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First-principles investigation of quantum mechanical effects on the diffusion of hydrogen
in iron and nickel
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The diffusion coefficients of interstitial hydrogen in bulk Fe and Ni crystals have been calculated over a
wide range of temperatures employing first-principles methods based on density functional theory. Quantum
mechanical effects have been included by means of the semiclassical transition state theory and the small-polaron
model of Flynn and Stoneham. Our results show that to include such effects is crucial for a quantitative simulation
of H diffusion in bcc Fe even at room temperature, while in the case of fcc Ni this is less important. The comparison
with other theoretical approaches as well as with experimental studies emphasizes the main advantages of the
present approach: it is quantitatively accurate and computationally efficient.
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I. INTRODUCTION

The diffusion behavior of H atoms in host metals and
alloys has been addressed for decades in scientific research
and technological application. In the case of research, the
H diffusion allows for the investigation of fundamental
quantum mechanical effects in crystalline materials, such as
the zero-point energy (ZPE), discrete vibrational excitations,
or quantum tunneling of H isotopes. From the perspective
of application, the theoretical understanding of H diffusion
is essential for detrimental phenomena such as hydrogen
embrittlement (HE) of steels.

Various relevant mechanisms for HE have been pro-
posed [1–5] with most of them strongly related to diffusion
and trapping of H atoms in metallic host crystals. Nevertheless,
a precise quantitative determination of diffusion coefficients
for H in metals is still a challenging task, since measured
effective diffusion coefficients depend sensitively on the
specific material as well as its microstructure [1,4,6–9]. As
a result, the reported experimental data for most metals are
often scattered by orders of magnitude even for nominally pure
bulk phases and it is difficult to interpret them with sufficient
accuracy. Perhaps the most prominent example is the diffusion
of H in bcc Fe [10]. In this case, the scatter of data has two
main reasons. First, because of the very low solubility of H
in bcc Fe [2], experimental diffusion measurements need to
be performed on specimens containing very low amounts of
H, which makes the results extremely sensitive to structural
defects (e.g., point defects, dislocations, and interfaces) that
are inevitable even for high purity metals. Second, the
interpretation of results is typically done under the assumption
that H diffusion is a purely classical phenomenon, i.e.,
well described by an Arrhenius-like temperature dependence.
However, since hydrogen is the lightest chemical element, its
diffusion is affected by quantum mechanical effects [2]. At low
temperatures, H diffusion is promoted by quantum tunneling
between quantized proton states of zero-point energies. At
high temperatures, these effects tend to disappear and a
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classical overbarrier jump migration becomes the dominating
mechanism [2,11–13]. The presence of two distinct migration
mechanisms normally leads to a non-Arrhenius-like behavior
of the diffusivity [14,15].

First-principles calculations based on density functional
theory (DFT) have been used to determine the energetics
associated with the migration of interstitial H atoms in
crystalline metals [16–21]. However, in these calculations all
atomic nuclei are treated as pointlike classical particles which
can lead to inaccuracies in the description of H diffusion
where quantum effects are not negligible [19,22,23]. Various
methodologies have been proposed to capture the nonclassical
treatment of diffusion, for instance, based on the path-
integral (PI) method [24–28] or the small-polaron (SP) theory
[11–13,29]. These approaches can yield very accurate results,
but they typically require a large amount of reliable input
data. To obtain these can be a rather time-consuming task
for first-principles calculations. Therefore more approximate
methods (e.g., tight-binding models or empirical poten-
tials) are often employed to reduce the computational costs
[26–28]. Unfortunately, these approximate methods usually
do not reach the accuracy and reliability of the first-principles
methods, which makes the validity of the obtained results less
certain.

An alternative approach to obtain a nonclassical description
of diffusion is by the so-called semiclassical transition state
theory (SC-TST) [30–33]. This theory has the advantage of
requiring only a small amount of input data while providing
an accuracy comparable to those of the PI and SP methods. The
main limitation of the SC-TST is that it can be applied only
to the case of a symmetric migration path, i.e., a migration
path for which the two involved metastable configurations
are equivalent. For the case of an asymmetric migration
path, it is possible to employ a simplified version of the SP
theory [13,29], that allows us to keep the computational cost
as low as for the SC-TST.

