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Minimum reflection channel in amplifying random media
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We present a numerical study on the minimum reflection channel of a disordered waveguide and its modification
by coherent amplification of light. The minimum reflection channel is formed by destructive interference of
quasinormal modes at the front surface of a random medium. While the lowest reflection eigenvalue increases
with optical gain in most random realizations, the minimum reflection channel can adjust its modal composition
to enhance destructive interference and slow down the growth of reflectance with gain. Some of the random
realizations display a further reduction of the minimum reflectance by adding optical gain. The differential
amplification of the modes can make their destructive interference so effective that it dominates the amplitude
growth of the modes, causing the reflectance to drop with gain in these cases. Therefore, the interplay between
interference and amplification can further minimize light reflection from a strong scattering medium; indicating
optical gain may provide an additional degree of freedom for coherent control of mesoscopic transport.
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I. INTRODUCTION

Due to multiple scattering of light, disordered media such
as paper, paint, or biological tissue have high reflectivity
and are opaque. However, wave interference effects may
diminish the reflectance by creating highly transmitting open
channels [1–4]. Recent developments of wavefront shaping
and phase recording techniques in optics have enabled the
coupling of incident light to these open channels [5–19]. The
open channels can greatly enhance light transmission through
scattering media, having a profound impact in a wide range
of applications from deep tissue imaging and laser surgery
to spectroscopy [20–30] and optogenetics [31]. So far, most
experimental studies of high transmission channels rely on
optical access to both sides of a scattering media, which is not
practical in realistic situations. However, there is a one-to-one
correspondence between the transmission eigenchannels and
reflection eigenchannels in turbid media without absorption.
Thus information about the transmission channels may be
obtained from reflection measurements, which are conducted
on the input side of samples, and thus noninvasive [32]. For
example, by reducing reflection, one can couple light into
the minimum reflection channel, which corresponds to the
maximum transmission channel.

The correspondence between transmission and reflection
holds only in the absence of absorption. Absorption exists in
many material systems and is known to have a significant
impact on the mesoscopic transport of light [18,33–44].
Our recent studies show that when significant absorption is
introduced uniformly across a diffusive system, the maximum
transmission channel becomes quasiballistic [18]. In the case
that the absorption is distributed nonuniformly in space, a
high transmission channel may redirect the energy flow to
circumvent the strong absorbing regions [44]. Because light
absorption can also reduce reflection, the minimum reflection
channel no longer corresponds to the maximum transmission
channel [18]. Usually optical gain has the opposite effects of
absorption, and there have been extensive studies on the effects
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of coherent amplification on light propagation through random
media [35–37,39,45–61]. However, it is unclear how optical
amplification modifies transmission and reflection channels.
Intuitively, one expects both transmittance and reflectance to
increase with gain due to light amplification. However, such
an expectation does not take into account the interference
of multiply scattered light, which plays a dominant role in
enhancing transmission and suppressing reflection [62]. As
illustrated in the previous studies on random lasers, coherent
amplification can enhance interference effects in random
media [63,64]. Moreover, minimizing the reflectivity of the
pump light could lower the lasing threshold as more pump
light is absorbed instead of reflected.

In this paper, we present a numerical study to address the
following questions: what is the impact of light amplification
on a minimum reflection channel? Is it possible to further
reduce reflectance of a strong scattering medium by adding
optical gain? How will the interference effect that underlies
the formation of the minimum reflection channel be modi-
fied by coherent amplification? To answer these questions,
we numerically calculate the minimum reflection channels
in disordered waveguides with optical gain. We find that
the minimum reflection channel is formed by destructive
interference of quasinormal modes at the front surface of
the random system. In most of the disordered waveguide
configurations, adding gain to the system causes the reflectance
to increase, but the increment can be reduced by adjusting
the input wavefront to enhance the destructive interference
effect. In some disordered waveguides, the enhancement of
the destructive interference is so strong that the reflectance
drops with increasing gain. This result illustrates that in
a random medium with gain, coherent phenomena (due to
interference of excited modes) may dominate over incoherent
phenomena (due to mode amplifications). Thus optical gain
provides an additional degree of freedom for coherent control
of mesoscopic transport of light.

