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Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy
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Rare earth based equimolar Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy (HEA) is a prototype of an ideal
HEA, stabilized by the entropy of mixing at any temperature with random mixing of elements on the hexagonal
close-packed lattice. In order to determine intrinsic properties of an ideal HEA characterized by the enormous
chemical (substitutional) disorder on a weakly distorted simple lattice, we have performed measurements of its
magnetic and electrical response and the specific heat. The results show that the Ho-Dy-Y-Gd-Tb hexagonal
HEA exhibits a rich and complex magnetic field-temperature (H,T ) phase diagram, as a result of competition
among the periodic potential arising from the electronic band structure that favors periodic magnetic ordering,
the disorder-induced local random potential that favors spin glass-type spin freezing in random directions, the
Zeeman interaction with the external field that favors spin alignment along the field direction, and the thermal
agitation that opposes any spin ordering. Three characteristic temperature regions were identified in the (H,T )
phase diagram between room temperature and 2 K. Within the upper temperature region I (roughly between 300
and 75 K), thermal fluctuations average out the effect of local random pinning potential and the spin system
behaves as a pure system of compositionally averaged spins, undergoing a thermodynamic phase transition to a
long-range ordered helical antiferromagnetic state at the Néel temperature TN = 180 K that is a compositional
average of the Néel temperatures of pure Tb, Dy, and Ho metals. Region II (between 75 and 20 K) is an
intermediate region where the long-range periodic spin order “melts” and the random ordering of spins in the
local random potential starts to prevail. Within the low-temperature region III (below 20 K), the spins gradually
freeze in a spin glass configuration. The spin glass phase appears to be specific to the rare earths containing
hexagonal HEAs, sharing properties of site-disordered spin glasses and geometrically frustrated (site-ordered)
spin systems, as a consequence of strongly interacting large abundant spins of four magnitudes (those of Gd, Tb,
Dy, and Ho) on the hexagonal lattice, being weakly diluted by nonmagnetic yttrium atoms.
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I. INTRODUCTION

High-entropy alloys (HEAs) are metallic alloys composed
of multiple principal elements in equimolar or near-equimolar
ratios, where a high entropy of mixing stabilizes disordered
solid solution phases with simple structures, like a body-
centered cubic (bcc), a face-centered cubic (fcc) [1–3], and a
hexagonal close-packed (hcp) structure [4,5]. A HEA typically
contains 4–9, and occasionally up to 20, elements [6]. The
formation and stability of a HEA phase is determined by
the Gibbs free energy of mixing �Gmix = �Hmix − T �Smix,
where �Hmix is the mixing enthalpy and �Smix is the mixing
entropy. In ideal solutions, intermolecular forces are the same
between every pair of molecular kinds and there is no enthalpy
of mixing �Hmix = 0, so the Gibbs free energy contains
the entropy term only, �Gmix = −T �Smix. Since �Gmix is
negative at any temperature, a disordered solid solution is
thermodynamically stable down to zero temperature and the
components are miscible in all proportions, with mixing being
random. For an ideal solid solution, the mixing entropy of an
r-component system is given by �Smix = −nR

∑r
i=1 ci lnci ,

where n is the total number of moles, ci = ni/n is the mole
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fraction of component i, and R is the gas constant [7]. For
equimolar concentrations of elements ci = 1/r , the entropy
of mixing reaches its maximum value �Smix = nRlnr . In
regular (nonideal) solutions, the interactions between unlike
molecules are different from those between like molecules,
which results in nonrandom mixing, and the mixing enthalpy
is nonzero �Hmix �= 0. If the elements are chosen such that
�Hmix is neither too high positive nor too high negative, the
mixing entropy term T �Smix prevails at high temperatures
and stabilizes a solid solution. This is conveniently expressed
by the thermodynamic parameter � = Tm�Smix/|�Hmix| [8],
where Tm = ∑

ciT
i
m is the compositional-average melting

temperature (T i
m is the melting temperature of component

i) and �Hmix = ∑
i,j,i �=j cicjHij , where Hij is the mutual

mixing enthalpy of the components i and j . It is considered
that for � > 1.1, the entropy term dominates over the enthalpy
and stabilizes a HEA phase, typically at temperatures higher
than 1000 K. At lower temperatures, the entropy term T �Smix

loses its importance and the disordered solid solution no longer
represents the state of lowest energy, which is then determined
by the mixing enthalpy. Positive �Hmix causes incomplete
miscibility and leads to phase segregation, whereas negative
�Hmix leads to the formation of intermetallic compounds.
However, unfavorable kinetics with sluggish atomic diffusion
hinders phase transformations, so the simple high-temperature
structure of a disordered solid solution is retained down to low
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TABLE I. Structural properties of pure RE elements in the metallic state and the Ho19.3Dy19.5Y20.5Gd21.1Tb19.6 HEA [15]. Theoretical lattice
parameters of the HEA were calculated by Vegard’s rule of mixtures.

Y Gd Tb Dy Ho HEA exp. HEA theory

Structure (300 K) hcp hcp hcp hcp hcp hcp
a (Å) 3.650 3.634 3.606 3.592 3.578 3.613 3.613
c (Å) 5.734 5.781 5.697 5.650 5.618 5.704 5.698
Atomic radius (Å) 1.8015 1.8013 1.7821 1.7726 1.7678

temperatures, whereas fine crystallites of intermetallic phases
or dendrites may form within the simple matrices. Mixing
of the elements under the condition �Hmix �= 0 is in principle
nonrandom, so preferential chemical environments are formed
in the crystal lattice on the scale of nearest neighbors, at
least in a HEA material that has been thermally annealed just
below the melting temperature. Regular HEAs at ambient tem-
peratures thus represent an inhomogeneous state containing
microstructure that cannot be reproducibly synthesized and
depends on thermal history. Physical properties of such HEAs
are difficult to predict theoretically (for example, the entropy
of mixing can no longer be described by the simple relation
�Smix = nRlnr) and the experimental data may depend on the
timescale of the measurement technique. The known HEAs
from the systems CuCoNiCrAlMnFeTiV [3], NbMoTaWV
[9], and TaNbZrHfTi [10,11] all form bcc and fcc structures
and without exception belong to the class of regular HEAs
(with �Hmix �= 0). The question of what are the intrinsic
properties of an equilibrium homogeneous multicomponent
solid solution with random mixing of the elements on a
simple crystal lattice, i.e., those of an ideal HEA, thus remains
unanswered.

Rare earth (RE) metals show great similarity in their
chemical properties, which allows almost complete mutual
solubility. Recently, a hexagonal HEA was synthesized using
the RE elements Gd, Tb, Dy, Ho, and Y [4]. For these five
elements, the mutual mixing enthalpies for each pair are
zero Hij = 0 [12], and so is their weighted sum �Hmix = 0,
assuring random mixing of the elements, phase homogeneity
and thermodynamic stability down to zero temperature. Pure
metals possess the same hcp crystal structure with small
differences in the a and c lattice parameters, originating from
the known lanthanide contraction of atomic radii ri toward
heavier RE elements (Table I). Since the elements Gd, Tb,
Dy, and Ho are neighbors in the periodic system, the radius-
difference parameter for the equimolar Ho-Dy-Y-Gd-Tb HEA
is minimized, amounting to δr =

√∑
i ci(1 − ri/r̄)2 = 0.77%

(with r̄ being the compositional-average radius), which is
small compared to other known bcc and fcc HEAs, where
the values of δr below 6.5% are found generally and below
3.8% are found for single-phase HEAs [13]. The very small
δr value of the Ho-Dy-Y-Gd-Tb HEA assures small distortion
of its hcp lattice. Furthermore, the chosen elements all possess
the same 3+ valence state and their electronegativities are
similar. All this suggests that the Ho-Dy-Y-Gd-Tb system may
be considered a prototype of an ideal HEA, offering the oppor-
tunity to address the question on the intrinsic properties of an
equilibrium HEA at any temperature. Due to great chemical
similarity of the RE metals, electronic properties of RE-based

HEAs can be predictably tuned with composition, but since the
employed RE elements possess disparate magnetic properties,
their random mixing on an almost undistorted lattice may
result in unprecedented magnetic behavior. In this paper we
present an experimental study of magnetism of the equimolar
Ho-Dy-Y-Gd-Tb hexagonal HEA, showing that it possesses
a rich and complex magnetic field–temperature (H,T ) phase
diagram.