In this work, we apply both the SC-TST and the simplified
SP model to study the diffusion of H in bcc Fe and fcc Ni
crystals. We show that our findings agree very well with those
of the computationally more demanding PI methods [26–28],
and provide a consistent interpretation of available experimen-
tal data [10,34–38].
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The paper is structured as follows: in Sec. II we introduce
the formalisms of the SC-TST and the SP model; in Sec. III the
results obtained for the Fe-H and Ni-H systems are reported;
in Sec. IV the results are discussed and compared to other
theoretical and experimental data; in Sec. V we summarize the
major findings and present our conclusions.

II. THEORETICAL APPROACH

The diffusivity for the migration of hydrogen in a perfect
metal lattice can be obtained without exploring the dynamics
of the system by means of the transition state theory (TST).
Following Eyring’s work [39] and assuming an uncorrelated
random walk, the diffusion coefficient can be written as

DTST = 1

6
zR2� = 1

6
zR2 kT

h
e−�F/kT , (1)

where h is the Planck constant, k is the Boltzmann constant, T is
the absolute temperature, z is the number of possible equivalent
jumps away from a given position, R is the jump distance, and
� is the jump rate which can be expressed as Boltzmann’s
factor of the free-energy difference �F corresponding to the
energy barrier between the metastable transition state (top of
the barrier) and the ground state (equilibrium position).

If we consider that �F = �U − T �S, with �U and �S

being the differences in total energy and entropy between the
transition and ground states, respectively, we can write

DTST = kT

h

1

6
zR2e�S/ke−�U/kT . (2)

The free energy can be calculated as �F = −kT ln ( Z0

ZT ),
where ZT and Z0 are the partition functions of the transition
and ground states, respectively. If we use the classical expres-
sion of the partition function in the harmonic and frozen-lattice
approximation, the entropy contribution �S reads

�S = −k ln

[
kT

h

∏2
i=1 νS

i∏3
i=1 ν0

i

]
− k, (3)

where ν0
i and νS

i are the vibrational frequencies of an H atom at
the stable interstitial site and at the saddle point, respectively,
in the host crystal. The internal energy contribution �U can
be instead written as

�U = �E − kT (4)

with �E being the total-energy difference between the
transition state and the ground state. The term −kT is the
difference between the sums of the vibrational kinetic and
potential energies for a classical harmonic oscillator in the
transition and ground states. It originates from the fact that in
the transition state there is one degree of freedom less than in
the stable site [40].

If we substitute Eqs. (3) and (4) into Eq. (2), we obtain the
classical expression for the diffusion coefficient:

DTST = 1

6
zR2

∏3
i=1 ν0

i∏2
i=1 νS

i

e−�E/kT . (5)

The simplest extension of this classical expression to
take into account quantum mechanical effects is usually

done by simply adding the difference in zero-point ener-
gies [16,17,21,41,42], �ZPE, corresponding to the saddle
point and the stable site, to the migration energy in the exponent
of Eq. (5). Such ZPE-corrected diffusivity is then expressed as

DTST+�ZPE = 1

6
zR2

∏3
i=1 ν0

i∏2
i=1 νS

i

e− �E+�ZPE
kT . (6)

Despite the ZPE correction, the prefactor and the migration
energy barrier in Eq. (6) remain independent of temperature, so
that both Eqs. (5) and (6) can describe in fact only the classical
Arrhenius-like behavior. Another problem with Eq. (6) is that
the quantum mechanical effects should disappear for high
temperature, but Eq. (6) does not converge to the classical
expression of Eq. (5) with increasing temperature.

In the following, we describe how the quantum mechanical
effects can be included in a more systematic way, by using
either the SC-TST [30] or the SP model developed by Flynn
and Stoneham [13] (denoted as the FS model in the following).

Quantum mechanical effects on the diffusion of interstitial
atoms can be divided into two contributions. The first contribu-
tion is due to the ZPE of the ground state of a vibrating proton
or, more generally, to the presence of discrete vibrational
energy levels and their occupation at finite temperatures. The
second contribution is due to quantum mechanical tunneling.