This paper is organized as follows. Section II presents our
numerical model of a two-dimensional (2D) disordered waveg-
uide with gain. In Sec. III we demonstrate the modification of
the minimum reflection eigenvalue by gain. In Sec. IV we
conduct a modal analysis of the reflected light. In Sec. V,
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the interference effects among the quasinormal modes that
constitute the minimum reflection channels are investigated.
Section VI illustrates how the modal interference can further
reduce the minimum reflection in the presence of gain.
Section VII presents the concluding remarks.

II. DISORDERED WAVEGUIDE WITH GAIN

Our numerical model consists of a 2D disordered waveg-
uide, shown schematically in Fig. 1(a). Dielectric cylinders
with refractive index ns = 2.5 and radius rc = 0.1λ are
randomly positioned inside the waveguide with perfectly
reflecting sidewalls. The average distance between adjacent
cylinders is a = 0.87λ, giving an area filling fraction of 0.04
for the dielectric in air. The wavelength of the input light is
chosen to be away from the Mie resonances of individual
cylinders, so that the scattering properties of the random
system do not vary strongly with frequency. The incident light
enters the waveguide from an open end and is scattered by the
cylinders in the x-y plane. The light transmitted through, or
reflected from the random array is absorbed by the perfectly
matched layers located at both ends of the waveguide.

The probe light is transverse-magnetic (TM) polarized, with
the electric field parallel to the cylinder axis (z axis). The width
of the waveguide is W = 10.3λ, and the number of guided
modes in the empty waveguide is N = 2W/λ = 20. The length
of the random array of cylinders is L = 20.2λ. The transport
mean free path is lt = 0.07L and the localization length is
ξ = (π/2)Nlt = 2.3L. The system is in the diffusion regime
but not far from the localization threshold. Thus the transport

FIG. 1. (Color online) (a) Schematic of a 2D disordered waveg-
uide simulated. Dielectric cylinders are placed randomly in a
waveguide with perfectly reflecting sidewalls. An electric field E(j )

in

is launched from the left end of the waveguide, and scattered by the
cylinders. The reflected electric field E(j )

r is probed at the left end, and
the transmitted electric field E

(j )
t at the right end. Perfectly matched

layers are placed at both open ends to absorb the transmitted and
reflected waves. (b) The ensemble-averaged reflectance 〈R0〉 for the
input wavefront corresponding to the minimum reflection channel
without gain (dashed line) and the minimum reflection eigenvalue
ρ1 at each gain level (solid line) as a function of optical gain lt / lg .
(c) The minimum reflection eigenvalue ρ1 drops with increasing gain
lt / lg in two of the disordered waveguides in the ensemble.

displays a large fluctuation from one random configuration
to another. Within the same statistical ensemble there are
random realizations that are closer to or further away from
the localization transition. This allows us to study the diverse
behavior in the same ensemble.

Usually optical gain exists either inside scattering particles
or in the background material that hosts the particles. Contrast
in the imaginary part of the refractive index causes additional
scattering [65], which is avoided by introducing gain to both
the scatterers and the host material. More specifically, the
optical gain is introduced uniformly across the scattering
region [highlighted in Fig. 1(a)] by adding a constant imag-
inary part −γ to the refractive index n = n0 − iγ , where n0

is the real part of refractive index without gain. The gain
length is lg = 1/(2kγ ), where the wave vector k = 2π/λ.
When the gain length lg reaches the average path length of
light in a 2D diffusive waveguide of length L, 2L2/lt , the
diffusive amplification length lamp = √

lt lg/2 becomes equal
to L. L = lamp corresponds to the lasing threshold of a diffusive
random laser [63], above which nonlinear gain saturation must
be taken into account. To stay in the linear gain regime, we
make sure the amount of gain is below the lasing threshold
L < lamp. We check individual configuration and verify that
all of the random systems stay below the lasing threshold even
in the presence of fluctuation. Spontaneous emission and its
amplification are ignored in the calculation below.

