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First-principles modeling of three-body interactions in highly compressed solid helium
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We present a set of three-body interaction models based on the Slater-Kirkwood (SK) potential that are
suitable for the study of the energy, structural, and elastic properties of solid 4He at high pressure. Our effective
three-body potentials are obtained from the fit to total energies and atomic forces computed with the van der
Waals density functional theory method due to Grimme, and represent an improvement with respect to previously
reported three-body interaction models. In particular, we show that some of the introduced SK three-body
potentials reproduce closely the experimental equation of state and bulk modulus of solid helium up to a pressure
of ∼60 GPa, when used in combination with standard pairwise interaction models in diffusion Monte Carlo
simulations. Importantly, we find that recent predictions reporting a surprisingly small variation of the kinetic
energy and Lindeman ratio on quantum crystals under increasing pressure are likely to be artifacts deriving from
the use of incomplete interaction models. Also, we show that the experimental variation of the shear modulus,
C44, at pressures 0 � P � 25 GPa can be quantitatively described by our set of SK three-body potentials. At
higher compression, however, the agreement between our C44 calculations and experiments deteriorates and thus
we argue that higher order many-body terms in the expansion of the atomic interactions probably are necessary
in order to better describe elasticity in very dense solid 4He.
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I. INTRODUCTION

The electronic structure of a single 4He atom is among
the simplest in the periodic table of elements. Likewise,
the atomic interactions in liquid and solid helium can be
reproduced accurately with simple analytical functions that
solely depend on the distance between particles taken in
pairs. Examples of successful 4He-4He interaction models
include the Lennard-Jones and Aziz-type semiempirical po-
tentials [1–3]. Yet, under conditions of large pressures and
strain deformations the interparticle interactions become more
complex due to the strong electronic repulsion experienced by
neighboring atoms. Consequently, pairwise potentials, which
work reasonably well under near-equilibrium conditions, turn
out to be unreliable. This is, for instance, the case of the Aziz-II
potential [3], which at high pressure provides too repulsive
atomic forces and a significant overestimation of the 4He molar
volume and bulk modulus [4].

A recently proposed straightforward way to correct for such
modeling drawbacks consists in modifying the repulsive part
of standard pairwise potentials by means of an exponential
attenuation factor [5]. This possibility has already been
explored in highly compressed solid 4He [6] and molecular
hydrogen [7] with quantum Monte Carlo simulations, pro-
ducing equations of state which are in very good agreement
with experiments. Nevertheless, the use of modified pairwise
potentials in very dense crystals poses a series of issues and
open questions. For instance, a surprisingly small variation of
the kinetic energy upon increasing pressure have been reported
in Refs. [6] and [7], and, owing to the lack of experimental
data in the thermodynamic regime of interest, it remains to be
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demonstrated whether such predictions can be fully ascribed
to genuine quantum nuclear effects. Also, pairwise potentials
are in general not recommended for the study of elasticity in
hcp crystals at high pressure since they inevitably lead to null
values of the Cauchy discrepancy (defined as the difference
between the two elastic constants C12 and C44), in contrast to
what is observed in experiments [8–11].

An alternative route to improve the description of quantum
solids under extreme stress-strain conditions is to consider
higher order terms, beyond pairwise additivity, in the approxi-
mation to the atomic interactions. In this context, several three-
body interatomic models have already been proposed, such
as the Axilrod-Teller (AT), Bruch-McGee (BM), and Cohen-
Murrel (CM) potentials [2,12,13]. However, improvements
resulting from the use of these three-body interaction models
so far have been reported to be only marginal. For instance,
three decades ago Loubeyre claimed, based on the outcomes of
self-consistent phonon and classical Monte Carlo simulations,
that the three-body BM interaction could bring into good
agreement calculations and experiments performed on the
equation of state of solid helium up to ∼60 GPa [14]. However,
Chang et al. [15] have shown more recently that when
either the BM or CM three-body potentials are considered
in quantum Monte Carlo simulations the resulting 4He molar
volumes are significantly underestimated, already at a few
GPa. Similar discouraging results have been reported also
by other authors who have employed analogous three-body
interaction models [16–18].