II. SAMPLE CHARACTERIZATION

The Ho-Dy-Y-Gd-Tb HEA was prepared in a high-
frequency levitation furnace under a 1 bar Ar atmosphere.
The details of preparation of a polygrain sample and its char-
acterization by various electron microscopy techniques can be
found elsewhere [4]. Energy dispersive spectroscopy (EDS)-
determined composition was Ho19.3Dy19.5Y20.5Gd21.1Tb19.6

(in atomic percent), with about 0.5% uncertainty for each
element, so the constituent elements are in equimolar con-
centrations. The material was found to be homogeneous;
no features due to composition variation, precipitation of
secondary phases, dendrite formation, etc., could be observed.
The x-ray diffraction (XRD) pattern of the investigated sample
is shown in Fig. 1. All peaks could be indexed to a hcp
structure (space group P 63/mmc) with the lattice parameters
a = 3.613(1) Å and c = 5.704(2) Å, in good agreement with
the compositional-average theoretical values ā = 3.613 Å and
c = 5.698 Å for this alloy (Table I). The compositional

FIG. 1. (Color online) XRD pattern of the hexagonal Ho-Dy-Y-
Gd-Tb HEA. The peaks are indexed to a hcp crystal lattice.
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average of a given physical property Ȳ of the mixture is
calculated from the properties Yi of constituent elements
by Vegard’s rule of mixtures [14], Ȳ = ∑

i ciYi , which is
valid for a random mixing of the elements, so the agreement
between the experimental and the theoretical lattice parameters
is in support of the random mixing of RE elements on the
hcp lattice. In Fig. 1, Miller indices hkl of the diffraction
peaks are also given in the diffraction pattern. An anisotropic
broadening of the peaks could be noticed, with the hk0 peaks
being narrower than the 00l peaks. This demonstrates that
the structure is slightly better ordered within the hexagonal
(a,b) plane than along the perpendicular c hexagonal direction.
Assuming that the anisotropic peak broadening originates from
the spatially anisotropic size of coherently scattering domains
(within which the crystalline order is close to perfect), we
obtain the mean domain dimension in the hexagonal plane
about 100 nm, whereas along the hexagonal direction it is
about 30 nm, thus a factor of three smaller. Another cause
of the anisotropic broadening could be the anisotropic lattice
strains. By making a rather unphysical assumption that the
domains’ size is the same in all directions and the domains
are ideally large (about 1 µm in any direction), the strain (the
deformation of the lattice parameter) would amount to 0.17%
in the hexagonal (a,b) plane and 0.30% along the c direction.
The anisotropic broadening of the XRD peaks likely originates
from a combination of both effects.

III. RESULTS

Magnetic measurements were conducted by a Quantum
Design Magnetic Property Measurement System (MPMS)
XL-5 superconducting quantum interference (SQUID) mag-
netometer equipped with a 5 T magnet. In order to minimize
the demagnetization effects, a needle-shaped sample was
prepared and its long axis was oriented parallel to the magnetic
field. Electrical resistivity and specific heat measurements
were performed by a Quantum Design Physical Property
Measurement System (PPMS) 9 T.

For addressing the magnetism of equimolar Ho-Dy-Y-Gd-
Tb HEA, we first review the magnetic phase transitions in pure
metals (Table II) [15]. Gadolinium undergoes a paramagnetic
to ferromagnetic (FM) transition at the Curie temperature
TC = 293 K. Terbium first undergoes a transition to a helical

antiferromagnetic (AFM) state at the Néel temperature TN =
230 K, followed by a FM transition at TC = 220 K. The same
sequence is observed in dysprosium (TN = 179 K, TC = 89 K)
and holmium (TN = 132 K, TC = 20 K), whereas yttrium is
nonmagnetic. Magnetic properties of the triply ionized RE
elements are also given in Table II.

A. Direct current magnetic susceptibility

The direct current (dc) magnetic susceptibility χ = M/H

in the temperature range between 300 and 2 K in a low
magnetic field μ0H = 0.8 mT, measured for both the zero-
field-cooled (zfc) and the field-cooled (fc) protocols, is shown
in Fig. 2(a). At TN = 180 K, a sharp singularity typical of a
second-order phase transition to a long-range ordered AFM
state with critical slowing of spin fluctuations is observed. The
TN of the Ho-Dy-Y-Gd-Tb HEA is practically the same as
the TN of pure dysprosium. No additional phase transition
to a long-range ordered magnetic state could be detected
at any other temperature, including the temperatures of the
phase transitions in pure metals [in Fig. 2(a), TN s of pure
metals are marked by dashed lines and TCs are marked
by solid lines]. Below the AFM transition, χzf c and χf c

susceptibilities start to differ (with χzf c < χf c), showing
rather irregular behavior upon cooling and demonstrating
that the spin system reaches different magnetic states when
cooled in the absence or presence of an external magnetic
field of even so small a value as 0.8 mT. At 7 K, χzf c

shows a pronounced cusp. The mean effective paramagnetic
moment per magnetic ion μ̄eff = p̄effμB , where μB is the
Bohr magneton and p̄eff is the mean effective Bohr magneton
number, was estimated at T > TN by assuming validity of the
Curie law χ = Cc/T , with Cc being the Curie constant. In that
case, p̄eff =

√
3CckB/(NAμ2

Bμ0), where NA is the Avogadro
number and μ0 is the permeability of vacuum. To estimate
p̄eff , we have replaced Cc with the experimental value of the
product χT , which yielded temperature-dependent p̄eff values
amounting to p̄eff(300 K) = 13.5 and p̄eff(200 K) = 21. The
theoretical p̄eff expected from the Curie law, which assumes
noninteracting localized magnetic moments, for the mixture is
temperature independent and amounts to p̄eff =

√∑
i cip

2
i =

8.6, where pis are the Bohr magneton numbers of individual
elements constituting the HEA (Table II). This result shows

TABLE II. Landé g factor, angular momentum J , Bohr magneton number p = g
√

J (J + 1), saturated moment gJ , Néel temperature TN ,
Curie temperature TC , Debye temperature θD , and the electronic specific heat coefficient γe of the RE metals and the Ho19.3Dy19.5Y20.5Gd21.1Tb19.6

HEA [15,17]. Theoretical values for the HEA were calculated by Vegard’s rule of mixtures except for the theoretical TN , where the averaging
goes only over the Tb, Dy, and Ho.

Y Gd Tb Dy Ho HEA exp. HEA theory

g 2 3/2 4/3 5/4
J 7/2 6 15/2 8
p 7.94 9.72 10.65 10.61 8.6
gJ (μB ) 7.0 9.0 10.0 10.0 6.7 7.1
TN (K) 230 179 132 180 180.3
TC(K) 293 220 89 20
θD(K) 248 182 176 183 190 231 196
γel (mJ/mol K2) 8.2 6.4 4.1 9.5 6.0 ∼6 6.8
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FIG. 2. (Color online) dc magnetic susceptibility χ = M/H of Ho-Dy-Y-Gd-Tb HEA in the temperature range between 300 and 2 K
measured for the zfc and fc protocols in magnetic fields μ0H of (a) 0.8 mT, (b) 0.1 T, (c) 1 T, and (d) 5 T. In (a), the Néel temperatures TN of
pure metals and the Ho-Dy-Y-Gd-Tb HEA are marked by dashed lines, whereas the Curie temperatures TC of pure metals are marked by solid
lines. In the other three panels, only the Néel temperature of the Ho-Dy-Y-Gd-Tb HEA is marked.

that the Curie law is not applicable to the Ho-Dy-Y-Gd-Tb
HEA in the paraphase within our investigated temperature
range between TN and 300 K, and the spins form short-range
ordered clusters of coupled spins, which grow in size upon
approaching TN and form a long-range ordered AFM magnetic
structure at TN . The susceptibility in higher magnetic fields is
shown in Figs. 2(b)–2(d). In μ0H = 0.1 T [Fig. 2(b)], the AFM
transition at TN = 180 K is still well developed (not affected
significantly by the external field), but below TN, χzf c is larger
than χf c down to about 50 K, where the two susceptibilities
cross, so the usual situation χzf c < χf c is observed below
that temperature. In the μ0H = 1 T field [Fig. 2(c)], the AFM
transition is already significantly affected by the magnetic
field. The AFM singularity is broadened and rounded and
its peak position is shifted to lower temperatures, so the
transition temperature in this field amounts to TN ≈ 172 K.
Below TN , χzf c and χf c are close to each other between TN

and about 50 K with χzf c > χf c and both grow in a FM-like
manner. At 50 K, χzf c and χf c cross, so χzf c < χf c below that
temperature and the difference χf c − χzf c increases drastically
upon further cooling. In a high field μ0H = 5 T [Fig. 2(d)],
the AFM transition is no longer observed and there is no
difference between χzf c and χf c, whereas the temperature
dependence of the susceptibility resembles that of a disordered
ferromagnet with a field-induced FM transition smeared over
a relatively large temperature interval in the region where the

AFM transition takes place in low fields. The 5 T field has
polarized the spins and has destroyed the magnetic structure
that develops in zero or low magnetic fields.

