pt. Since the attachment of a
good spin sink introduces a new source of spin dissipation,
the Gilbert damping constant in the bilayer is given as a
sum of the intrinsic contribution α(0) (defined merely by F ),
and an enhanced Gilbert damping constant δα caused by the
attached P , i.e., α = α(0) + δα. As discussed in Ref. [21], the
enhanced Gilbert damping constant is in general calculated
as δα = −(1/ω0)Im	R

0 (ω0), where 	R
0 (ω0) is the self-energy

for the uniform-mode magnon that is defined by the following
Dyson equation [24]: 1/gR

0 (ω) = 1/GR
0 (ω) − 	R

0 (ω) with
gR

0 (ω) being the renormalized propagator of the uniform-mode
magnon.

The enhanced Gilbert damping constant δα is calculated
from the magnon self-energy shown in Fig. 2(a). Performing
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FIG. 2. (Color online) (a) Diagrammatic representation of the
basic process that gives the enhanced Gilbert damping, which is
free from the temperature bias effect. Here the bold solid line and
the double solid lines with a pair of opposite arrows, respectively,
represent the propagators of the magnon and the spin accumulation.
(b) Temperature profile of the system, where the paramagnet P is in
contact with a heat source of temperature Thot and the ferromagnet F

is in contact with a heat sink of temperature Tcold. In our modeling,
the continuous temperature profile (thick solid line) is replaced
by three discrete local temperatures of T1, T2, and T3. (c) The
phonon-drag process that gives the thermal control of the Gilbert
damping. Here the dashed line represents the phonon propagator.
(d) The Feynman diagram for the longitudinal spin Seebeck effect
discussed in Ref. [41].

a perturbative approach with respect to Jsd, we obtain

δα =
〈〈
J 2

sd

〉〉
�2

∑
k

1

ω0
ImχR

k (ω0), (2)

where 〈〈J 2
sd〉〉 = 2J 2

sdS0Nint/(NP NF ), with �, Nint, NF , and
NP being, respectively, the Planck constant divided by 2π , the
number of localized spins at the interface, and the number of
lattice sites in F and P . Such enhancement of the Gilbert
damping has been confirmed experimentally by linewidth
measurements using ferromagnetic resonance (FMR) [25,26].

The result can be interpreted from the viewpoint of spin
transfer across the interface [27,28], which is now termed “spin
pumping.” Because the exchange interaction at the interface
conserves the total spin, the enhanced Gilbert damping, or
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spin angular momentum loss, should be accompanied by a
spin transfer from F into P , where additional spin dissipation
occurs. Following the procedure given in Ref. [21], a spin
current, I

pump
S , that is pumped from F into P under the FMR

condition is shown to be intimately connected to δα through
the relation

I
pump
S = δα

S0NF (γ hrf)2

(α(0))2ω0
, (3)

where γ and hrf are, respectively, the gyromagnetic ratio
and the amplitude of the oscillating microwave field. Since
a magnon carries a spin angular momentum −�, this effect
pumps negative spin angular momenta into P [Fig. 1(a)]. The
existence of the pumped spin current has been demonstrated
experimentally using the inverse spin Hall effect [29].

The perturbation approach with respect to the s-d inter-
action is justified when Jsd is of the order of several tens
of meV such as Y3Fe5O12/Pt systems [30,31]. Indeed, we
find that the expansion parameter characterizing the strength
of the higher-order terms compared to the lowest-order
term is given by ε = J 2

sdχP /Jex, where Jex is the exchange
integral of F . Because our definition of spin susceptibility
differs from the usual magnetic susceptibility by a factor
μ2

B (μB: the Bohr magneton), the expansion parameter is
calculated to be χP ∼ AStoner/EF , where AStoner and EF are,
respectively, the dimensionless Stoner enhancement factor
and Fermi energy of P . Therefore we have an estimate
ε ∼ (Jsd/Jex)(AStonerJsd/EF ) � 1, where we have used the
fact that, in the case under consideration, Jsd/Jex ∼ 1 whereas
AStonerJsd/EF � 1 even if we consider a moderate strength
of the Stoner enhancement factor of Pt, AStoner ∼ 5 [32]. This
estimate justifies the perturbation approach with respect to Jsd

in Y3Fe5O12/Pt systems.