To construct the reflection matrix r of the disordered
waveguide, we use the guided modes in the empty waveguide
(without scatterers) as a basis. The electromagnetic field
inside the disordered waveguide was calculated using the
finite-difference frequency-domain method [66]. We launch
a guided mode E

(j )
in (y) from the input end (x = 0), calculate

the reflected wave and decompose it by the empty waveguide
modes at x = 0, E

(j )
r (y) = ∑N

i=1 rijE
(j )
in (y). The coefficient

rij relates the field incident into the waveguide mode j to the
field reflected to the waveguide mode i. After repeating this
procedure for j = 1,2, . . . ,N , we obtain all the elements rij

for the reflection matrix r . Similarly, the transmission matrix t

is constructed by computing the transmitted waves E
(j )
t (y) at

the output end x = L.

III. MODIFICATION OF MINIMUM
REFLECTION BY GAIN

A singular value decomposition of the reflection matrix r

gives

r = U � V † , (1)

where � is a diagonal matrix with nonnegative real numbers√
ρn, ρn is the eigenvalue of r†r , and ρ1 < ρ2 < ρ3 <

· · · < ρN . U and V are N × N unitary matrices, V maps
input waveguide modes to eigenchannels of the disordered
waveguide, and U maps eigenchannels to output waveguide
modes. The column vectors in V (U ) are orthonormal and
are called input (output) singular vectors. The input singular
vector with the lowest reflection eigenvalue ρ1 couples to the
minimum reflection eigenchannel; its elements represent the
complex coefficients of the waveguide modes that combine
to achieve minimum reflection from the random medium.
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Similarly, the transmission eigenvalues τn where τ1 > τ2 >

τ3 > · · · > τN are obtained from singular value decomposition
of the field transmission matrix t .

In a passive system without gain or loss, there is a one-to-
one correspondence between the transmission and reflection
eigenchannels, τn + ρn = 1. The minimum reflection channel
has the same input wavefront as the maximum transmission
channel. Since our system is close to the localization threshold,
some of the random configurations have the maximum trans-
mission eigenvalue τ1 smaller than 1. Therefore, the ensemble-
averaged maximum transmission eigenvalue 〈τ1〉 = 0.7 and
the minimum reflection eigenvalue 〈ρ1〉 = 0.3.

We fix the input wavefront to be the minimum reflection
channel and then introduce optical gain into the system. The
ensemble-averaged reflectance 〈R0〉 increases due to light
amplification [dashed line in Fig. 1(b)]. We also compute the
reflection matrix at each gain level, and from the singular value
decomposition we obtain the ensemble-averaged minimum
reflection eigenvalue 〈ρ1〉, which is plotted as a function of
lt / lg [solid line in Fig. 1(b)]. The increase of 〈ρ1〉 is slower
than 〈R0〉, indicating that the minimum reflection channel with
gain deviates from that without gain.

Surprisingly, we observe that in about 10% of the disor-
dered waveguides in our ensemble, the minimum reflection
eigenvalue ρ1 is further reduced by adding gain to the system.
Figure 1(c) shows two of these disordered waveguides, where
ρ1 drops with increasing gain lt / lg .

IV. MODAL ANALYSIS OF REFLECTED LIGHT

To interpret the formation of minimum reflection channels,
we resort to the quasinormal modes, which represent the
resonances of an open system. More specifically, they are
eigenstates of Maxwell’s equations in an open system, whose
coupling with the environment results in complex eigenfre-
quencies. The interference between quasinormal modes has
been investigated previously to explain coherent transport
of light in random media [18,62,67,68]. Below we will
consider the contribution of quasinormal modes to the light
reflected from the disordered waveguide. There are two
types of quasinormal modes: (i) the outgoing modes um

which are the eigenfunctions of Maxwell’s equations which
satisfy the boundary conditions that there are only outgoing
waves to infinity; (ii) the incoming modes vm which are the
eigenfunctions for the boundary conditions of only incoming
waves from infinity. In a passive system (without gain or loss),
the two types of eigenfunctions are related by um = v∗

m. We
use the commercial program COMSOL [66] to compute the
quasinormal modes in the disordered waveguide. The spatial
field distributions of the modes remain the same when gain is
introduced uniformly across the system.