B. Alternating current magnetic susceptibility

The response of the spin system to an alternating cur-
rent (ac) magnetic field of amplitude μ0H0 = 0.65 mT and
frequencies ν = 1, 10, 100, and 1000 Hz was measured by
the ac susceptibility. Its real part χ ′ is shown in Fig. 3(a). A
sharp, frequency-independent peak is observed at TN = 180 K
[shown on an expanded scale in the inset of Fig. 3(a)],
demonstrating a thermodynamic phase transition to an AFM
state. Around 7 K, χ ′ exhibits a broad cusp, which is frequency
dependent and shifts to higher temperatures with increasing
frequency [shown on an expanded scale in Fig. 3(b)]. Such
behavior is typically found in spin systems with broken
ergodicity on the experimental frequency scale and indicates
gradual freezing of spin fluctuations upon cooling, with a broad
distribution of motional correlation times. Typical examples
are spin glasses (SGs) and superparamagnets below the
blocking temperature. The temperature of the cusp maximum
is associated with the frequency-dependent spin freezing
temperature Tf (ν) [marked by an arrow on the 1 Hz curve
in Fig. 3(a)]. The Tf (ν) relation is presented in the inset
of Fig. 3(b), where Tf (ν) normalized to Tf (1 Hz) = 7.06 K
is presented. A logarithmic dependence (base 10) of Tf on
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FIG. 3. (Color online) (a) Real part χ ′ of the ac magnetic suscep-
tibility of Ho-Dy-Y-Gd-Tb HEA in the temperature interval between
250 and 2 K in an ac magnetic field of amplitude μ0H0 = 0.65 mT and
frequencies ν = 1, 10, 100, and 1000 Hz. The inset shows χ ′ on an
expanded temperature scale around the AFM phase transition at TN =
180 K. (b) Low-temperature χ ′, showing a frequency-dependent cusp
around 7 K. The temperature of the cusp maximum is associated with
the frequency-dependent spin freezing temperature Tf (ν) (marked by
an arrow on the 1 Hz curve). The inset shows Tf (ν) normalized to
the Tf (1 Hz) value.

the frequency is evident and the freezing temperature at the
highest measured frequency of 1 kHz has increased by a factor
1.17 to a value Tf (1 kHz) = 8.26 K. The fractional shift of the
freezing temperature per decade of frequency was evaluated to
be 	 = �Tf /Tf �(logν) = 0.057, which is a value typically
found in SGs (where 	 < 0.06), whereas superparamagnets
are characterized by larger values of 	 ≈ 0.3 [16]. The ac
susceptibility thus reveals that the phase transition at TN =
180 K is a thermodynamic phase transition in an ergodic spin
system, whereas the transition at 7 K is a gradual spin-freezing
transition in a system with broken ergodicity.

C. Magnetization M(H) curves

The magnetic state of the Ho-Dy-Y-Gd-Tb HEA was further
investigated by the magnetization M(H ) curves measured
for the magnetic field sweep of ±5 T. The sample was
always cooled in zero field to the measurement temper-
ature, and then the field cycle was applied. The M(H )

curves (presented in units of Bohr magnetons per formula
unit Ho0.193Dy0.195Y0.205Gd0.211Tb0.196) for a selected set of
temperatures are shown in Fig. 4. The curves change their
shape qualitatively in different temperature regions and can
be roughly divided into three types. The M(H ) curve at T =
100 K shown in Fig. 4(a) is typical for the upper temperature
region between TN and about 75 K (denoted as temperature
region I). In the low-field regime between 0 and ±0.65 T, the
M(H ) relation is linear with no hysteresis, typical of an AFM
state. At the field values of ±0.65 T, the M(H ) curve suddenly
changes its shape and becomes FM for stronger fields, also
showing the FM hysteresis. Upon cycling the field between
positive and negative values, this M(H ) shape is reversibly
reproduced. The magnetic field induces a reversible AFM-
to-FM spin-flop transition at a critical field value Hc, which
at 100 K amounts to μ0Hc = 0.65 T [marked by a vertical
arrow in Fig. 4(a)]. Upon lowering the temperature within
region I, this M(H ) behavior is qualitatively preserved with
the following temperature-dependent behavior: the critical
field Hc decreases (the spin-flop transition occurs at lower
fields), whereas the width of the FM hysteresis loop increases.
The temperature dependence of Hc was used to construct the
temperature-magnetic field (H,T ) phase diagram of Ho-Dy-
Y-Gd-Tb (Fig. 5), where it is seen that within region I, μ0Hc

drops from 1.3 T just below TN to 0.5 T at 75 K.
The second temperature region (region II) extends roughly

from 75 to 20 K. Within that region, the M(H ) curves show
the characteristics of the curves presented in Fig. 4(b) (taken at
50 K) and Fig. 4(c) (at 25 K). The new feature is that the virgin
curve (obtained when the field is applied for the first time
after the zero-field cooling to the measurement temperature)
is different from the curves obtained by a subsequent field
cycling (the nonvirgin curves). In the 50 K curve of Fig. 4(b),
it is seen that the virgin curve starts from the origin with a small
slope, resembling an AFM-type curve, but grows faster after
the field passes the critical field Hc1 (which is not the same
as critical field Hc of the reversible AFM-to-FM spin-flop
transition in region I) and goes into saturation at high fields.
After subsequent field cycling, the nonvirgin M(H ) curves are
reversible and their shape is qualitatively the same as the shape
of the curves from region I, being of the FM type except close
to H = 0, where a tiny AFM region can still be noticed. The
M(H ) curve on an expanded scale about the origin is shown in
the inset of Fig. 4(b), where the critical fields Hc and Hc1 are
indicated by arrows (with μ0Hc = 0.3 T and μ0Hc1 = 0.4 T at
this temperature). The M(H ) at 25 K [Fig. 4(c)] again shows
the difference between the virgin and the nonvirgin curves, but
the FM hysteresis of the nonvirgin curve has almost vanished
and the critical field Hc is zero; i.e., the helical AFM phase is
no longer formed at that temperature and the nonvirgin M(H )
curve resembles that of a superparamagnet above the blocking
temperature. These features are emphasized in the expanded
portion of the M(H ) curve shown in the inset of Fig. 4(c). The
helical AFM order and the associated field-induced AFM-to-
FM spin-flop transition are thus gradually suppressed within
region II upon lowering the temperature. The Hc and Hc1

values determined from the M(H ) curves within region II are
also presented in the (H,T ) phase diagram of Fig. 5.

The low-temperature region III is entered below about 20 K,
and a typical M(H ) curve in this region (at T = 5 K) is shown
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FIG. 4. Magnetization versus the magnetic field curves of the Ho-Dy-Y-Gd-Tb HEA (f.u., formula unit). (a) M(H ) at T = 100 K, typical for
the upper temperature region I. The vertical arrow marks the critical field Hc of the field-induced AFM-to-FM spin-flop transition. Horizontal
arrows mark the width of the FM hysteresis loop μ0�H25%, taken at 25% of the saturated magnetization value. The M(H ) curves at (b)
T = 50 K and (c) T = 25 K are typical for the intermediate temperature region II. The insets show these curves on an expanded scale about the
origin, where the critical fields Hc and Hc1 are indicated by vertical arrows. (d) The M(H ) curve at T = 5 K, typical for the low-temperature
region III. The horizontal dashed line represents the theoretical compositional-average saturated magnetization M̄s = 7.1μB , calculated by
Vegard’s rule of mixtures. The inset shows the M(H ) curve at T = 2 K, where the virgin curve shows a discontinuous jump at Hc1 (indicating
a kind of first-order field-induced metamagnetic transition).