III. EFFECTS OF TEMPERATURE BIAS

Now, we discuss the effects of a temperature bias on the
enhanced Gilbert damping. We consider a situation where
F and P are in contact with heat baths with temperatures
Tcold and Thot, and where the thermal resistivity and the
thickness of P are considerably smaller than those of F ,
such that the temperature profile of the bilayer behaves as
shown in Fig. 2(b). It is well known that the temperature is
a statistical property of the system; therefore, no Hamiltonian
exists to describe the effects of a temperature bias [33,34].
To consider the thermal effects in our approach, a model
is introduced in which the system is divided into three
temperature domains with local equilibrium temperatures of
T1 = (Thot + 3Tcold)/4, T2 = (3Thot + Tcold)/4, and T3 = Thot.
We assume that each domain is initially in local thermal
equilibrium without interaction with the neighboring domains,
and then switch on the interactions between them, and calculate
the nonequilibrium dynamics of the system. This method has
been proven to be quite efficient for a theoretical description
of the spin Seebeck effect [8].

The size of the temperature domains may be given by a
length scale defining local equilibrium temperature, which is
set by the mean free path of acoustic phonons [35]. In the case
of a widely used Y3Fe5O12, if we neglect so-called subthermal
effects by which low-energy long-ranged phonons carry most

of the heat, it is of the order of 1 nm at 300 K and 1 μm at
50 K [36]. If we take into account the subthermal effects, the
length is expected to be much longer. Apart from this estimate,
however, the important point of the following calculation is
that the result scales with the temperature gradient, instead
of the temperature difference itself [see the paragraph below
Eq. (10)]. Thus, the following result is independent of the
choice of the domain size.

We apply this technique to the present problem and
calculate the enhanced Gilbert damping constant. We then
find that, as long as model (1) consists merely of magnons
and spin accumulation, there is no temperature bias effect
on the enhanced Gilbert damping, even though there is a
finite temperature jump T3 − T2 �= 0 at the F /P interface
in our model calculation. That is, even if we evaluate the
diagram in Fig. 2(a) under a temperature bias (Thot �= Tcold), no
effects arise from this temperature bias. This result originates
from the fact that the enhanced Gilbert damping is a purely
“mechanical” process [34] that is not represented by magnon
distribution function. For the thermal bias to play a role, we
need to consider a process that involves, in addition to the
magnons and spin accumulation, a third degree of freedom
that carries heat and interacts with the magnons or spin
accumulation.

To consider the temperature bias effects, we thus focus on
acoustic phonons as the third degree of freedom. In a widely
used Y3Fe5O12/Pt bilayer system, it is well established that
acoustic phonons give a quite sharp peak to the spin Seebeck
effect, owing to the phonon-drag mechanism [37–40] at low
temperature. Following Ref. [37], we consider the following
action:

Aph =
∫

C

dt

{∑
k

B
†
k(t)D−1

k (i∂t )Bk(t)

+
∑
k,K

ϒKBK(t)s+
k+K(t)s−

k (t)

}
, (4)

where B
†
K = b

†
K + b−K is the creation operator for phonons,

and DR
K(ν) = (ν − νK + i/τph)−1 − (ν + νK + i/τph)−1 is the

retarded part of the phonon propagator, with τph and νK =
vphK being the phonon lifetime and energy; here the phonon
propagator depends on the underlying material. The first term
describes the dynamics of the acoustic phonon, and the second
term describes the interaction between the phonon and the
spin accumulation in P , where the explicit expression of

the vertex is given by ϒK = (gs-p/�)
√

�νK/2Mionv
2
ph with

Mion and gs-p being the ion mass and the strength of the
spin accumulation-phonon interaction [41], respectively. Note
that in Eq. (4), effects of the phonon-phonon umklapp
scattering is phenomenologically taken into account through
the temperature dependence of the phonon lifetime τph, which
is known to be largely suppressed at room temperature by
umklapp processes. Besides, the spin accumulation-phonon
umklapp scattering is ill defined because the spin accumulation
is a hydrodynamic diffusive mode. Therefore, Eq. (4) is valid
even at room temperature.