To take the quantized vibrations (QVs) of H atoms into
account (including the zero-point energy corrections), it is
sufficient to calculate the free energy in Eq. (1) using the
quantum mechanical expressions for the partition functions
instead of the classical ones. The diffusion coefficient then
reads [20,33,43]

DQV = 1

6
zR2 kT

h

∏3
i=1 2 sinh

( hν0
i

2kT

)
∏2

i=1 2 sinh
( hνS

i

2kT

)e−�E/kT . (7)

This expression has the correct limits, approaching Eqs. (5)
and (6) for high and low temperatures, respectively. It is
useful for the following analysis to rearrange Eq. (7) into
an Arrhenius-like form, in which both the prefactor and the
exponential term converge to their classical limits for high tem-
perature. This can be done in analogy to the classical case as

DQV = D∗
QV(T ) e−�EQV(T )/kT (8)

where the temperature-dependent prefactor is given as

D∗
QV(T ) = 1

6
zR2

∏3
i=1 sinh

(
1
2u0

i

)
∏2

i=1 sinh
(

1
2uS

i

) e
∑2

i=1
1
2 uS

i coth
(

1
2 uS

i

)
e
∑3

i=1
1
2 u0

i coth
(

1
2 u0

i

) (9)

where ux
i = hνx

i /kT . The temperature-dependent migration
barrier is then expressed as

�EQV(T ) = −kT

3∑
i=i

1

2
u0

i coth

(
1

2
u0

i

)

+ kT

2∑
i=i

1

2
uS

i coth

(
1

2
uS

i

)
+ kT . (10)

A detailed derivation of Eqs. (8)–(10) is given in Appendix A.
Note that �EQV(T ) is equal to �E + �ZPE [see Eq. (6)] as
T → 0 while for high temperature it approaches the classical
migration energy barrier, �E [20,33].
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While the treatment of H vibrations via Eq. (7) is the
same in both SC-TST and FS methods, the description
of quantum tunneling is approached differently in the two
approaches. Quantum tunneling in the SC-TST is considered
as a correction to the diffusivity in Eq. (7). Following Fermann
and Auerbach [30], the diffusion coefficient in the SC-TST can
therefore be written as

DSC-TST = DQVQ (11)

where the tunneling correction factor, Q, is expressed as [30]

Q =
exp

(
�EQV

kT

)
1 + exp(2θ0)

+ 1

2

∫ θ0

−∞
dθ sech2(θ )exp

(
hνS

3 θ

πkT

)
(12)

with θ0 = (π�EQV)/(hνS
3 ), νS

3 = iν̃ with ν̃ being the imagi-
nary vibrational frequency at the saddle point associated with
the migration direction. It should be noted that in the original
work [30] �EQV is approximated as the ZPE-corrected
migration energy barrier (�E + �ZPE) while in our work
the physically correct, temperature-dependent expression ac-
cording to Eq. (10) is used. The integral in Eq. (12) is evaluated
numerically.

In an analogous way as for Eq. (7), it is also possible to
rewrite Eq. (11) in an Arrhenius-like form (see Appendix A):

DSC-TST = Deff(T )∗e−�Eeff(T )/kT (13)

with the effective migration energy, �Eeff, and the effective
prefactor, D∗

eff, having the proper low- and high-temperature
limits.

As already mentioned, the SC-TST is limited to symmetric
transitions where the initial and final states have identical
energies. This can be easily understood by noticing that this
method does not take into account any information about the
final state. Hence, the SC-TST will always predict the same
tunneling probability, independently whether the initial and
final states are equivalent or not.

In the FS model [13], the tunneling contribution is not
included as a correction to the diffusion coefficient for atomic
jumps over barriers, but it is considered as a distinct diffusion
mechanism with its own diffusion coefficient that can be
calculated using Eq. (1). The jump rate, �FS for proton
transmission between ground states at two neighboring sites,
p and p′, is expressed as [13,44]

�FS =
(

π

4�2EckT

) 1
2

J 2
pp′e

− Ec
kT (14)

where Jpp′ is the tunneling matrix element and Ec is the
so-called coincidence energy. To obtain properly these two
quantities requires several first-principles calculations to map
out the potential-energy landscape of the migrating proton in
the crystalline material. The Schrödinger equation for a proton
in this potential can be then solved [11,12,23].

In order to keep the computational costs low we do not
follow this route but instead make several approximations.
The matrix element Jpp′ is calculated assuming the harmonic
approximation for the proton vibrations, the frozen lattice
approximation for the host metal, and the adiabatic (Born-
Oppenheimer) approximation for the light proton moving in
the host lattice of heavy metal atoms (i.e., the proton remains in

its adiabatic ground state). Under these conditions the matrix
element can be written as

Jpp′ = S(ZPEp′ + ZPEp) − K (15)

where ZPEx is the zero-point energy at site x

S = 〈φ̃p|φ̃p′ 〉 and K = − �
2

2m
〈φ̃p| d2

dx2
|φ̃p′ 〉 (16)

are the overlap and kinetic-energy integrals with |φ̃p〉, |φ̃p′ 〉
being the ground-state wave functions for harmonic oscillators
in the neighboring sites p and p′, m is the atomic mass of
a proton (or, more generally, of an H isotope). A detailed
derivation of Eq. (15) is given in Appendix B.