in Fig. 4(d). The virgin curve exhibits small slope at low
fields below Hc1, resembling an AFM spin order, but this
is not a long-range ordered AFM state. Instead, the spins or
spin domains are oriented randomly relative to each other,
so the vector sum of their magnetic moments (and hence
the total magnetization) is small. At Hc1, the virgin curve
starts to grow faster with the field and reaches saturation
at high fields. This behavior is similar to that of the virgin
curves within region II, but the Hc1 values within region
III are considerably larger and grow strongly upon lowering
the temperature. At T = 2 K [inset in Fig. 4(d)], the virgin
curve even shows a discontinuous jump at Hc1 (indicating
a kind of first-order field-induced metamagnetic transition).
The nonvirgin M(H ) curve is different from the virgin one
and is reproducible for the repeated field cycling. Its shape
resembles that of the nonvirgin curve within region II but has an
important difference: the curve exhibits hysteresis, the width of
which increases upon lowering the temperature (opposite to the

decreasing hysteresis within region II). The physical origin of
the hysteresis in the nonvirgin curves within low-temperature
region III is different from the hysteresis in regions I and
II. The temperature-dependent Hc1 values within region III
are also presented in the (H,T ) phase diagram of Fig. 5,
whereas the width of the hysteresis loops (the FM hysteresis
in region I and the hysteresis width of the nonvirgin curves
in regions II and III) as a function of temperature is shown in
the inset of Fig. 5. All widths were determined at 25% of the
saturated magnetization value [marked by horizontal arrows
in Fig. 4(a)].

The experimental value of the saturated magnetization was
compared to the compositional-average theoretical prediction
(Table II), which can be written in the T → 0 limit as
M̄s = ∑

i cigiJiμB , where gi and Ji are the Landé factor and
the total angular momentum of the element i, respectively.
The theoretical value amounts to M̄s = 7.1 μB , whereas the
experimental value read from the 5 K M(H ) curve at the
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FIG. 5. (Color online) The (H,T ) phase diagram of Ho-Dy-Y-
Gd-Tb HEA obtained by plotting the critical fields μ0Hc and μ0Hc1

of the M(H ) curves as a function of temperature. PM, paramagnetic
phase. The temperature regions I–III are delimited by vertical dashed
lines. The inset shows the temperature-dependent width μ0�H25% of
the M(H ) loops, taken at 25% of the saturated magnetization value.

highest field of 5 T amounts to Ms = 6.7μB [Fig. 4(d), where
the theoretical M̄s value is indicated by a dashed horizontal
line]. Since the experimental M(H ) curve still grows slightly at
5 T, it is likely that the experimental Ms reaches the theoretical
M̄s value at higher fields, so no spins are “lost” in the total
saturated magnetization and all are polarized along the field
direction.

D. Specific heat

Specific heat measures the change of internal energy of the
system, with temperature due to thermal excitations between
its energy levels. We recall first the behavior of specific heat of
pure metals [17]. Gadolinium shows a λ-type singularity at TC ,
characteristic of a cooperative phase transition; terbium shows
a λ singularity at TN and a shoulder at TC ; dysprosium shows a
λ singularity at TN and a symmetric peak at TC ; and holmium
shows a λ singularity at TN and an anomaly at TC , whereas
there are no anomalies in the specific heat of the nonmagnetic
yttrium. The zero-field specific heat C of Ho-Dy-Y-Gd-Tb
in the temperature range between 380 and 2 K is shown in
Fig. 6(a), where the temperatures of phase transitions in pure
metals are also indicated (TN s are marked by dashed lines,
and TCs are marked by solid lines). Ho-Dy-Y-Gd-Tb exhibits
a λ-type singularity at TN = 180 K, whereas no other anomaly
can be observed at any temperature, including the temperatures
of phase transitions in pure metals. The λ singularity in the
specific heat of Ho-Dy-Y-Gd-Tb is observed at practically the
same temperature as the λ singularity at TN in pure dysprosium.
The specific heat was also measured in magnetic fields up to
1 T (the use of higher fields was impractical, because the
magnetic force on the sample was so large that the sample
was detached from the measuring platform; the same problem
occurred in the electrical resistivity measurements discussed
later). The λ singularity moves with the magnetic field to lower
temperatures [inset in Fig. 6(a)], where the shift of TN in a
1 T field from the zero-field value amounts to �TN ≈ 7 K.

FIG. 6. (Color online) (a) Zero-field specific heat C of Ho-Dy-
Y-Gd-Tb in the temperature range between 380 and 2 K. The Néel
temperatures TN of pure metals and the Ho-Dy-Y-Gd-Tb HEA are
marked by dashed lines, whereas the Curie temperatures TC of pure
metals are marked by solid lines. The inset shows the λ singularity at
TN in zero magnetic field and in a 1 T field on an expanded temperature
scale. (b) Low-temperature specific heat up to 10 K in magnetic
fields up to 1 T shown in a C/T versus T 2 plot. Solid and dashed
lines are fits of the 0 T and 1 T curves with the expression C/T =
γ + βT 2, respectively. The inset shows magnetic field dependence
of the linear coefficient γ . The dashed horizontal line represents
the compositional-average electronic coefficient γ̄el , calculated by
Vegard’s rule of mixtures.

The peak is gradually rounded with a tendency to disappear. A
change of slope on the high-temperature side of the peak can be
noticed in the 1 T curve. Except for the field dependence of the
λ singularity, no other field-induced changes can be observed
in the specific heat at temperatures higher than about 20 K (the
zero-field curve overlaps the curves in the field). Below 20 K,
the specific heat starts to show pronounced dependence on
the magnetic field. In Fig. 6(b), the low-temperature specific
heat up to 10 K in magnetic fields up to 1 T is shown in
a C/T versus T 2 plot. In this scale, C/T is linear except
below about 4 K, where a strong upturn is observed. This
upturn most likely originates from the Schottky effect [18],
where the (2J + 1)-fold degenerate energy levels of a RE ion
with a total angular momentum �J are split by the crystalline
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electric fields, which produces a broad maximum in the specific
heat in the T → 0 limit; here, gadolinium is an exception,
because its charge cloud is spherically symmetric and the
crystal-field (CF) interaction is zero. In the temperature range
away from the Schottky upturn, the low-temperature specific
heat was analyzed by the expression C = γ T + βT 3. The fit
of the zero-field curve [solid line in Fig. 6(b)] has yielded the
parameter values γ (0) = 25 mJ/mol K2, where γ (0) denotes
the zero-field value of the linear specific heat coefficient γ , and
β = 7.8 × 10−4 J/mol K4. The origin of the βT 3 term can be
lattice vibrations or magnetic excitations in the form of AFM
magnons (or a combination of both). Within the Debye model
of lattice vibrations that is usually good approximation at
temperatures below 10 K, the coefficient of the cubic term β is
related to the Debye temperature θD = (12π4R/5β)1/3, where
R is the gas constant. The experimental β value has yielded
θD = 231 K. The Debye temperatures of the constituent
elements are given in Table II, and their compositional average
amounts to θ̄D = 196 K. Because the Debye temperature
is not a precisely defined quantity, the matching of the
experimental θD value of Ho-Dy-Y-Gd-Tb to the theoretical
prediction θ̄D is reasonably good, so the βT 3 term originates
predominantly from the lattice vibrations; i.e., it represents
the lattice contribution to the total specific heat. Magnetic
excitations in the form of AFM magnons are not present in
the cubic term. The linear specific heat term γ T contains the
electronic term γelT , where γel = (π2/3)k2