In the following, we show that, in the presence of phonon
heat current concomitant to the temperature bias, the total
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Gilbert damping α can be written as

α = α(0) + δα + δα′�T, (5)

where the last term represents the thermally driven change in
the Gilbert damping. Notably, as shown below, the term δα′�T

is proportional to the phonon heat current, Qph, a situation that
is accounted for only by nonequilibrium phonon dynamics.

The dominant contribution to δα′�T at low temperature
comes from the process shown in Fig. 2(c), where the
acoustic phonons carry the heat current Qph and drag the
spin accumulation. As before, we have a relation δα′�T =
−(1/ω0)Im	

′R
0 (ω0) for the present problem, where

	′
0
R(ω) = J 2

sdS0N
(2,3)
int√

2NF N2
P

∑
k,K3

ϒ2
K3

[
χR

k (ω)
]2

× i

∫
ν

χk−K3 (ω − ν)δDK
K3

(ν) (6)

is the magnon self-energy corresponding to the diagram in
Fig. 2(c), and δDK

K3
(ν) is given by

δDK
K3

(ν) = L

N2
F

∑
K1,K2

∣∣DR
K3

(ν)
∣∣2∣∣DR

K2
(ν)

∣∣2
ImDR

K1
(ν)

×
[

coth

(
�ν

2kBT3

)
− coth

(
�ν

2kBT1

)]
. (7)

We evaluate the integral over ν by picking up the dominant
contribution proportional to τph, and obtain

	′
0
R(ω) = J 2

sdS0N
(2,3)
int

N3
F N2

P

Lτphi
∑

k,K1,K2,K3

ϒ2
K3

[
χR

k (ω)
]2

× [
χR

k−(ω−) + χR
k+ (ω+)

]
ImDR

K3
(νK2 )

×
[

coth

(
�νK2

2kBT3

)
− coth

(
�νK2

2kBT1

)]
, (8)

where k± = k ± K1, ω± = ω ± νK2 , and we have used the
relation ImDR

K(−ν) = −ImDR
K(ν). Then, after a tedious but

straightforward calculation, we have

δα′�T = 6π

�
δαχ2

P �̃2
effLτph

[
ρF

ph(νF )
]2

(kBT )5

(�νF )4

(
�T

T

)
c5,

(9)

where νF is the Debye frequency of F ,

c5 =
∫

�νF /kBT

0
dx

x5

4 sinh2(x/2)
, (10)

and the quantity L is defined below Eq. (A2) in Appendix A.
Note that the above result [Eq. (9)] scales with the

temperature gradient instead of the temperature difference
itself, which can be seen from the fact that δα and L in
Eq. (9) are, respectively, proportional to 1/NF and N

(2,3)
int .

Because NF = LxLyLz/a
3 and N

(2,3)
int = LyLz/a

2 where a

is the lattice spacing and LxLyLz is the volume of F with
the x axis chosen along the temperature gradient, Eq. (9) is
proportional to a(�T/Lx) = a∇T .

The right-hand side of Eq. (9) can be rewritten in terms
of phonon heat current Qph across the F/P interface. Using

Eqs. (A4) and (A5) in Appendix A, the thermal contribution
to the enhanced Gilbert damping can be expressed as

δα′�T = 12

π2
χ2

P �̃2
effBδα Qph, (11)

where �̃2
eff = (g2

s-p/�Mionv
2
ph)N−1

N

∑
K νK/(ν2

K + 1/τ 2
ph) is the

effective coupling constant between the phonon and the spin
accumulation, and a dimensionless coefficient B is given by

B = (�νP )6
[
ρF

ph(νF )
]2

(�νF )4ρP
ph(νP )

[
ρF

ph(νP )
]2

c5/c8

(kBT )3
. (12)

Equation (11) is the main result of the present paper. As
introduced before, the quantity Qph = −Kph�T in Eq. (11)
represents the phonon heat current under the temperature bias
�T = Thot − Tcold, where the expression for Kph (>0) is given
by Eq. (A5). Note that, within a linear response with respect
to �T , the phonon-drag process discussed here gives the
leading contribution to δα′ at low temperature, which also well
explains the phonon-drag peak in the thermal conductivity and
the spin Seebeck effect in LaY2Fe5O12 [37].