The remaining quantity to calculate for evaluating Eq. (14)
is the coincidence energy, Ec. It is the energy required to
excite the system from a configuration consisting of one
occupied, self-trapped site and one unoccupied site into a
configuration at which the two neighboring sites become
equivalent and energetically degenerate so that the tunneling
may occur [2,23]. In case of migration between two equivalent
neighboring interstitial sites, Ec can be approximated by one
quarter of the self-trapping energy, EST [11,45], which is the
energy gained by the proton due to the local lattice distortion
of the host crystal. In case of hopping between nonequivalent
sites, the difference between their ground-state energies needs
to be added to the self-trapping energy of the proton in the
initial position.

Equation (14) is valid only for a temperature range low
enough to assume that the proton is in its ground state and
that migration is by tunneling between two ground states
only, but high enough to treat the host-lattice phonon modes
classically [11,12]. In order to extend the model to a range of
higher temperatures, which we are interested in, we consider
a superposition of the tunneling diffusivity, Eq. (14), and the
overbarrier jump diffusivity, Eq. (7) [14] so that the overall
diffusivity within the FS model is given as

DFS = DQV + 1
6zR2�FS. (17)

Both SC-TST [Eq. (11)] and FS [Eq. (17)] expressions for
diffusion coefficients take into account all quantum mechanical
effects for any temperature while requiring the same amount
of information from DFT calculations as the simple ZPE-
corrected TST, i.e., Eq. (6).

In our study, all input parameters for Eqs. (11) and (17),
namely, energy barriers and vibrational frequencies, were
obtained by means of DFT calculations using the mixed-
basis pseudopotential method [46–49]. A generalized gradient
approximation was employed for exchange correlation, and
spin polarization was taken into account. For the Brillouin-
zone integrations in the calculation of total energies and
forces, Monkhorst-Pack k-point meshes of 4×4×4 for the
supercell of bcc Fe (cubic, 16 atoms) and for the supercell
of fcc Ni (cubic, 32 atoms) were used. Both supercells are
relatively small, nevertheless finite-size effects are negligible,
as discussed below. The minimum energy path (MEP) for the
migration of a proton between neighboring interstitial sites
was determined using the climbing image nudge elastic band
(CI-NEB) method [50]. With these computational specifica-
tions, cubic lattice parameter values of 2.87 and 3.53 Å were
obtained for the pure bcc Fe and fcc Ni crystals, respectively,
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which agree with other DFT and experimental data. The atomic
positions were relaxed to forces less than 10−3 eV/Å. The
cell volume was optimized for H in its most stable interstitial
position and then kept fixed in the MEP calculations of H
migration.

III. RESULTS

A. Hydrogen diffusivity in α-Fe

The most stable interstitial position for dilute hydrogen
in bcc iron is in the tetrahedral site (T site) [16–18]. The
optimized lattice parameter of our 16-atom Fe supercell with
a single H atom is 2.91 Å, which corresponds to about
1% volume expansion with respect to pure Fe. The MEP
connecting two neighboring T sites has been determined by a
CI-NEB calculation with the corresponding classical energy
barrier �E = 90 meV. This value agrees very well with
the results of previous computational studies [16,17,26,27]
that used larger supercells containing up to 128 Fe atoms.
This comparison also verifies that the 16-atom supercell is
sufficiently large to avoid any serious finite-size errors in �E.

The vibrational energies of H in the tetrahedral site and at
the saddle-point position were calculated within the harmonic
approximation and are listed in Table I. Using these values,
we computed the ZPE correction, �ZPE=0.044 eV, which
is again consistent with values obtained in other theoretical
investigations [16,17].

The vibrational energies are used to calculate the diffusion
coefficient for H in bcc Fe within the SC-TST according to
Eq. (11) and within the FS model according to Eq. (17).
The jump distance R was chosen to be the geometrical
distance between two neighboring tetrahedral sites along
〈110〉, i.e., R =

√
2

4 a, where a = 2.91 is the corresponding
lattice parameter for the Fe16H supercell.