With light incident onto the random waveguide, both types
of the quasinormal modes are excited, and the electric field
distribution inside the disordered medium is decomposed (see
Appendix):

E(x,y) =
∑
m

amum(x,y) +
∑
m

bmvm(x,y). (2)

The reflected field at the front surface (x = 0) of the disordered
waveguide can be expressed by the outgoing modes as

Er (y) =
∑
m

amum(0,y). (3)

The contribution of the mth mode to the reflectance R =∫ |Er (y)|2dy depends on its overlap with the reflected field
Er , namely,

√
R =

∑
m

am

∫
E∗

w(y) um(0,y)dy =
∑
m

αm, (4)

where Ew(y) ≡ Er (y)/
√

R is the normalized reflected field,
and αm represents the contribution from the mth mode. αm

is a complex number αm = |αm|eiθm , where the phase θm ∈
[−180◦,180◦] determines its interference with other modes.
The reflectance can be written as

R =
∣∣∣∣∣
∑
m

αm

∣∣∣∣∣
2

=
∑
m

|αm|2 +
∑

i,j,j 	=i

|αi | |αj | cos(θi − θj )

= Ri + Rc,

where Ri ≡ ∑
m |αm|2 is the incoherent sum of the

modal contributions to the reflectance R, and Rc ≡∑
i,j,j 	=i |αi | |αj | cos(θi − θj ) is the interference term that

depends on the relative phases of the modes, i.e, cos(θi − θj ) >

0 gives constructive interference, and cos(θi − θj ) < 0 the
destructive interference. The ratio C ≡ R/Ri = 1 + Rc/Ri

quantifies the effect of modal interference on the reflection.
For a random input wavefront, the phase difference between
αm are randomly distributed in [−180◦,180◦]; thus Rc ≈ 0 and
C ≈ 1.

V. DESTRUCTIVE INTERFERENCE OF MODES TO
MINIMIZE REFLECTION

Next we apply the modal analysis to the minimum reflection
channel. As an example, let us consider a typical disordered
waveguide, whose minimum reflection eigenvalue ρ1 is close
to the ensemble average and it increases with gain. We fix
the input wavefront to that of the minimum reflection channel
in the absence of gain, and calculate the reflectance R0 as
a function of gain. As shown by the solid line in Fig. 2(a),
R0 increases from 0.37 at lt / lg = 0 (labeled A1) to 0.59 at
lt / lg = 0.0025 (labeled A2). The top panel in Fig. 2(b) plots
the amplitude |αm| of different modes’ contribution to the
reflection as a function of the difference between the mode
center frequency km and the incident light frequency k, δkmL =
(km − k)L. The minimum reflection channel consists mainly
of three modes, labeled i–iii, in the vicinity of k, with mode i
being the most dominant one.

To illustrate the modal interference at the front surface
of the disordered waveguide, we plot αm in the complex
plane in Fig. 2(c) for the reflected light with and without
gain. At lt / lg = 0, the top panel of Fig. 2(c) shows that
mode i interferes destructively with modes ii and iii, as their
phase differences fall in 90◦–180◦, leading to Rc = −0.71 < 0
and C = 0.34 < 1 (Table I ). Thus destructive interference
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FIG. 2. (Color online) Formation of the minimum reflection
channel by destructive interference of quasinormal modes. (a) Solid
(dashed) line shows the evolution of reflectance R0 (Rg) with gain
lt / lg when the input wavefront is set to that of the minimum reflection
channel at lt / lg = 0 (lt / lg = 0.0025). The crossing of the curves
reveals that the optimal wavefront for the minimum reflection channel
changes with gain. (b) Amplitudes of the contributions of quasinormal
modes to the reflectance |αm| at lt / lg = 0 (A1, B1) and lt / lg = 0.0025
(A2, B2) with the input wavefront equal to that of the minimum
reflection channel at lt / lg = 0 (A1, A2) and that of lt / lg = 0.0025
(B1, B2), respectively. The horizontal axis δkm = km − k is the
difference between the mth mode frequency km to the input light
frequency k. Three modes in the vicinity of k, labeled i–iii, have
major contributions to the reflected light, and their amplitudes grow
with gain at a different rate. (c and d) Individual quasinormal modes’
contributions αm are plotted in the complex plane to show their relative
phases in four cases of A1, A2, B1, and B2. The degree of destructive
interference of the modes is characterized by the value of C given
in each panel. The three major modes, i–iii, in A1 and A2 interfere
destructively to minimize the reflection. The destructive interference
effect, which is weaker in B1, is enhanced by gain in B2.

minimizes the reflected light intensity. When gain is added
to the system, the amplitudes |αm| for modes i–iii increase
due to light amplification [A2 in the top panel of Fig. 2(b)],
but they continue to interfere destructively with C = 0.32 at
lt / lg = 0.0025 [bottom panel of Fig. 2(c)]. Both the incoherent

TABLE I. Values of reflectance R, the incoherent sum of modal
contributions Ri , and the interference term Rc in the cases of A1, A2,
B1, and B2 in Fig. 2(a), as well as their ratios.