IV. MICROWAVE EMISSION DRIVEN
BY TEMPERATURE BIAS

The most remarkable prediction of the present theory is that
the total Gilbert damping constant α in Eq. (5) can become
negative, signifying an instability in the magnon system and
giving rise to gigahertz microwave emission. The prediction is
made as follows. First, according to Eq. (11), the sign of δα′�T

can be negative when P is hotter because of the condition
that Qph = −Kph(Thot − Tcold) < 0. Second, the magnitude of
δα′�T is significantly enhanced at low temperatures where the
phonon thermal conductivity Kph has a phonon-drag peak [42],
thus compensating for the positive contribution from α(0) + δα

and leading to a negative Gilbert damping constant.
To judge the feasibility of the predicted microwave emis-

sion, we calculate the temperature dependence of α using
information given in the literature. In doing so, we first limit
ourselves to a typical Y3Fe5O12/Pt bilayer system [14–17],
in which the reduction of the Gilbert damping constant under
a temperature bias is actually observed. We next use the fact
that the longitudinal spin Seebeck effect in the same system
is governed by a quite similar phonon-drag process [39,41],
shown in Fig. 2(d). Use of the longitudinal spin Seebeck signal
allows us to eliminate experimentally unknown parameter
χ2

P �̃2
eff from Eq. (11).

We can calculate the spin current generated by the longitu-
dinal spin Seebeck effect, I SSE

S , following the procedure given
in Ref. [41] (see Appendix B for details). The result is

I SSE
S = δαNF 4π2Lτph�̃

2
eff

χ2
P τ 2

sf

�5

ρmag(ωD)√
�ωD

×
[
ρF

ph(νF )
]2

(kBT )19/2

(�νF )4

(
�T

T

)
c3/2c6, (13)

where ρmag(ω) is the density of states of magnon, ωD =
2π2JexS0/� with Jex being the exchange energy of F , and
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c3/2 and c6 are, respectively, defined by

c3/2 =
∫

�ωD/kBT

0
dx

x3/2

sinh(x/2)
, (14)

c6 =
∫

�νF /kBT

0
dx

x6

4 sinh(x/2)
. (15)

By comparing Eq. (9) with Eq. (13), we finally obtain

δα′(T )�T = (1/ω0)C(T ) I SSE
S (T ), (16)

where a dimensionless coefficient C(T ) is given by

C(T ) = 3

π

ω0/ω
2
D

ρmag(ωD)(ωDτsf)2

(
�ωD

kBT

)9/2 c5

c3/2c6
. (17)

Note that the above result is derived within the linear-response
calculation and thus the result is always linear with respect to
the temperature bias �T .

An important consequence of Eq. (16) is that it gives the
relation

δα′(T )�T = δα′(TR)�T

(
C(T )

C(TR)

)(
I SSE

S (T )

I SSE
S (TR)

)
, (18)

where TR is the room temperature. From this, we can estimate
δα′(T )�T , because the temperature dependence of the ratio
I SSE

S (T )/I SSE
S (TR) is given in Ref. [39], the value of δα′(TR)�T

is known from Ref. [14], and the value of C(T )/C(TR) can
be calculated numerically. The validity of this procedure is
first checked by comparing it with an experimental result
reported in Ref. [14], where a 17% reduction in the Gilbert
damping constant in a Y3Fe5O12/Pt bilayer is observed at
room temperature when the Pt side is hotter by an amount
�T = 20 K (see Appendix C).

Figure 3 shows the temperature dependence of the total
Gilbert damping constant α, calculated for a Y3Fe5O12/Pt
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FIG. 3. (Color online) The temperature dependence of the total
Gilbert damping constant α = α(0) + δα + δα′�T calculated for a
Y3Fe5O12/Pt bilayer under a temperature bias of �T = 3 K. Here
the nonthermal terms α(0) and δα are taken from Ref. [14], while the
thermally driven term δα′�T is calculated using Eq. (16). Inset: The
temperature dependence of the spin Seebeck signal SSSE taken from
Ref. [39], which is used to calculate δα′�T via Eq. (16).

hybrid system, where the nonthermal terms α(0) and δα

are taken from Ref. [14] and assumed to be temperature
independent. Clearly, we find that a negative Gilbert damping
constant is achieved at around T = 50 K under a temperature
bias of �T = 3 K, which signifies an instability in the
uniform-mode magnon dynamics.