In this article, we present work done on the modeling of
three-body interactions in highly compressed solid helium up
to pressures of ∼160 GPa. We introduce a set of effective
potentials based on the Slater-Kirkwood (SK) function [12]
that are obtained from the fits to ab initio energies and atomic
forces calculated with the van der Waals corrected density
functional theory method due to Grimme (DFT-D2) [19].
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We show that an overall improved description of the energy,
elastic, and structural properties of solid helium can be
achieved with some of the introduced SK three-body inter-
atomic potentials, when used in combination with pairwise
potentials in quantum Monte Carlo simulations. Our work
also brings new insight into the physics of quantum crystals at
high pressure. For instance, we show that previously reported
small variations of the kinetic energy, Ek , and Lindeman ratio,
γ , in solid helium under pressure [6] are likely to be artifacts
deriving from the use of incomplete atomic interaction models.
Moreover, we quantify the role of quantum nuclear effects
on the estimation of the shear modulus, C44, and conclude
that they become secondary when pressure is raised. Finally,
at P ∼ 25 GPa we find that the agreement between our C44

results and experiments starts to worsen. Therefore, we argue
that higher order many-body terms in the expansion of the
atomic interactions probably are necessary in order to describe
elasticity in dense solid helium more accurately.

The organization of this article is as follows. In the next
section, we outline the employed computational methods and
provide the technical details in our calculations. In Sec. III,
we explain the fitting strategy that we have followed to obtain
our set of effective three-body interaction models. Next, we
present our results on the equation of state, kinetic energy, and
structural and elastic properties in solid helium, together with
some discussion. Finally, we summarize our main findings in
Sec. V.

II. COMPUTATIONAL METHODS

We used the density functional theory method including
van der Waals corrections due to Grimme [19] to compute the
interactions and forces between helium atoms in the hexagonal
close package (hcp) crystal structure, from equilibrium up
to a pressure of ∼160 GPa. The details of our ab initio
DFT-D2 calculations can be found elsewhere [6]; hence we
highlight here only the main technical features. We must
note that despite that other more advanced methods than
the DFT-D2 approach could in principle provide a more
accurate description of the van der Waals forces [20,21], recent
DFT-D2 calculations on the equation of state and bulk modulus
in highly compressed helium have demonstrated very good
agreement with the experiments (that is, essentially due to the
secondary role played by the long-range dispersive interactions
at high pressure) [6]. For our present fitting potential purposes,
therefore, the DFT-D2 method can be regarded as fairly
adequate, as will be further demonstrated in Sec. IV.

We found several effective three-body interaction models
based on the Slater-Kirkwood (SK) potential [12] that, when
used in combination with the pairwise Aziz-II potential [3]
(hereafter denoted as V2), reproduced very closely the ob-
tained DFT-D2 results. The details of our fitting strategy are
comprehensively explained in Sec. III. We must acknowledge
that implicit in our modeling strategy is a certain arbitrariness
in the definition of the atomic three-body forces. Actually, we
assume here that the two-body interactions in solid helium
are completely described by the Aziz-II potential [3] and that
anything that is missing in it, as deduced from the comparison
to the DFT-D2 results, can be regarded as “three-body.”
In order to exactly determine the form and magnitude of

the three-body interactions in the crystal, one should rather per-
form a series of intensive ab initio supermolecular calculations
involving a large number of dimer and trimer configurations
(see, for instance, works [22] and [23] by Cencek et al.).
Following such a sophisticated quantum chemistry approach,
however, is out of the scope of the present work. In order
to avoid possible misunderstandings on this point, we will
refer to the set of introduced SK parametrizations as effective
three-body potentials throughout the text.

Finally, we performed diffusion Monte Carlo (DMC)
calculations in which our effective three-body interaction
models were employed to estimate the energy, structural, and
elastic properties of solid helium under pressure. Next, we
explain the specific implementation of the DFT-D2 and DMC
methods in our work.