The resulting temperature dependences of the H diffusion
coefficient are plotted in Fig. 1 together with those obtained
from classical TST with [Eq. (6)] and without [Eq. (5)] the
ZPE correction. Both TST dependencies have the expected
Arrhenius-like behavior [ln(D) ∝ 1/T ], albeit with different
slopes. The dependencies obtained using the SC-TST and
the FS model are clearly non-Arrhenius, both showing a
strong convex bending. A good agreement between the two
approaches can be seen in Fig. 1, with small differences
becoming apparent only at low temperatures.

TABLE I. Classical overbarrier migration energy �E, vibrational
energies hνx

i , tunneling matrix element Jpp′ , and coincidence energies
Ec (all energies are in eV) for H in Fe. The vibrational energies are
calculated from the curvatures of the energy-displacement curves of
an H atom in the Fe crystal (frozen-lattice approximation). There are
three distinct energies at the tetrahedral site. The reference frame is
such that the hν0

3 is the energy of vibrations parallel to the 〈110〉
migration path while hν0

1 and hν0
2 are related to vibrations in two

perpendicular directions.

�E hν0
1 hν0

2 hν0
3 hνS

1 hνS
2 hνS

3 Jpp′ Ec

0.090 0.251 0.178 0.087 0.210 0.210 0.101 0.0022 0.0035

FIG. 1. (Color online) Temperature dependencies of diffusion
coefficients for the Fe-H system. The solid blue and red curves
represent our results obtained by means of the SC-TST and FS model,
respectively. The dashed brown curve corresponds to theoretical
PI-method results of Katzarov et al. [26] while the triangles and the
squares mark results of similar calculations obtained by Kimizuka
et al. [27] and Yoshikawa and Takayanagi [28], respectively. Experi-
mental data from [34,51,52] are shown by circles. For completeness
the results obtained with classical TST with and without �ZPE
correction are shown as thin black lines.

B. Hydrogen diffusivity in fcc Ni

In bulk fcc Ni, H atoms migrate between the most
stable octahedral interstitial sites (O sites) through metastable
tetrahedral sites (T sites). Consequently, the MEP consists
of two jumps, one from the initial O site to a neighboring
T site and another from this T site to the final O site. The
first O-T jump is characterized by a much higher classical
energy barrier (�EO-T = 0.37 eV) than the second T-O jump
(�ET-O = 0.10 eV). Since the O-T transition governs the H
diffusion in fcc Ni, it is sufficient to consider only the �EO-T

barrier as the overall diffusion barrier. This approximation
means that once the proton has overcome the first barrier to
the T site it proceeds immediately to the final O site. In this
case, the overall jump distance corresponds to the distance
between two neighboring O sites along 〈110〉, i.e., R =

√
2

2 a

with a = 3.54 Å for our Ni32H supercell.
A complication associated with the two-step MEP is

that there exist, in principle, also two possible tunneling
mechanisms. The first one is from an O site to a T site while
the second one is directly between two neighboring O sites.
Unfortunately, in neither of these two cases is it possible to
employ the SC-TST to estimate the diffusion coefficient. In
the first case, the initial O site and the final T site are not
equivalent and hence the transition cannot be treated with
the SC-TST. In the second case, the direct O-O tunneling
along 〈110〉 direction cannot be seen as a correction to the
classical O-T-O overbarrier jumps along 〈111〉 directions since
the geometrical paths are different.
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FIG. 2. (Color online) Temperature dependencies of diffusion
coefficients for the Ni-H system. The solid blue line represents results
obtained in this study using the FS model while the results obtained
using classical TST with and without �ZPE correction are shown
as thin black lines; experimental data from Ref. [53] are marked by
green circles.

The FS method is not affected by the two-step MEP and
can be applied to investigate both tunneling processes indepen-
dently. However, we found that both tunneling contributions
are negligible (the tunneling matrix elements are less than
10−6) so that the H diffusivity in fcc Ni is described accurately
by Eq. (7) only. This result is shown in Fig. 2 together with
the diffusivities obtained from the classical TST with and
without the ZPE corrections, and experimental data. All the
calculated quantities used as input data to evaluate the H
diffusion coefficient in fcc Ni are listed in Table II. Note that
the frequencies at the O site and T site are threefold degenerate
while at the saddle point they are twofold degenerate.

IV. DISCUSSION

The temperature dependencies of diffusion coefficients for
H in bcc Fe obtained by the SC-TST and the FS model,
shown in Fig. 1, agree well. Both models predict a clear
non-Arrhenius-like behavior with a strong enhancement of
diffusivity at low temperatures due to quantum effects. For
low temperatures, the curve obtained by means of the SC-
TST is somewhat lower than the outcome of the FS model,
but the absolute differences remain rather small. For high
temperatures, both curves coincide and converge to the result
of classical TST.