Bg(εF ) and g(εF )
is the electronic density of states (DOS) at the Fermi energy
εF . The electronic specific heat coefficients of the constituent
elements in their metallic state are given in Table II and
their compositional average amounts to γ̄el = 6.8 mJ/mol K2,
which is much smaller than the experimental γ (0) value. This
suggests that the linear term contains another contribution.
The analysis of the specific heat curves in a magnetic field
presented in Fig. 6(b) reveals that this second contribution is
field dependent. The curves shift downward with the increasing
magnetic field, but the slopes of the linear parts of the curves
do not change with the field (the curves run in parallel),
so the lattice specific heat coefficient β remains unaffected.
What is changing with the field is the T = 0 intercept of the
extrapolated linear line on the vertical axis, which represents
the linear specific heat coefficient γ in the C/T versus T 2

plot. The fit of the 1 T curve [dashed line in Fig. 6(b)]
has yielded γ (1T) ≈ 6 mJ/mol K2, which is close to the
compositional-average electronic coefficient γ̄el , so the field
of 1 T has already destroyed the field-dependent part of the
linear coefficient γ . It is evident that the linear specific heat
coefficient can be written as a sum γ (H ) = γel + A(H ), where
the electronic term γel is to a good approximation independent
of the magnetic field, whereas the term A(H ) is field dependent
and gradually vanishes in an increasing magnetic field. Such
field-dependent linear contribution is found in SGs, where it
is associated with the magnetic specific heat, Cm = A(H )T
[19]. In a SG, the interactions between spins in a magnetically
frustrated configuration are distributed in strength and the
spins in the ground state are frozen cooperatively in random
directions. At a finite temperature T , thermal agitation causes
the spins with the exchange energies of the order kBT to
perform reorientations, and these low-temperature excitations
contribute to the magnetic specific heat, whereas the rigidly

aligned spins with stronger interactions make no contribution.
Due to the distribution of interaction strengths, the spin
reorientations are excited continuously over the entire SG
phase upon heating, yielding a linear-in-T contribution to
the magnetic specific heat. In a magnetic field, the Zeeman

interaction −⇀

μ ·
⇀

B “locks” the moments
⇀

μ along the field
direction and impedes spin reorientations, so the magnetic
specific heat at a given temperature shows a decreasing
tendency for an increasing external field (spin reorientations
in the field then occur at higher temperatures, where kBT

is large enough to surmount both the exchange barrier and
the Zeeman barrier to reorient a spin). The field dependence
of the linear coefficient γ , extracted from the linear parts of
the specific heat curves measured in the magnetic field, is
shown in the inset of Fig. 6(b). We observe that there is first
a weak field dependence in the low-field region μ0H � 0.6 T,
whereas this dependence becomes strong in higher fields. At
the highest employed field of 1 T, γ (H ) has already dropped to
the value of the theoretical compositional-average electronic
coefficient γ̄el , so the field-dependent coefficient A(H ) has
vanished in this field. The field dependence of γ (H ) closely
follows the field dependence of the magnetization in region
III, where the growth of the virgin magnetization curve with
the magnetic field is weak below the critical field Hc1 and
strong at fields H > Hc1 [Fig. 4(d)]. From the T < 10 K part
of the (H,T ) phase diagram shown in Fig. 5, we observe that
the μ0Hc1 values in region III are in the range between 0.7
and 0.9 T, which corresponds well to the field where the weak
field dependence of γ (H ) turns into a strong one. The almost
sudden increase of the virgin magnetization at Hc1 is thus
mirrored by the almost sudden decrease of the field-dependent
(SG-type) linear specific heat coefficient A(H ).

E. Electrical resistivity

Electrical resistivity ρ was measured between 2 and 300 K
in magnetic fields up to μ0H = 0.6 T. The zero-field resistivity
is shown in Fig. 7. The ρ(T ) dependence is metallic with a

FIG. 7. (Color online) Zero-field electrical resistivity ρ of Ho-
Dy-Y-Gd-Tb in the temperature interval between 2 and 300 K. The
inset shows the magnetic field dependence of the resistivity in the
vicinity of TN .
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positive temperature coefficient. In the T → 0 limit it saturates
to a residual resistivity value ρ2K = 30 μ� cm, whereas at
300 K it amounts to ρ300K = 115 μ� cm. A change of slope
is observed around TN = 180 K and a local maximum is
formed just below TN . The maximum is field dependent and
diminishes with increasing magnetic field (inset in Fig. 7).
The temperature-dependent resistivity can be written as a
sum of three terms: ρ(T ) = ρimp + ρph(T ) + ρm(T ). Here,
ρimp is the residual resistivity due to elastic scattering of the
electrons from impurities and from lattice defects (including
lattice distortions), ρph is the resistivity due to the inelastic
electron-phonon scattering, and ρm originates from magnetic
excitations. The ρm term is responsible for the field-dependent
peak in the total resistivity just below TN and originates from
the “magnetic superzones” effect [20,21], as will be discussed
later.

IV. DISCUSSION

A. The magnetism of pure RE metals

The key to understanding the magnetic state of the Ho-Dy-
Y-Gd-Tb HEA and its (H,T ) phase diagram is to consider
first the magnetic behavior of its constituent elements in their
metallic state. Gd, Tb, Dy, and Ho all belong to the heavy RE
series, where the 4f electrons are localized. The ions possess an

angular momentum
⇀

J and a magnetic moment
⇀

μ = −gμB

⇀

J .
The simplest form of Hamiltonian that adequately explains
most of the magnetic structures of pure heavy RE metals is
[15]

H =
∑

i

HCF(i) − 1

2

∑
ij

J (ij )
⇀

J i ·
⇀

J j + gμB

∑
i

⇀

J i ·
⇀

B, (1)

where the summations run over all RE ions. The term HCF(i)
is the CF Hamiltonian, describing the interaction of crystalline
electric fields with the nonspherical charge distribution of the
ith ion that lifts the degeneracy of the ionic |JMJ 〉 states. For
an ion at the lattice site with hexagonal point symmetry, as in
the hcp structure, HCF(i) is written as [22]

HCF(i) =
∑

l=2,4,6

B0
l O

0
l (

⇀

J i) + B6
6O6

6 (
⇀

J i) (2)

where Bm
l are CF parameters and Om

l (
⇀

J ) are Stevens operators.
Here, HCF(i) is a single-ion interaction, acting independently
at each ionic site i. The second term in Eq. (1) is the
indirect exchange, by which pairs of ions are coupled through
the intermediary of the conduction electrons. This two-ion
interaction is isotropic and does not specify any orientation
of the moments relative to the crystal axes. The last term
is the Zeeman interaction of the moments with the external
magnetic field

⇀

B. Magnetic structures of the heavy RE metals
may be understood as a result of cooperation and competition
between the oscillatory indirect exchange and the CF and
magnetoelastic anisotropy forces in the strained lattice. Here,
lattice strains modify CFs and all other magnetic interactions,
resulting in a magnetoelastic coupling between the moments
and the strain. The exchange is predominantly responsible for
cooperative effects and magnetic ordering, whereas the CFs
and magnetoelastic effects can be considered perturbations,

introducing magnetic anisotropy whose essential role is to
establish favored directions of the moments in the lattice. The
terms B0

l (l = 2,4,6) in the CF Hamiltonian introduce axial
anisotropy (between the hexagonal direction and the hexagonal
plane), whereas the term B6

6 is responsible for the anisotropy
within the hexagonal plane. The type of long-range magnetic
order that develops at the transition from the paramagnetic
to the magnetically ordered phase is determined by the
exchange coupling constant J (ij ), which is related to the
shape of the Fermi surface. The Fermi surfaces of heavy RE
elements (and of yttrium) are highly anisotropic and rather
similar to one another in the paramagnetic phase [23]. By
considering J (

⇀

q), the Fourier transform of J (ij ) defined via

the relation J (
⇀

q) = ∑
j J (ij ) exp {−i

⇀

q (
⇀

Ri −
⇀

Rj )} (where
⇀

Ri are Bravais lattice vectors), the details of the Fermi surfaces
imply that except for Gd, the quantity J (

⇀

q) − J (0) exhibits
a maximum at a nonzero wave vector

⇀

q, which is responsible
for stabilizing periodic magnetic structures. The magnitude
of the peak in J (

⇀

q) − J (0) increases with atomic number.
For our chosen elements, the peak in Gd occurs at

⇀

q = 0,
whereas for Tb, Dy, and Ho it occurs at

⇀

q �= 0, where the
peak in Tb is weak, is stronger in Dy, and becomes robust
in Ho [15]. The interaction of the 4f charge clouds of Tb,
Dy, and Ho ions with the crystalline electric fields locks
the

⇀

q vector of the modulated magnetic structure along the
hexagonal c axis, where the associated wavelength λ = 2π/q

is generally incommensurable with the crystal lattice. The
positive CF parameter B0

2 > 0 favors a transversely ordered
phase, so in zero magnetic field, a helix is formed at the
transition temperature TN from the paramagnetic phase, where
all moments in a particular atomic plane normal to the c

axis are aligned but their relative orientations change from
plane to plane [Fig. 8(a)] [24]. The expectation values of

the moments take the form Jix = J⊥ cos(
⇀

q
⇀

Ri + ϕ), Jiy =
J⊥ sin(

⇀

q
⇀

Ri + ϕ), and Jiz = 0, where the x,y,z Cartesian
axes point along the crystalline a,b,c directions. At the Néel
temperature TN , the Tb, Dy, and Ho metals thus become
basal-plane antiferromagnets. The evolution of magnetic order
below TN occurs due to temperature variation of the competing
magnetic interactions to which the moments are subjected.
The variation of the expectation values of Stevens operators
Om

l gives rise to a pronounced temperature dependence of
the anisotropy forces, including the magnetoelastic effect.
Changes in the magnitude and orientation of the moments
also alter the band structure of the conduction electrons,
which in turn modifies the indirect exchange J (ij ), so its
Fourier transform J (