A. Density functional theory

We chose the generalized gradient approximation to density
functional theory proposed by Perdew, Burke, and Ernzerhof
(GGA-PBE) [24], as implemented in the VASP package [25].
Van der Waals interactions were taken into account by adding
an attractive energy term to the exchange-correlation energy
of the form Edisp = −∑

i,j C6/r6
ij (where indexes i and j

label different particles, C6 is a constant, and a damping
factor is introduced at short distances to avoid divergences)
[19–21]. The projector-augmented-wave technique [26,27]
was employed to represent the core electrons since this
approach has been shown to provide very accurate total
energies and is computationally very efficient [28,29]. The
electronic wave functions were represented in a plane-wave
basis truncated at 500 eV, and for integrations within the
first Brillouin zone (BZ) we employed dense �-centered
k-point grids of 14 × 14 × 14. By using these parameters we
obtained interaction energies that were converged to within
5 K per atom. Geometry relaxations were performed by
using a conjugate-gradient algorithm that kept the volume
of the unit cell fixed and permitted variations of its shape.
The imposed tolerance on the atomic forces was 0.005 eV
Å−1. With such a DFT-D2 setup we calculated the total
energy and shear modulus in solid 4He in the volume interval
3 � V � 16 Å3/atom.

Additionally, we computed the vibrational phonon spec-
trum in solid 4He at eight different volumes by means of the
“direct approach.” In the direct approach the force-constant
matrix is directly calculated in real space by considering
the proportionality between atomic displacements and forces
when the former are sufficiently small [30–32]. In this case,
large supercells have to be simulated in order to guarantee
that the elements of the force-constant matrix have all fallen
off to negligible values at their boundaries, a condition that
follows from the use of periodic boundary conditions [33].
Once the force-constant matrix is obtained, we Fourier-
transform it to obtain the phonon spectrum at any q point.
The quantities with respect to which our DFT-D2 phonon
calculations need to be converged are the size of the supercell
and atomic displacements, and the numerical accuracy in the
atomic forces. The following settings were found to fulfill
our convergence requirement of correct zero-point energy
corrections to within 5 K/atom [6,30]: 4 × 4 × 3 supercells
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(that is, 48 repetitions of the hcp unit cell containing a total
of 96 atoms), and atomic displacements of 0.02 Å. Regarding
the calculation of the atomic forces with VASP, we found
that the density of k points had to be increased slightly with
respect to the value used in the energy calculations (i.e., from
14 × 14 × 14 to 16 × 16 × 16) and that computation of the
nonlocal parts of the pseudopotential contributions needed to
be performed in reciprocal, rather than real, space.

B. Diffusion Monte Carlo

In our DMC simulations, we used a guiding wave function,
�SNJ, that accounts simultaneously for the atomic periodicity
and Bose-Einstein quantum symmetry in 4He crystals. This
model wave function is expressed as [34]

�SNJ(r1, . . . ,rN ) =
N∏

i<j

f (rij )
N∏

J=1

(
N∑

i=1

g(riJ )

)
, (1)

where indexes {i,j} and J run over particles and perfect
lattice positions, respectively. In previous works we have
shown that �SNJ provides an excellent description of the
ground-state properties of bulk hcp 4He and other similar
quantum systems [34–37]. The correlation factors in Eq. (1)
were expressed in the McMillan, f (r) = exp[−1/2(b/r)5],
and Gaussian, g(r) = exp[−1/2(ar2)], forms. Parameters a

and b were optimized at each density point by using the
variational Monte Carlo (VMC) method. For instance, at
ρ = 0.06 Å−3 we obtained b = 2.94 Å and a = 3.21 Å−2, and
at ρ = 0.33 Å−3, b = 1.84 Å and a = 29.08 Å−2. We note that
our choice of the guiding function was motivated by an interest
in studying the possible effects of quantum atomic exchanges
on the energetic and elastic properties of dense helium.
Nevertheless, we realized through the direct comparison to
results obtained with nonsymmetric wave function models in
analogous DMC simulations [6] that such effects can be totally
neglected in practice.