TABLE II. Classical migration energies �Ex , vibrational ener-
gies hνx , tunneling matrix element Jpp′ , and coincidence energies Ex

c

for H in fcc Ni (all energies are in eV).

�EO-T �EO−O hνO
1,2,3 hνT

1,2,3 hνS
1,2 hνS

3 Jpp′ EO−O
c EO-T

c

0.37 0.84 [20] 0.10 0.15 0.21 0.10 <10−6 0.0015 �EO-T
QV (T )

Our results, in particular the one obtained by means of
the FS model, are in a remarkably good agreement with
theoretical results of Kimizuka et al. [27] and Yoshikawa and
Takayanagi [28], who employed variants of the PI method.
A similar study by Katzarov et al. [26] also confirms the
non-Arrhenius behavior, but the obtained enhancement of
diffusivity at low temperatures is less pronounced.

Apart from these theoretical results, there exist many
experimental investigations on H diffusion in bcc Fe
[10,34–38,51,52]. In Fig. 1, we included experimental data of
Hayashi et al. [34], Hagi [51], and Bryan and Dodge [52], who
provided results of individual measurements. This allows a
direct comparison with the theoretical results and shows again
a very good agreement between theory and experiment. Un-
fortunately, such a direct comparison with other experimental
results is not straightforward since Arrhenius-like behavior of
the diffusivity is usually anticipated in experimental analyses
and only temperature-independent migration energy barriers
and prefactors are reported after analyzing the measurements.
We refer further to these quantities as “apparent” migration
energy �Eapp and “apparent” prefactor D∗

app. These quantities
can be compared to the effective energy barrier and prefactor,
�Eeff and D∗

eff [see Eq. (13)].
The results of such an analysis for bcc Fe are presented in

Fig. 3(a). The temperature-dependent effective energy barrier
obtained from our DSC-TST curve is drawn, as a thick blue line.
Corresponding effective energy barriers reported by Katzarov
et al. [26] and by Kimizuka et al. [27] are also shown.
The figure also contains apparent energy barriers reported
by various experimental investigations, and the temperature-
independent classical (dashed line labeled as TST) and ZPE-
corrected (dotted line labeled as TST + �ZPE) TST migration
energies.

The effective migration energies from all theoretical studies
shown in Fig. 3(a) exhibit the expected behavior. At high
temperature they converge to the classical value of 0.09 eV, but
the rate of convergence depends on the method. In the case of
the SC-TST, the convergence is rather slow, which is probably
due to the harmonic approximation used to calculate the
vibrational frequencies of the interstitial H atom. To improve
the convergence, these frequency parameters perhaps need to
be evaluated in a more sophisticated way [19,22,54,55].

The experimental results in Fig. 3(a) extracted from small
temperature ranges show an overall good agreement with
the results obtained by theory. However, this is not the case
for the apparent activation energies derived from fitting over
large temperature ranges. The disagreement is particularly
surprising for the study by Hayashi et al. [34] since their
individually measured diffusivity values agree very well with
our theoretical curve of ln D versus 1/T (see Fig. 1). This
means that the discrepancy for the migration barrier is mainly
due to the linear approximation assumed when interpreting the
measured diffusivity values. This is supported by Kiuchi and
McLellan [10], who carried out an extensive statistical analysis
of various experimental results available from more than 40
published studies by the year 1983. Based on this analysis,
they isolated two distinct temperature regimes associated with
two apparent energy barriers. As shown in Fig. 3(a), these
energy barriers are in good quantitative agreement with our
result.
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FIG. 3. (Color online) (a) Comparison of effective and apparent activation energies for migration of H in bcc Fe. Experimental results from
Kiuchi and McLellan [10] are reported as green circles with error bars; apparent activation energies obtained by Oriani [37], Heumann and
Domke [38], Beck [35], Nagano et al. [36], and Hayashi et al. [34] are displayed as red bars spanning the temperature ranges in which the
diffusivities have been measured. (b) Effective migration energy barrier for H in Ni. The result is compared with the classical TST migration
energies with (dashed line) and without (dotted line) �ZPE correction.