⇀

q) changes with temperature. Because
of the interaction between the local moments and the spins
of the conduction electrons, the latter experience a potential
with a period, which is generally different from that of the
lattice and therefore generates extra energy gaps in the band
structure. These magnetic superzone gaps [20,21] perturb the
energy spectrum of the conduction electrons significantly. In
particular, the regions of the Fermi surface responsible for
the peak in J (

⇀

q) are severely modified. The result is that
both the position of the peak and its magnitude are reduced,
thus tending to eliminate the characteristics of the exchange
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(b)(a)

FIG. 8. Schematic representation of (a) basal-plane helical AFM
structure in heavy RE metals and (b) basal-plane FM structure.

coupling that has favored a helical magnetic structure at TN .
Different temperature variations of the competing magnetic
interactions impose the following evolution of the magnetic
structures in Tb, Dy, and Ho metals: immediately below TN , the
exchange dominates and the anisotropy forces are small. As the
temperature is lowered, the peak in J (

⇀

q) decreases and moves
toward

⇀

q → 0, whereas the anisotropy forces increase. The
hexagonal anisotropy B6

6 tends to distort the helical structure
by deflecting the moments toward the nearest easy axis in
the hexagonal plane. The magnetoelastic forces increase until
the magnetoelastic energy plus a minor contribution from the
CF anisotropy just balances the difference in the exchange
energy between the helical and the FM (

⇀

q = 0) phases. At the
temperature TC where the balance is reached, the transition to
the FM phase takes place and Tb, Dy, and Ho become basal-
plane ferromagnets [Fig. 8(b)]. The magnetoelastic forces thus
drive the low-temperature FM transition.

The situation is different for Gd, which possesses a
spherically symmetric 4f charge cloud and for which the CF
interaction is consequently zero. A small magnetic anisotropy
is still provided by the magnetic dipole interaction between the
Gd moments, which locks the moments along c at

⇀

q = 0; i.e., a
FM phase is directly formed at the transition temperature TC =
293 K from the paramagnetic phase. At lower temperatures, the
easy axis of magnetization begins to deviate toward the basal
plane, reaching a maximum tilt angle of 60° at 180 K before
decreasing to just below 30° at 4.2 K [25].

The application of an external magnetic field has a profound
effect on the magnetic structures of RE metals. In a sufficiently
large field, the stable magnetic configuration is an array

of moments gμBJ pointing along the field direction. The
intermediate states between the zero-field structure and the
high-field limit may be complex, so the (H,T ) phase diagram
may include field-induced continuous and/or discontinuous
phase transitions to exotic metamagnetic structures (e.g., a
conical structure, a multiple-

⇀

q structure, a spin-slip structure,
and a helifan structure). The magnetic field also eliminates the
magnetic superzone gaps, because it destroys their origin—the
periodic magnetic structures with periodicity different from
that of the crystal lattice.

B. Magnetic ordering in the Ho-Dy-Y-Gd-Tb HEA

We turn now to the analysis of magnetic ordering and
its evolution with temperature and magnetic field in the
Ho-Dy-Y-Gd-Tb HEA. The XRD pattern shown in Fig. 1
demonstrates that the crystal lattice of hexagonal symmetry is
well developed. Random mixing of elements on the lattice is
supported by the lattice parameters and other physical param-
eters given in Table II obeying Vegard’s rule of mixtures rea-
sonably well. Paramagnetic moments of the ions are markedly
different and amount to (in units of Bohr magneton per ion)
μGd = 7.94, μT b = 9.72, μDy = 10.65, μHo = 10.61, and
μY = 0 (Table II). The Ho-Dy-Y-Gd-Tb HEA thus represents
a magnetic system where sizable magnetic moments of four
magnitudes in equal concentrations are randomly distributed
over the sites of a weakly distorted hexagonal lattice and are
diluted with nonmagnetic yttrium ions. To describe such a
system theoretically, a disordered variant of the Hamiltonian
of Eq. (1) should be constructed and solved, which is a
highly demanding task. A qualitative analysis can still be
made by considering the influence of random substitutional
disorder and lattice distortions on the individual terms in the
Hamiltonian.

We begin with the single-ion CF term of Eq. (2). For
simplicity, we perform the discussion within the point-charge
model [26], where the CF parameters Bm

l are proportional to
the coefficients γlm = ∑

j (4π/2l + 1)qj [Zlm(θj ,φj )/Rl+1
j ],

where qj and (Rj ,θj ,φj ) are the charge and the polar
coordinates of the j th ion with respect to the central RE
ion, for which the interaction with the crystalline electric
fields of its neighbors is calculated. The Zlm(θ,φ) are tesseral
(real) harmonics (electrical multipoles), where Zl0(l = 2,4,6)
depend on even powers of cosθ , whereas Z66 ∝ sin6θcos6φ.
For the hcp lattice, the first coordination shell of each lattice
site contains 12 atoms. All five elements constituting the HEA
are in a 3+ ionization state, so the ionic charges qj are the
same regardless of the distribution of elements within the first
coordination shell. Differences in the atomic radii of the five
elements introduce random lattice distortions, characterized
by a random distribution of the distances Rj and the polar and
azimuthal angles θj and φj , which introduce variation of the
CF parameters over the lattice sites i. Since the atomic radii
differences are small, the lattice distortions are also small, as
is the associated distribution of the CF parameters. The CF
Hamiltonian of the Ho-Dy-Y-Gd-Tb HEA is thus not expected
to change much with respect to the pure Tb, Dy, and Ho metals.
At the Gd and Y sites, the CF interaction is zero. Since the five
elements are in equimolar concentrations, 60% of the lattice
sites (those populated by Tb, Dy, and Ho) experience the CF
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interaction, whereas the remaining 40% sites (populated by
Gd and Y) are insensitive to it.

Random substitutional disorder and lattice distortions
modify the exchange Hamiltonian significantly. Since four

types of ions with angular momenta
⇀

Jm (with m = 1 − 4
referring to Gd, Tb, Dy, and Ho) are randomly distributed
over the lattice sites i and diluted with nonmagnetic Y, the

product
⇀

J i ·
⇀

J j in the exchange Hamiltonian is replaced with

terms of the form ci,mcj,n(gm − 1)(gn − 1)
⇀

Jmi ·
⇀

J nj (following
from the Heisenberg exchange Hamiltonian being transformed

from spin variables
⇀

S to the total angular momentum
⇀

J by a

transformation
⇀

S = (g − 1)
⇀

J and ci,m being the probability
that the site i is populated by an ion of the type m. The
exchange coupling constant J (ij ) also becomes distributed. It
is reasonable to assume that this distribution can be described
by a continuous distribution function P (J (ij )), which is
peaked at a mean value J̄ (ij ) and has a width �J (ij ),
so the exchange interaction in the Ho-Dy-Y-Gd-Tb HEA
becomes a random-bond problem. The Zeeman interaction

is also modified by the disorder. The magnetic field
⇀

Bi acting
on the spin at the site i becomes a random variable, being a

sum of the external field
⇀

B and the local molecular field that
includes the dipolar field of its neighbors. The Hamiltonian of
the substitutionally disordered spin system with the exchange
coupling constant described by a distribution P (J (ij )), and

the random field variable
⇀

Bi is thus a random-bond, random-
field problem, analogous to the Sherrington-Kirkpatrick model
[27] used to describe SGs.