This magnon instability with the negative total Gilbert
damping constant indicates that the energy gain due to the work
done by the temperature bias exceeds the energy loss due to
the nonthermal Gilbert damping constant, α(0) + δα, such that
the excess energy dissipates in the form of emitted microwave
radiation. This is similar to the case of microwave emission
from spin valves that are driven by a spin-transfer torque
[43,44]. Unlike spin valve systems, however, magnetization
reversal does not occur; for the magnetization reversal to
be realized, two well-defined energy minima in the free
energy—corresponding to parallel and antiparallel states in
the case of the spin valve—are required. In the present case,
on the other hand, because we are dealing with a situation
where the external magnetic field is considerably larger than
the in-plane anisotropy field as stated in the beginning of
this section, the system possesses only one energy minimum,
which corresponds to the direction of the external magnetic
field. In such a high-field region, the magnon instability
signifies only microwave emission, even in the spin valve
system [43].

Therefore, this calculation shows that we can drive a
gigahertz microwave emission with work done by an ap-
plied temperature bias. Because the uniform mode has the
narrowest linewidth in the spin-wave resonance spectrum
in the Y3Fe5O12/Pt system [45], the instability is expected
to originate from uniform precession. However, since a
magnetostatic surface mode may have stronger coupling to the
Pt layer because of its surface-localized nature, an instability of
this mode prior to the uniform precession may also be possible.
Although the microwave emission in an actual experiment is
expected to be concomitant with the dynamically precessing
state involving highly nonlinear processes, the present theory
deals only with linear stability analysis; the precise description
of such a dynamically precessing state is beyond our scope.

It is important to note that the predicted microwave emission
can be separated from background thermal radiations by
measuring the power spectra of emitted microwaves [30,46].
The predicted microwave emission has peaks only at several
gigahertz frequencies, which is specific to magnon dynamics
(see Fig. 3 in Ref. [30]). By contrast, the background thermal
radiations do not possess such features.

Before ending this section, it is informative to comment
on a key point to experimentally achieve the predicted
microwave emission. In experiments, an Y3Fe5O12/Pt bilayer
is conventionally grown on a millimeter-thick Gd3Ga5O12

substrate. The thickness of the Y3Fe5O12 film is less than a
micrometer in order for the effect of the spin transfer across
the Y3Fe5O12/Pt interface to be visible. On the other hand,
in our calculation we assume that, at low temperatures, the
phonon mean free path grows to a millimeter scale (recall that
in Ref. [39], from which we take the input data to draw Fig. 3, a
bulk Y3Fe5O12 was used). Therefore, an implicit assumption in
our theory is that the interface between the Y3Fe5O12 film and
the Gd3Ga5O12 substrate is sufficiently transparent to phonons.
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This means that, although the quality of Y3Fe5O12/Pt interface
is usually the only matter of attention, much caution should
be paid to the quality of Y3Fe5O12/Gd3Ga5O12 interface to
achieve the situation shown in Fig. 3.

V. DISCUSSION AND CONCLUSION

The physics behind the predicted microwave emission is
best understood in terms of the spin-pumping picture (see
Fig. 1). First, recall that the spin accumulation can be regarded
as dynamically induced paramagnons in the language of
many-body theory [22], and that the quantity

∑
k ImχR

k (ω0)
in Eqs. (2) and (3) denotes the density of states of the
paramagnons [24]. Then, without the temperature bias, a
magnon carrying spin angular momentum −� pumps negative
spin into P in the form of paramagnon excitations. This always
results in an enhancement of the Gilbert damping because
the magnons lose the spin angular momenta [Fig. 1(a)]. On
the other hand, when P is heated, the pumped paramagnons
tend to diffuse back into the cooler F , due to the drag
effect of nonequilibrium phonons, which causes a forced spin
backflow against the pumped spin current [Fig. 1(b)]. This spin
backflow gives a negative contribution to the Gilbert damping
constant in accordance with Eq. (11) under the condition that
Qph = −Kph(Thot − Tcold) < 0. In this picture, the magnon
instability in the limit of negligible intrinsic Gilbert damping
constant α(0) occurs when the sign of the spin-pumping current
changes.