Interestingly, the ZPE-corrected energy barrier, �E +
�ZPE = 0.046 eV, is within the range of values derived
from the experimental data [34,36,38]. This agreement is only
accidental and rather unfortunate since the ZPE correction is
used widely [16,17,21,41,42] as the simplest way to include
the quantum corrections. The ZPE correction is strictly correct
only at T = 0 K and vanishes for high temperatures. As
shown in Fig. 3(a), the ZPE-corrected migration energy barrier
overestimates the effective energy barrier at low temperatures
(below 200 K) and underestimates it for temperatures above
400 K. The agreement with the effective energy barrier and
some of the experimental estimates around room temperature
is only fortuitous since the overestimated ZPE contribution
at room temperature is in fact compensated by the missing
tunneling contribution. Hence, these two strong approxima-
tions apparently result in a value for the energy barrier which
appears to be reasonable around room temperature.

In fcc Ni, the quantum effects do not alter the Arrhenius-like
diffusion behavior over the entire temperature range consid-
ered here (see Fig. 2). The reasons are twofold. First, the energy
barrier for H migration is much higher in fcc Ni than in bcc Fe
and, hence, the relative contribution of quantum corrections
is much smaller. Second, the tunneling effects calculated
from the FS model give no significant contribution. The
transmission rates of the two possible tunneling mechanisms
in Ni, the one connecting directly two neighboring octahedral
sites and the other connecting the octahedral sites via an
intermediate tetrahedral site, are negligibly low. For the former
mechanism, this is because of the large distance between the
involved sites in fcc Ni, more than two times larger than in bcc
Fe. In the latter mechanism, the distance is smaller (still 50%
larger than in Fe), but the tunneling probability is nullified by
a too high coincidence energy in Ni, which is two orders of
magnitude higher than in Fe.

In Fig. 2, the obtained diffusion coefficients (both classical
and with quantum mechanical corrections) are compared with
a large number of experimental results [53]. Both classical
and quantum mechanical results show a good agreement
with experimental data, but the quantum corrections do seem
to provide a better agreement at low temperatures. This is
corroborated by some experimental investigations [31,56]
which have reported isotope effects that can be explained by
considering quantum mechanical effects.

It is interesting to notice that in the case of fcc Ni the
�ZPE contribution increases the effective energy barrier, i.e.,
the diffusivity curve becomes steeper. This is in accordance
with some experimental data [2] where the reported apparent
migration energies tend to increase as the considered temper-
ature increases.

Similarly to the Fe-H system, we analyzed the effective
migration energy according to Eq. (10) also for the Ni-H
system. As shown in Fig. 3(b), the effective migration energy
shows a very different behavior than for bcc Fe. It converges to
the classical migration energy for high temperatures, but it ap-
proaches the ZPE-corrected migration energy as temperature
approaches 0 K. Nevertheless, it is important to keep in mind
that the obtained effective energy barrier should not be taken
as exact for very low temperatures because in this case other
tunneling mechanisms such as coherent tunneling [12,14,57]
may become relevant. However, this low-temperature regime
is less relevant for practical applications.

V. CONCLUSION

Diffusion coefficients for the migration of H in bcc Fe
and fcc Ni were calculated over a wide range of temper-
atures employing first-principles methods based on density
functional theory. Quantum mechanical effects were included
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by means of the semiclassical transition state theory and the
small-polaron model of Flynn and Stoneham. We found that
the inclusion of quantum mechanical effects is very important
for an accurate description of H migration in bcc Fe but less
crucial for fcc Ni.

The obtained results were compared with those of other
theoretical and experimental studies. The comparison revealed
that the large scatter in the experimental results for H diffusion
in bcc Fe is related to the Arrhenius-type analysis which is
usually applied for the interpretation of experimental data.
Hence, comparisons between theory and experiment have to
be done with care and caution.

The main advantages of two presented approaches to
include quantum mechanical effects in DFT based calculations
of diffusivities are their simplicity and small number of
theoretical input data needed. This makes them potentially
applicable to more complex situations, for instance studies of
H diffusion and trapping at extended defects in polycrystalline
materials [9]. Based on our results, it is possible to assess in
which situations the quantum mechanical effects are critical
for an accurate description of H diffusion. For instance, for
diffusion pathways between sites with significantly different
energies, such as H jumps from/to trapping sites associated
with crystal defects, one can expect that the tunneling effect
will be negligible. However, in systems with short and
symmetric diffusion pathways and moderate energy barriers,
such as in bcc transition metals, quantum mechanical effects
should always be considered, especially at low temperatures.
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APPENDIX A

In order to show how Eqs. (8) and (13) have been obtained,
we divide and multiply Eq. (2) by e:

D = 1

6
zR2 kT

h
e�S/ke1e−�U/kT e−1. (A1)

Equation (A1) can then be resorted as

D = 1

6
zR2 kT

h
e(�S+k)/ke−(�U+kT )/kT . (A2)

The above expression is an Arrhenius-like equation where the
prefactor, D∗, is

D∗ = 1

6
zR2 kT

h
e(�S+k)/k (A3)

and the migration energy barrier, �E∗, is

�E∗ = e−(�U+kT )/kT . (A4)

Equations (A3) and (A4) are the most general expressions in
terms of thermodynamic functions for the prefactor and the
migration energy barrier and are valid both in the classical
and in the quantum mechanical cases. If now we substitute
the classical expression for the entropy contribution, Eq. (3),

in Eq. (A3), and recall that �U = �E − kT [Eq. (4)], we
obtain the classical migration energy barrier and prefactor and
therefore Eq. (5). If we substitute in Eqs. (A3) and (A4) the
quantum mechanical expressions for the total-energy and the
entropy contributions [43], we obtain Eqs. (9) and (10).

APPENDIX B

The matrix element for tunneling of a proton between two
neighboring interstitial sites p and p′, Jpp′ , in Eq. (14) has
been calculated using Eq. (15). Here we describe concisely
how to obtain this. The Hamiltonian of a crystal containing an
interstitial atom can be written as [13]

H = HI + Hint + HL (B1)

where HI = −(�/2m)∇2 is the kinetic energy of the intersti-
tial, HL is the perfect lattice Hamiltonian of the crystal, and
Hint is the interaction energy between the interstitial and the
lattice. This last term can be written as the sum of contributions
from different interstitial sites, p:

Hint =
∑

p

Hp
int. (B2)

Employing twice the Born-Oppenheimer approximation,
first between the electrons and the nuclei and second between
the lighter interstitial proton and the heavier lattice nuclei,
it is possible to separate the eigenfunctions of H into
products of the eigenstates of HL and the eigenstates, φ̃p,
of the Hamiltonian terms that act on a proton at a particular
site p: (

Hp
int + HI

)
φ̃p = Epφ̃p (B3)

where Ep is the energy of the proton at the site p. Within the
harmonic approximation, the eigenfunction φ̃p is the ground-
state wave function for the harmonic oscillator centered at the
site p which can be written as

φ̃p =
(

αxαyαz

π3

)(1/4)

e− αx
2 x2− αy

2 y2− αz
2 z2

. (B4)

For a second harmonic oscillator centered at the neighbor-
ing site p′, the ground-state wave function is

φ̃p =
(

αxαyαz

π3

)(1/4)

e− αx
2 (x+R)2− αy

2 y2− αz
2 z2

(B5)

where x̂ is the direction connecting the sites p and p′
separated by the distance R and αj = mωj

�
, ωj being the

angular frequency of the proton associated with the vibrating
direction ĵ . If we consider the tunneling between two states
only, the tunneling matrix element, Jpp′ , can be calculated
as the matrix element between the ground state of the two
harmonic oscillators centered at two neighboring interstitial
sites as

Jpp′ = 〈φ̃p|Hint + HI |φ̃p′ 〉. (B6)

By adding and subtracting 〈φ̃p|HI |φ̃p′ 〉, we obtain

Jpp′ = 〈φ̃p|Hp
int + HI |φ̃p′ 〉 + 〈φ̃p|Hp′

int + HI )|φ̃p′ 〉
− 〈φ̃p|HI |φ̃p′ 〉. (B7)
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Using Eqs. (B3)–(B5), and recognizing that the energies
Ep are the zero-point energies of the H at the sites, p

and p′, ZPEp and ZPE′
p, from Eq. (B7), Eq. (15) is

obtained.
Notice that by inserting a harmonic-oscillator wave function

in each of the two neighboring sites we mimic the situation

in which the proton is delocalized between these two sites.
Implicitly, this means that the probability to find a proton
is nonzero in two sites only. Although we think that this
condition is not particularly restrictive in the temperature range
considered, it can became critical for much lower temperature
or even lighter H isotopes like muons [2,57].
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Condens. Matter 4, 5207 (1992).
[23] H. Krimmel, L. Schimmele, C. Elsässer, and M. Fähnle, J. Phys.:
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[46] C. Elsässer, N. Takeuchi, K. M. Ho, C. T. Chan, P. Braun, and
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