R Ri Rc

A1 0.37 1.07 −0.71
A2 0.59 1.83 −1.24
A2/A1 1.59 1.71 1.75
B1 0.40 0.46 −0.05
B2 0.53 0.71 −0.19
B2/B1 1.33 1.54 3.80

sum Ri and the interference term Rc have a similar amplitude
growth with gain, leading to an increase of the reflectance R0

(Table I).
In the above analysis, the input wavefront is set to that

of the minimum reflection channel without gain, which may
not be optimal when there is gain. We calculate the minimum
reflection channel from the reflection matrix in the presence of
gain, and find the minimum reflection eigenvalue ρ1 increases
slower with gain than R0. For example, at lt / lg = 0.0025,
ρ1 = 0.53 [B2 in Fig. 2(a)], while R0 = 0.59 (A2), indicating
the input wavefront can be further optimized in the presence
of gain to minimize reflection. For comparison, we fix the
input wavefront to that of the minimum reflection channel
at lt / lg = 0.0025, and calculate the reflectance Rg when
gradually reducing the gain to 0. As plotted by the dashed curve
in Fig. 2(a), Rg is higher than R0 at lt / lg = 0 (labeled B1), but
it grows at a lower rate with gain than R0. The modal analysis
[bottom panel of Fig. 2(b)] reveals that the minimum reflection
channel evolves with gain to impede the growth of reflection
due to amplification. Compared to R0 [top panel of Fig. 2(b)],
more modes are excited and contribute to the reflectance Rg .
Without gain, the destructive interference of modes in Rg is less
efficient, the interference term Rc = −0.05 is very small, and
the ratio C = 0.88 is closer to 1 [top panel of Fig. 2(d)]. With the
introduction of optical gain, the modal interference becomes
more destructive, Rc = −0.19 and C = 0.79 at lt / lg = 0.0025
[bottom panel of Fig. 2(d)]. As listed in Table I, the magnitude
of the interference term |Rc| = −Rc increases by a factor of
3.8, while the incoherent sum, |Ri | = Ri , only by a factor of
1.54. The enhancement of the destructive interference effect
makes the growth of Rg slower than R0.

VI. REDUCTION OF MINIMUM REFLECTION BY GAIN

The above section shows that the minimum reflection
channel adjusts its modal composition to enhance the de-
structive interference effect in the presence of gain. This
slows down the increase of the minimum reflection eigenvalue
with gain, which is a typical behavior for most of the
disordered configurations. However, in some of the disordered
waveguides, e.g, the two shown in Fig. 1(c), the minimum
reflection eigenvalue is further reduced with the addition of
gain. Below we explain this behavior by the interference of
the constituent modes at the front surface of the disordered
waveguide.

First we study the random waveguide with the minimum
reflection eigenvalue labeled ρ

(1)
1 in Fig. 1(c). Figure 3(a)

shows that the input wavefront for the minimum reflection
channel with gain is highly correlated to that without gain.
This means the minimum reflection channel is barely modified
in the presence of gain. Nevertheless, the reflectance drops
with increasing gain, even when the input wavefront is fixed
to that of the minimum reflection channel in the absence of
gain. The modal decomposition reveals that the minimum
reflection channel without gain is dominated by one mode,
labeled mode i in Fig. 3(b), which is slightly detuned from the
frequency of input light. Another mode, labeled mode ii, has
the frequency closest to the input light but its contribution to the
reflected light is much less significant. Such differences can be
understood from the mode’s spatial field profile |Ez(x,y)| and
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FIG. 3. (Color online) Further reduction of the minimum reflec-
tion by gain. (a) The correlation CR between the input wavefront
for the minimum reflection channel with gain to that without gain,
showing they are highly correlated. The reflectance R0 with the
input wavefront equal to that of the minimum reflection channel
at lt / lg = 0 almost coincides with Rg with the input wavefront set to
that of the minimum reflection channel at lt / lg = 0.0025. Both drop
with increasing gain lt / lg . (b) Amplitudes of modes’ contributions
|αm| to the reflection without gain [C1 in (a)] and with gain [C2 in
(a)], showing the major contributions from four modes labeled i–iv.
(c) Spatial distribution of the electric field amplitude |Ez(x,y)| for
modes i and ii in (b). (d) Without gain lt / lg = 0, the modes interfere
destructively to form the minimum reflection channel, C = 0.11
(top panel). With gain lt / lg = 0.0025, the destructive interference of
modes is further enhanced; C is reduced to 0.05 (bottom panel).