The technical parameters in our calculations were set to
ensure convergence of the total energy per particle to less
than 0.5% of its value. The average population of walkers
was 103 and the length of the imaginary time step (�τ ) 10−4

K−1 (the adequacy of these settings for the study of highly
compressed quantum crystals has already been demonstrated
in Ref. [6]; see Fig. 3 therein). We used simulation cells
containing 180 atoms. Numerical bias stemming from the
finite size of the simulation box were minimized by following
the variational correction approach explained in Refs. [4]
and [6]. Statistics were accumulated over 105 DMC steps
performed after system equilibration, and the approximation
used for the short-time Green’s function, e−Ĥ τ , was accurate
to second order in �τ [2,38]. The computational strategy that
we followed to calculate the shear modulus C44 is the same as
explained in Refs. [39–41].

III. FITTING STRATEGY AND THE EFFECTIVE
THREE-BODY POTENTIAL

Our three-body potential matching algorithm [42–44] is
based on a least-squares fit to the DFT-D2 reference data,
which consists of total energies and atomic forces. The

objective function to be minimized is given by

χ2 = ωE ×
N∑
i

(
EFF

i − EDFT
i

)2

∑N
j

(
EDFT

j − 〈EDFT〉)2

+ωF ×
N∑
i

∑n,3
l,α

(
F FF

lα,i − F DFT
lα,i

)2

∑n,3,N
l,α,j

(
F DFT

lα,j − 〈F DFT〉)2 , (2)

where N = 16 is the number of reference configurations,
n = 96 the number of particles on each configuration, and
ωE and ωF a weight assigned to the energy, E, and force,
F , contributions to χ2, respectively. With this definition of
the objective function we ensure that despite that different
magnitudes are expressed in different units all them are
normalized and contribute equally to χ2. Subscripts “DFT”
and “FF” refer to the DFT-D2 and classical potential results,
respectively.

The set of reference configurations in our fit comprised
the 16 structures used in the calculation of the 4He vibrational
phonon spectra in the interval 3 � V � 16 Å3/atom by means
of the “direct approach” (see Sec. II A) [30–32]. These
atomic arrangements were generated by taking the relaxed
hcp lattice supercells (P 63/mmc, space group 194) at 8
different volumes and displacing one of the atoms sitting
in an inequivalent d Wyckoff position a distance of 0.02 Å
first along the 1

2 x̂ −
√

3
2 ŷ direction (where x̂,ŷ,ẑ represent

the normalized Cartesian vectors), and then along ẑ (that
is, we created two different atomic configurations at each
volume). The reason for our choice was that we wanted to
reproduce simultaneously the energy and elastic properties in
highly compressed solid 4He. In fact, the atomic forces are
defined as minus the first derivative of the total energy with
respect to the atomic positions, whereas the elastic constants
involve the second derivative of the total energy with respect
to strain deformations. In spite of this apparent disconnection,
atomic forces and elastic constants are indirectly related by the
corresponding spectrum of vibrational phonon frequencies.
Namely, on one side, phonons can be calculated from the
variation of the atomic forces upon the displacement of atoms
away from their equilibrium positions, and, on the other side,
elastic constants can be estimated from the slope of specific
acoustic branches in the vicinity of the � point in reciprocal
space (that is, in the q → 0 limit). Therefore, even though we
did not explicitly consider second derivatives in our definition
of the objective function χ2, we expected to achieve an
acceptable description of elasticity in solid helium. We shall
come back to this point later on this section.

The classical potential adopted in this study, denoted
as “FF” in Eq. (2), is given by Upot = V2 + V3, where V2

represents the pairwise Aziz-II interaction model [3] and V3

the three-body Slater-Kirkwood (SK) potential function given
by [12]

V3(rij ,rik,rjk) =
[

ν

r3
ij r

3
ikr

3
jk

− A exp (−α[rij + rik + rjk])

]

×(1 + 3 cos φi cos φj cos φk), (3)

where rij = |ri − rj |, and φi , φj , and φk are the interior angles
of the triangle formed by the atoms labeled i, j , and k. V3

is an attractive potential term representing triple dipole and
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TABLE I. Three-body potential parameters of the original Bruch-
McGee model, V3(BM), and the SK effective potentials introduced in
the present work. The V3(SK-E) parametrization has been obtained by
considering exclusively DFT-D2 energies on the fit [ωE = 1, ωF =
0], the V3(SK-F) the atomic forces [ωE = 0, ωF = 1], and V3(SK-EF)
a combination of ab initio energies and atomic forces [ωE = 0.5,
ωF = 0.5] (see text). It is noted that σ ≡ 2.556 Å.