The main effect of the disorder is an additional potential
experienced by the spins. This potential varies randomly over
the lattice sites and provides local pinning centers for the
spin orientations. At high temperatures, the thermal energy
kBT is large enough to overcome this potential and the
thermally fluctuating spin system acts as an ergodic system
whose properties are predominantly determined by the average
value of the exchange coupling constant J̄ (ij ), whereas the

time-average molecular field is negligible (so that
⇀

Bi ≈
⇀

B).
The CF Hamiltonian is also not affected much by the disorder.
Under these conditions the magnetic state of the HEA can be
described within the virtual crystal approximation (VCA) [15],
where the angular momentum at each lattice site is replaced

with a compositional average
⇀

J av = (1/5)
∑5

m = 1

⇀

Jm (here
the sum runs over all five elements constituting the HEA
with the constraint that the angular momentum of Y is
zero), interacting with its neighbors via the average exchange
coupling J̄ (ij ) and experiencing the external magnetic field
⇀

B. The parameters of the CF Hamiltonian can also be taken
as the compositional average (where HCF of Gd and Y is
zero). In the VCA, the disorder-induced pinning potential is
neglected due to fast thermal fluctuations of the spins and
the spin system behaves as a pure system of compositionally
averaged spins coupled via the exchange and interacting with
the crystalline electric fields and external magnetic field that
assume sharp (nondistributed) values. The VCA can be applied
to the Ho-Dy-Y-Gd-Tb HEA within region I in the (H,T )
phase diagram of Fig. 5, where the sharp peak in the dc and

ac magnetic susceptibilities and the λ-type singularity in the
specific heat in zero and low magnetic fields demonstrate
the transition to the AFM state at the Néel temperature
TN = 180 K. The TN of the Ho-Dy-Y-Gd-Tb HEA coincides
with the compositional average of the Néel temperatures of Tb,
Dy, and Ho metals T̄N = (T T b

N + T
Dy

N + T Ho
N )/3 = 180.3 K

(Table II), which is accidentally almost equal to the Néel
temperature of pure dysprosium (T Dy

N = 179 K). Details of
the AFM structure that develops at TN cannot be directly
inferred from our experiments (this can be done, e.g., by
magnetic neutron scattering), but the electrical resistivity that
shows the magnetic superzone effect just below TN supports
the hypothesis that the magnetic structure is periodic, with
a periodicity different from that of the lattice. Since the
CF parameters B0

2 of Tb, Dy, and Ho are all positive [15]
(where B0

2 > 0 favors a transversely ordered phase), it is
reasonable to consider that the zero-field magnetic structure
of the Ho-Dy-Y-Gd-Tb HEA within the high-temperature
region I is a basal-plane helical antiferromagnet, analogous
to the same type of magnetic ordering in the Tb, Dy, and
Ho metals. These three elements predominantly determine the
magnetic structure of the Ho-Dy-Y-Gd-Tb HEA within region
I, whereas the influence of Gd (with no CF interaction) and
nonmagnetic Y appears to be minor. The AFM phase transition
occurs at the Néel temperature T̄N that is a compositional
average of TN s of Tb, Dy, and Ho, which suggests that the
Fermi surface of Ho-Dy-Y-Gd-Tb HEA, which determines the
exchange constant J̄ (ij ), in region I is to a good approximation
also an average of the Fermi surfaces of these elements (or,
more likely, of all five constituting elements, since their Fermi
surfaces in the paramagnetic phase are alike). The temperature
dependence of J̄ (

⇀

q), the Fourier transform of J̄ (ij ), in
region I can be inferred from the temperature dependence
of the critical field Hc in the (H,T ) phase diagram (Fig. 5).
At Hc, the external magnetic field induces an AFM-to-FM
spin-flop transition, so an array of spins parallel to the field is
energetically preferred with respect to the helical AFM spin
order. At the spin-flop transition, the Zeeman interaction just
balances the exchange energy difference between the helical
AFM and the field-induced FM states. The Hc decreases
strongly with decreasing temperature within region I, which
can be explained by considering that J̄ (

⇀

q) changes with
temperature in a way that the height of the maximum in
J̄ (

⇀

q) − J̄ (0) responsible for stabilizing the helical AFM state
is reduced upon lowering the temperature and its position
shifts toward

⇀

q → 0. The energetic stability of the helical
AFM state is thus reduced upon lowering the temperature
in the same way as in the pure Tb, Dy, and Ho metals.
These three metals undergo in zero field a transition from the
basal-plane helical AFM state to a basal-plane FM state, but in
the Ho-Dy-Y-Gd-Tb such a transition never occurs because at
lower temperatures, the thermal energy is no longer sufficient
to average out the effect of the disorder-induced random
pinning potential. Upon cooling, the pinning potential starts to
increasingly affect the magnetic state of the Ho-Dy-Y-Gd-Tb
HEA, which is manifested by the appearance of the zfc-fc
susceptibility splitting in low magnetic fields (Fig. 2). Within
region I, the effect of the random pinning potential is still
small.
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In the temperature region II, extending roughly between 75
and 20 K, the decreasing periodic potential responsible for the
formation of the helical AFM state and the random pinning
potential become of comparable strength and compete with
each other. This is best manifested in the M(H ) curves of
Fig. 4(b) and (c), where the virgin curve is different from the
curves obtained by subsequent field cycling. This indicates that
the free energy of the spin system contains several degenerate
or nearly degenerate minima separated by barriers that can be
surmounted only by a sufficiently high thermal energy kBT

or the application of an external magnetic field
⇀

B. In the
low-field region between zero and the critical field Hc1, the
virgin magnetization is small and its growth with the field is
weak, so the spins freeze in random directions in the random
local fields when cooled in the absence of an external magnetic
field. At fields higher than Hc1, the Zeeman interaction of spins
with the external magnetic field wins over the interaction with
the random molecular fields and favors spin alignment along
the field direction. Due to the degeneracy of the free energy
landscape, the state of the spin system achieved during cooling
in zero field is not retrieved after the field application. The
subsequent evolution of spin order upon the magnetic field
cycling approaches that of a superparamagnet, as evidenced
from the vanishing tendency of the hysteresis loop width on
cooling within region II (inset in Fig. 5). This indicates that
the helical AFM spin order created by the periodic potential
is gradually destroyed and the random pinning potential starts
to dominate with a tendency to freeze the spins in random
directions. Region II can be considered an intermediate region
where the long-range periodic spin order “melts” and the
random ordering of spins in the random local potential starts
to prevail.

Within region III that extends below about 20 K, the
magnetic state of the Ho-Dy-Y-Gd-Tb HEA is determined
predominantly by the random local pinning potential that
impedes thermally assisted spin reorientations so that in zero
external field the spins freeze in random directions in the
T → 0 limit. This is schematically shown in Fig. 9, where four
kinds of spins diluted with nonmagnetic Y are frozen in a SG
configuration within one hexagonal layer of a hcp lattice. Since
this potential is distributed in strength over the lattice sites, the
spins freeze gradually upon cooling, which is evidenced from
the frequency-dependent freezing temperature Tf (ν) observed

FIG. 9. (Color online) Schematic representation of low-
temperature SG order within one hexagonal layer of the hcp lattice of
Ho-Dy-Y-Gd-Tb HEA. Magnetic moments of Gd, Tb, Dy, and Ho
ions are drawn by arrows of different colors, and the length of the
arrow is proportional to the size of the moment. Nonmagnetic Y
ions are presented by black dots. All five elements are in equimolar
concentrations.

in the ac susceptibility and the linear-in-T magnetic specific
heat. The spin system in the Ho-Dy-Y-Gd-Tb HEA thus under-
goes a gradual spin-freezing transition to a nonergodic state,
where the spectrum of correlation times for spin reorientations
is broad, extending from short times up to macroscopic times
that are much longer than the frequency observation window of
any experimental measurement technique. Such spin freezing
is observed in SGs and superparamagnets below the freezing
(blocking) temperature, where the two kinds of systems are
usually difficult to distinguish experimentally [19]. While spin
freezing in SGs is a collective phenomenon in a system of
exchange-coupled spins, the spins or spin clusters in super-
paramagnets are uncoupled and their orientations with respect
to the crystal lattice are determined by the magnetic anisotropy
energy provided by the single-ion CF interaction and by the
magnetic dipolar interaction. The value of the fractional shift
of freezing temperature per decade of frequency 	 = 0.057
determined from the ac susceptibility of Ho-Dy-Y-Gd-Tb HEA
is in the range found for SGs (for superparamagnets, the
	 values are typically one order of magnitude larger) [16],
which is a hint that the broken-ergodicity state formed below
Tf ≈ 7 K in the zero external magnetic field is a collective SG
state. The critical field Hc1 (where the randomly frozen spins
start to rotate into the external field direction) and the M(H )
hysteresis increase strongly upon lowering the temperature
below 20 K, which suggests that effective interspin interactions
strengthen on cooling (as a result of a decreasing thermal
energy kBT that opposes the exchange interaction), also in
favor of a collective SG state. However, the discontinuous
field-induced metamagnetic transition to an unidentified state
observed at μ0Hc1 = 0.93 T in the virgin M(H ) curve at
T = 2 K [inset in Fig. 4(d)] demonstrates that the magnetic
structure in an external field is more complicated than for
a canonical SG. Such a transition is a result of competing
interspin interactions and the Zeeman interaction, which is
again in favor of a collective SG state. It is thus reasonable to
assume that the low-temperature broken-ergodicity magnetic
state of the Ho-Dy-Y-Gd-Tb HEA formed in zero field is a SG
state. In the following, we consider whether the properties of
this state are similar to other known SG systems or whether it
represents a new, unconventional type of SG state specific to
HEA systems.