spectral width ki (the imaginary part of the eigenfrequency).
As shown in the top panel of Fig. 3(c), mode i is spatially
concentrated close to the front surface of the disordered
waveguide, resulting in a large leakage rate. Consequently,
mode i has a broad spectral width that exceeds the detuning
of its center frequency from the input frequency, ki > δkm.
The spectral overlap of mode i with the input light leads to
an efficient excitation of mode i by the input light, and mode
i’s proximity to the front surface of the waveguide enhances
its contribution to the reflected light. In contrast, mode ii
penetrates deeper into the waveguide and has a smaller leakage
rate; thus its contribution to the reflected light is much less
[bottom panel of Fig. 3(c)].

With the introduction of gain, mode ii experiences stronger
amplification than mode i due to its lower leakage rate, and
its contribution to the reflection grows faster than mode i
[Fig. 3(b)]. As shown in top panel of Fig. 3(d), modes i and
ii have a phase difference of ∼180◦, so they interfere destruc-
tively. When there is no gain, the relatively large difference
in their amplitudes makes their interference insignificant. In
the presence of gain, the imbalance of their amplitudes is
reduced, as a result of the faster growth of mode ii, and their
destructive interference becomes more significant. This means

TABLE II. Values of reflectance R, the incoherent sum of modal
contributions Ri , and the interference term Rc in the cases of C1 and
C2 in Fig. 3(a), as well as their difference.

R Ri Rc

C1 0.067 0.60 −0.54
C2 0.035 0.68 −0.65
C2−C1 −0.032 0.08 −0.11

the differential amplification of individual modes can enhance
the degree of destructive interference, as confirmed by the
reduction of C from 0.11 at lt / lg = 0 to 0.05 at lt / lg = 0.0025
[Fig. 3(d)]. More quantitatively, the interference term Rc

decreases from −0.54 at lt / lg = 0 to −0.65 at lt / lg = 0.0025,
while the incoherent sum Ri increases from 0.60 to 0.68
(Table II). The increase of Ri is not sufficient to compensate
for the reduction of Rc; thus the reflectance R decreases with
gain.

Next we investigate the second disordered waveguide
configuration shown in Fig. 1(c). Similar to the first one, the
input wavefront for the minimum reflection channel with gain
is nearly identical to that without gain [Fig. 4(a)] (Table III).
The reflectance with the input wavefront fixed to that of the
minimum reflection channel without gain R0 is almost the
same as the reflectance with the input wavefront set to that

FIG. 4. (Color online) Another example showing the minimum
reflection eigenvalue decreases with gain. (a) The correlation CR

between the input wavefront for the minimum reflection channel
with gain to that without, showing they are highly correlated. The
reflectance R0 for the input wavefront fixed to that of the minimum
reflection channel without gain and the reflectance Rg for the input
wavefront fixed to that of the minimum reflection channel with gain
(lt / lg = 0.0025) both decrease with increasing gain. (b) Amplitudes
of modes’ contributions |αm| to the reflection without gain [D1 in (a)]
and with gain [D2 in (a)], showing the major contributions from five
modes labeled i–v. (c) Without gain (lt / lg = 0), the modes interfere
destructively to form the minimum reflection channel, C = 0.49.
(d) With gain lt / lg = 0.0025, the destructive interference effect is
further enhanced and C is reduced to 0.31.
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TABLE III. Values of reflectance R, the incoherent sum of modal
contributions Ri , and the interference term Rc in the cases of D1 and
D2 in Fig. 4(a), as well as their difference.