Note that the present phenomenon differs from thermal
spin-transfer torque in spin valve structures discussed in
Refs. [47,48], as the spin valve structures are not required
here. Furthermore, the phenomenon should be distinguished
from a thermomagnonic analog to Refs. [49,50] in that the
phonon-drag effect is the indispensable ingredient in the
present theory. Moreover, the physics under discussion cannot
be interpreted in terms of the spin-transfer torque exerted by a
spin accumulation caused by the spin Seebeck effect, because
such a process would yield a result proportional to J 4

sd (J 2
sd

required for accumulating spin and the other J 2
sd for exerting

torque) instead of J 2
sd in the present theory. Note also that, since

we do not consider spin valve structures in this paper and there
is only a uniform magnetization structure, we do not find any
relevant processes in our calculation that are characterized by
magnonic spin transfer torque.

In conclusion, we have developed a theory for the ther-
mal control of the Gilbert damping constant in a ferro-
magnet/paramagnet bilayer, and predicted that a microwave
emission from the bilayer occurs at low temperature, where
the participation of nonequilibrium phonons is remarkably
enhanced. Since the structure of the bilayer is much simpler
than that of spin valves, the present phenomenon extends the
range of applications of spin caloritronics.
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APPENDIX A: DERIVATION OF EQ. (11)

In this section, we derive Eq. (11) in the main text.
In the following, it is convenient to introduce a notation
di (i = 1,2,3) to represent a temperature domain in Fig. 2
having its local temperature Ti .

We begin by deriving the expression of the phonon heat
current Qph flowing into P . This quantity can be calculated
in a manner similar to Ref. [51] using the definition Qph =
〈 ∂

∂t
H

(3)
ph 〉, where 〈· · · 〉 means the statistical average, and H

(3)
ph =

�
∑

K3
νK3b

†
K3

bK3 is the Hamiltonian for phonons in domain
d3 with bK3 being the phonon annihilation operator defined in
the domain. To describe heat transfer across the domains, we
need to introduce the interaction Hamiltonian

H
(i,j )
ph = �

∑
Ki ,Kj

�(i,j )(Ki − Kj )B†
Ki

BKj
+ H.c., (A1)

where BKi
= bKi

+ b
†
−Ki

, and �(i,j )(K) is the Fourier trans-
form of �(i,j ) ∑

r0∈interface v0δ(r − r0) with ��(i,j ) being the
characteristic energy of the phonon transfer across the di /dj

interface.
Using the Heisenberg equation of motion for H

(3)
ph and then

performing perturbation approach in terms of the interaction
across the interface, we obtain

Qph = �L

NP N2
F

∑
K1,K2,K3

νK3

∫
ν

ImDK1 (ν)|DK2 (ν)|2

× |ImDK3 (ν)|
[

coth

(
�ν

2kBT3

)
− coth

(
�ν

2kBT1

)]
,

(A2)

where L = (�(1,2)�(2,3))2N
(1,2)
int N

(2,3)
int with N

(i,j )
int being the

number of lattice sites at the di /dj interface, and we introduced
the shorthand notation

∫
ν

= ∫ ∞
−∞

dν
2π

. We evaluate the integral
over ν by picking up the dominant contribution that is
proportional to the phonon lifetime τph, and obtain

Qph = �Lτph

∑
K1,K2,K3

νK2 ImDK1 (νK2 )ImDK3 (νK2 )

×
(

�νK2
2kBT

)
4 sinh2

(
�νK2
2kBT

)(
�T

T

)
, (A3)

where the result was linearized with respect to �T . After a
little algebra, Qph is calculated to be

Qph = −Kph�T, (A4)

Kph = π3

2�
Lτph

ρP
ph(νP )

[
ρF

ph(νP )
]2

(kBT )8

(�νP )6T
c8, (A5)

where νP are the Debye frequency of P , ρP
ph(ν) [ρF

ph(ν)] is the
density of states of phonons in P (F ), and the constant c8 is
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defined by

c8 =
∫

�νP /kBT

0
dx

x8

4 sinh2(x/2)
. (A6)

APPENDIX B: DERIVATION OF EQ. (13)

In this section, we derive Eq. (13) in the main text. The
spin current injected into P via the spin Seebeck effect
is given by [8] I SSE

S = ∑
ri∈P 〈 ∂

∂t
sz(ri ,t)〉, where s(ri ,t) =

N
−1/2
P

∑
k sk(t)eik·ri is the spin accumulation in P . Using

the Heisenberg equation of motion for sz and assuming
the steady state condition, this quantity can be calculated
from I SSE