According to the standard definition, [19] a SG is char-
acterized by two fundamental properties: (1) frustration (the
interaction between spins is such that no configuration can
simultaneously satisfy all bonds and minimize the energy at
the same time) and (2) randomness (the spins are positioned
randomly in the sample). The spin systems involving frus-
tration and randomness are known as “site-disordered” SGs,
and their prototypes are canonical SGs: dilute magnetic alloys
of a noble metal host (Cu, Ag, Au) and a magnetic impurity
(Fe, Mn). In canonical SGs, the interaction between spins is
the conduction electrons mediated Ruderman-Kittel-Kasuya-
Yosida (RKKY) indirect exchange interaction. This interaction
oscillates in space and can be either FM or AFM, depending on
the distance between the spins. Combined with randomness,
the RKKY interaction results in frustration. Frustration and
randomness lead to a highly degenerate free-energy landscape
with a distribution of barriers between metastable states,
resulting in broken ergodicity below the frequency-dependent
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spin freezing temperature Tf (ν) [28]. The SG phases with
similar broken-ergodicity properties also develop in pure (i.e.,
site-ordered) systems without quenched disorder. These are
geometrically frustrated antiferromagnets with kagomé and
pyrochlore lattices, where triangular or tetrahedral distribution
of nearest-neighbor AFM-coupled spins frustrates an ordered
periodic system [29–32]. These systems are known as “topo-
logical” or “geometrically-frustrated” SGs and again exhibit a
spin-freezing transition at Tf (ν). The Ho-Dy-Y-Gd-Tb HEA
contains both randomness and frustration, and the interaction
between the spins is the RKKY indirect exchange. While in a
canonical SG the spins are diluted in a nonmagnetic matrix, the
situation is opposite in the Ho-Dy-Y-Gd-Tb, where the spins
are abundant and only weakly diluted with nonmagnetic Y
(Fig. 9). Randomness there occurs due to random distribution
of four kinds of spins over the lattice sites and their dilution by
the Y ions. Each spin in the Ho-Dy-Y-Gd-Tb HEA thus faces
many nearest-neighbor spins with which it interacts strongly
due to their proximity in space. Random distribution of spins
within the first coordination sphere of each ion introduces
a distribution of the exchange coupling constants over the
lattice sites, which results in frustration of the bonds due
to the site-disorder effect. Since in a hcp lattice the spins
are positioned on triangles, the triangular distribution adds a
geometric frustration. The SG phase in the Ho-Dy-Y-Gd-Tb
HEA thus shares properties of both the site-disordered and
the geometrically frustrated site-ordered systems. Due to
high abundance of large spins on the lattice, the interspin
interactions are considerably stronger than in the spin-diluted
canonical SGs. In combination with the thermal energy that
opposes spin ordering, this results in a rich variety of collective
magnetic states in the (H,T ) phase diagram. Due to the
enormous chemical (substitutional) disorder, a theoretical
description of such a system remains a challenge.

V. CONCLUSIONS

The preceding experimental results and discussion can be
summarized as follows:

(1) Our paper presents the determination of intrinsic
physical properties of a HEA, a consequence of classifying
the investigated hexagonal Ho-Dy-Y-Gd-Tb as an ideal HEA.
The ideality arises from the mutual mixing enthalpies of any
pair of the employed RE elements being zero, so mixing
of five elements on the lattice is random and the phase is
homogeneous and thermodynamically stable down to zero
temperature. All other known HEAs (composed exclusively
of transition elements and forming bcc and fcc lattices)
belong to the class of real HEAs, where the nonzero mixing
enthalpies of the elements cause nonrandom mixing, which
results in the formation of precipitates of intermetallic phases
and dendrites (phase segregation). Physical properties of such
highly inhomogeneous and metastable systems are not the
intrinsic properties of a HEA.

(2) While investigations of HEAs with bcc and fcc
structures are numerous [3], hexagonal HEAs were discovered
only in 2014. Existing papers [4,5] report synthesis and
characterization by electron microscopy but no physical,
chemical, or mechanical properties. Our paper presents the
investigation of physical properties of a hexagonal HEA.

(3) The Ho-Dy-Y-Gd-Tb HEA is characterized by an
almost undistorted hcp lattice with an enormous chemical
(substitutional) disorder. The system can be called “metallic
glass on an ordered lattice,” possessing the properties of
amorphous metallic glasses and ordered crystals at the same
time. Physical properties of such a dual system represent a new
challenge in solid state physics, both theoretical and experi-
mental. Our results show that the properties are unprecedented
and highly nontrivial. A magnetic field-temperature phase
diagram contains both long-range ordered periodic magnetic
structures as expected for an ordered system and SG-type
disordered structure as expected for a random system. The
external magnetic field induces additional magnetic phase
transitions in various temperature ranges, some continuous
and others discontinuous. There is a question as to how to
explain such richness of magnetic phases by a single model.
In view of the enormous substitutional disorder on an ordered
lattice, involving five randomly distributed chemical elements,
construction of an appropriate Hamiltonian seems to be an
extreme challenge. Thinking in terms of different SG-type
models (e.g., a canonical SG or a cluster-glass blocking
model) is oversimplified, as it cannot give a transition from
a long-range ordered periodic magnetic structure to a SG-type
random structure. The best one can do is to present carefully
conducted experiments, hoping that theorists will gain enough
experimental information to start constructing the Hamiltonian
that will reproduce most of the experimental findings (and
especially the aforementioned transition from the long-range
periodic magnetic order to a SG-type disorder).

(4) The investigated hexagonal Ho-Dy-Y-Gd-Tb HEA
exhibits a rich and complex (H,T ) phase diagram as a result
of competition among the periodic potential arising from
the electronic band structure that favors periodic magnetic
ordering, the disorder-induced local random potential that
favors SG-type spin freezing in random directions, the Zeeman
interaction with the external field that favors spin alignment
along the field direction, and the thermal agitation that opposes
any spin ordering. Though the Ho-Dy-Y-Gd-Tb HEA is the
only investigated hexagonal RE-based HEA, it is likely that
the specific SG phase found in this alloy at low temperatures
is common to the class of hexagonal RE-based HEAs, occur-
ring due to strongly interacting abundant spins of different
magnitudes, positioned randomly on triangles in the hcp
lattice, where frustration of the interspin interactions occurs
from both the substitutional disorder and the geometrical
effect. Here, it is essential that the Ho-Dy-Y-Gd-Tb HEA
belongs to the class of ideal HEAs (�Hmix = 0), which
assures random mixing of the elements on the lattice, so the
condition of randomness for the creation of a SG phase is
fulfilled. In real HEAs with �Hmix �= 0, such as in the bcc
and fcc HEAs composed of magnetic transition metals Mn,
Co, Fe, Ni, and Cr, mixing of the elements is in principle
not random (preferential local chemical environments are
expected to form, at least in HEA samples that were thermally
annealed at high temperatures), so the condition of “perfect”
randomness fails. Geometric frustration is also not present
in a lattice of bcc or fcc symmetry, so the formation of
a SG phase in real HEAs with this kind of structure is
questionable (and has not been reported in the literature so far).
It can be expected that hexagonal HEAs based on different
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combinations of RE elements from the lanthanide series
with variable concentrations will constitute an inexhaustible
source of alloys with rich (H,T ) phase diagrams comprising
conventional and exotic magnetically ordered and disordered
phases.

(5) Our employed term of “random pinning potential” for a
qualitative discussion is a kind of “emergency exit” in the lack

of a proper microscopic model. The same term has been used
by Nayak et al. [33] for the description of complex magnetism
of intrinsically disordered Heusler compound Mn2PtGa, where
the phase diagram shows ferrimagnetic, AFM, and SG phases.
The RKKY interaction is certainly the underlying interaction,
but how should it be handled for such a highly chemically
disordered system?
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