R Ri Rc

D1 0.10 0.21 −0.11
D2 0.08 0.27 −0.19
D2−D1 −0.02 0.06 −0.08

of the minimum reflection channel with gain Rg; they both
decrease as gain increases. The modal decomposition reveals
that there are more modes contributing to the reflected light
[Fig. 4(b)], compared to the previous two cases [Figs. 2 and 3].
These modes interfere destructively to form the minimum
reflection channel when there is no gain [Fig. 4(c)], and the
destructive interference effect is further enhanced by adding
gain to the system [Fig. 4(d)]. Hence, the reduction of the
reflectance due to enhanced destructive interference effect
dominates over the increment due to the growth of the modes’
amplitudes with gain, leading to a further reduction of the
minimum reflectance.

VII. CONCLUSION

In summary, we present a numerical study on the mini-
mum reflection channels in disordered waveguides and their
modification as a result of the introduction of optical gain. A
modal analysis reveals that the minimum reflection channel is
formed by destructive interference of quasinormal modes at the
front surface of the random media. In most of the disordered
configurations, the minimum reflection eigenvalue increases
with gain; however, the minimum reflection channel can adjust
its input wavefront to enhance the destructive interference of
modes and impede the growth of reflectance with gain. In some
of the disordered waveguides, the differential amplification
of the modes makes their destructive interference effective
enough that it dominates the amplitude growth of the modes,
causing the reflectance to decrease with gain. Therefore, it is
possible to further reduce light reflection from a strong scatter-
ing medium by adding optical gain to it. This counterintuitive
behavior illustrates the interplay between interference and
amplification in a disordered system. For practical applications
it would be useful to find a way of predicting a priori the
disordered configurations that lead to a further reduction of
the reflectance by adding gain, and also the probability of such
configurations. This is beyond the scope of the current work
and will be studied in the future.
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APPENDIX: FIELD DECOMPOSITION BY
QUASINORMAL MODES

To decompose the electric field distribution inside the
random system by the quasinormal modes, we use the

FIG. 5. (Color online) Field decomposition by quasinormal
modes. (a) The spatial distribution of the electric field amplitude
|ES(x,y)| inside the random waveguide with an input wavefront
corresponding to the minimum reflection channel without gain in
Fig. 2(a). (b) The reconstructed field distribution by modal decom-
position |EC(x,y)|. The cross-section integrated intensity I (x) =∫ |E(x,y)|2dy and the phase of the electric field E(x,y = 0) between
the original and reconstructed fields are shown in (c) and (d), respec-
tively. The relative difference between the two field profiles is mea-
sured by

∫ ∫ |EC(x,y) − ES(x,y)|2dx dy/
∫ ∫ |ES(x,y)|2dx dy =

2.14 × 10−5.

finite-difference-frequency-domain (FDFD) method [66] to
calculate the modes with incoming and outgoing wave bound-
ary conditions. In particular, we use the “Eigenfrequency”
solver provided by a commercial software COMSOL [66]
to compute the eigensolutions to the wave equation, after
inputting the spatial distribution of the dielectric constant.
Figure 5(a) shows the spatial distribution of the electric field
amplitude |ES(x,y)| inside the disordered waveguide for the
minimum reflection channel without gain in Fig. 2(a). The
electric field inside the random system is decomposed by the
quasinormal modes of the passive system:

EC(x,y) =
∑
m

amum(x,y) +
∑
m

bmvm(x,y),

where um (vm) is the mth resonant mode with a purely
outgoing (incoming) wave boundary condition. The decom-
position involves finding the coefficients am and bm by
fitting EC(x,y) to ES(x,y) using the nonlinear curve-fitting
function lsqcurvefit in MATLAB. After the decomposition,
the reconstructed field profile in Fig. 5(b) matches well the
original one in Fig. 5(a). The good agreement is further shown
in the cross-section integrated intensity I (x) = ∫ |E(x,y)|2dy

and the phase of the electric field E(x,y = 0) in Figs. 5(c)
and 5(d). The error of the fitting, characterized by the
relative difference between ES(x,y) and EC(x,y), is calculated
by

∫ ∫ |EC(x,y) − ES(x,y)|2dx dy/
∫ ∫ |ES(x,y)|2dx dy =

2.14 × 10−5.
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