S = ∑
k,q

∫
ω

Re[Jsd(k − q)C<
k,q(ω)], where C<

k,q(ω)
is the Fourier transform of the interfacial Green’s function
C<(t,t ′) = −i〈aq(t ′)sk(t)〉, and we introduced the shorthand
notation

∫
ω

= ∫ ∞
−∞

dω
2π

.
Now we focus on the process shown in Fig. 2(d). Following

the procedure given in Ref. [41], the corresponding spin current
injection is represented as

I SSE
S = J 2

sdS0N
(2,3)
int

�4NF N2
P

∑
k,q,K3

ϒ2
K3

∫
ν

Fk,q(ν)ImδDK
K3

(ν), (B1)

where δDK
K3

(ν) was defined in Eq. (7), and

Fk,q(ν) =
∫

ω

∣∣χR
k (ω)

∣∣2
ImχR

k− (ω − ν)ImGq(ω)

×
[

coth

(
�(ω − ν)

2kBT

)
− coth

(
�ω

2kBT

)]
(B2)

with k− being introduced below Eq. (8). We first use the re-
lation coth(A − B) − coth(A) = sinh(B)/[sinh(A) sinh(A −
B)] and then perform the integral over ω using ImGq(ω) =
−πδ(ω − ωq). Then, Fk,q(ν) is calculated to be

Fk,q(ν) = −2πkBT ντsf

�

(
�(ωq−ν)

2kBT

)
sinh

(
�(ωq−ν)

2kBT

) sinh
(

�ν
2kBT

)
sinh

(
�ωq

2kBT

)
× ∣∣χR

k (ω)
∣∣2 d

dω

[
ImχR

k (ω)

ω

]
ω=ωq−ν

, (B3)

where the derivative with respect to ω originates from the
fact that only the even-in-ν component gives a nonvanishing
contribution to I SSE

S because of the symmetry of the ν

integral. Substituting Eq. (B3) into Eq. (B1) and performing
the integral over ν by picking up the phonon poles, we
obtain Eq. (13), where we have used an approximation
( �(ωq−νK)

2kBT
)/ sinh( �(ωq−νK)

2kBT
) ≈ 1 because the dominant contribu-

tion comes from a region �(ωq−νK)
2kBT

� 1.

APPENDIX C: COMPARISON OF THE THEORY
WITH EXPERIMENTS

Equation (11) means that the Gilbert damping constant is
reduced when the paramagnet side is hotter, the sign of which
is consistent with the experiment reported in Ref. [14]. For
its order of magnitude estimation, we use Eq. (16). Since we
have I SSE

s /ω0 ≈ 2.0 × 104 at room temperature TR under a
temperature bias of �T = 20 K [39], we have an estimate
δα′�T/[α(0) + δα] ≈ 30%, where we used the fact that α(0) �
δα. This estimate is comparable to the experimentally observed
reduction of 17%.

On the other hand, one could attribute the observed reduc-
tion to a trivial effect of the temperature bias because there
might be a temperature bias effect that is free from the phonon
heat current Qph and comes solely from temperature depen-
dence of material parameters in Eq. (2). To see this, we first use
the fact that the dominant temperature dependence comes from
that of the paramagnetic spin susceptibility χP [52] and the size
of the spin (∝ saturation magnetization Ms [53]), where the
former quantity is defined as a function of the temperature of
P (i.e., T = TP ) and the latter as a function of the temperature
of F (i.e., T = TF ). We next use the relation TF = TR + 1

2�T

and TP = TR − 1
2�T by setting TR = 1

2 (TF + TP ), and cal-
culate δα(TR + �T ) = const × Ms(TR + 1

2�T ) × χP (TR −
1
2�T ). Then, we obtain [δα(TR + �T ) − δα(TR)]/[α(0) +
δα(TR)] ≈ 1

2
d

dT
[ln χP (T ) − ln Ms(T )]T =TR�T , where we

have again used the fact that α(0) � δα(TR). This estimate
gives at most a 2% reduction in α under a temperature bias of
�T = 20 K, which is much smaller than the experimentally
observed value. This means that Eq. (11) is indeed the origin
of the observed behavior.
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