ν (K σ 9) A (K) α (σ−1)

V3(BM) [12] 0.3270 9676545.53 4.9480
V3(SK-E) −0.4910 14754161.38 5.6128
V3(SK-F) 1.4029 12863029.73 5.8273
V3(SK-EF) −1.1364 29189436.37 6.0691

three-body exchange interactions. Parameters ν, A, and α

were varied during the minimization of the objective function
χ2 [see Eq. (2)]. For this, we used a quadratic polynomial
interpolation line search with the directions found using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [45].
The gradient of the objective function was calculated analyti-
cally since otherwise numerical bias developed that impeded
convergence. Actually, the typical size of the involved atomic
forces is very small, of the order of 0.01–0.1 eV/Å; hence
they needed to be calculated very precisely. The minimizations
were stopped when all the gradients of the objective function
in absolute value were smaller than 10−5. Typically, this was
achieved within ∼100 minimization loops when starting from
a reasonable initial guess of the ν, A, and α parameters (e.g.,
the original values proposed by Bruch and McGee [12]).

Table I shows the values of the parameters obtained in our
V3 fits, in which we considered three different possibilities
based on the choice of the relative energy and forces weights:
(1) ωE = 1 and ωF = 0, hereafter denoted as V3(SK-E),
(2) ωE = 0 and ωF = 1, V3(SK-F), and (3) ωE = 0.5 and
ωF = 0.5, V3(SK-EF). Our results differ appreciably from
the original values proposed by Brunch and McGee [which
hereafter are denoted as V3(BM)]. For instance, ν becomes
negative when the energies are taken into account in the fit,
and A and α systematically turn out to be larger.

In Fig. 1, we demonstrate the quality of our fits by
plotting the energies and forces calculated on each reference
configuration. For comparison purposes, we also enclose the
results obtained with the original V3(BM) potential (i.e.,
with the potential function Upot = V2 + V3). For the sake of
simplifying the notation, we only indicate the three-body part
in the corresponding effective potential. This convention will
be adopted throughout the text if not stated otherwise. As is
appreciated in the figure, V3(SK-E) reproduces the DFT-D2
energies more closely than any other model (as expected)
whereas V3(BM) provides the worst description. The energies
obtained with the V3(SK-EF) potential can be regarded also as
fairly good. As for the atomic forces, V3(SK-F) produces the
best results, as expected, and V3(BM), again, turns out to be
the less reliable. In this latter case, the forces obtained with
the V3(SK-EF) and, surprisingly also, V3(SK-E) potentials are
not too distant from the reference DFT-D2 data.

Figure 2 shows the vibrational phonon spectra obtained
with the DFT-D2 method and the V3(SK-F) potential in solid
4He at the smallest considered volume (i.e., V = 3.0 Å3/atom,
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FIG. 1. (Color online) Top: Energy differences between the DFT-
D2 method and V3 potentials calculated on a reference set of 16
configurations (see text). Details are magnified in the inset. Bottom:
Results of our fit obtained in the case of the atomic forces. �F

stands for the difference in the atomic forces between the DFT-D2
method and many-body potentials, δF for the variance of the atomic
forces computed with the DFT-D2 method, and 〈· · · 〉 for the average
performed over particles and Cartesian components.

which probably is the most challenging case to be reproduced
with an effective potential function; see Fig. 1). We note
that the agreement between the two sets of data can be
regarded as fairly good. The largest differences are found
on the optical branches, which correspond to the highest
vibrational frequency values. The DFT-D2 acoustic phonon
modes in the vicinity of the � point, however, are reasonably
well reproduced by V3(SK-F). These outcomes demonstrate
that, as we suggested above, by considering the atomic forces
in the definition of χ2 in principle one can obtain a reasonable
description of elasticity in the reference system.

Finally, we calculated the interaction energy of several
trimer configurations for which the exact ab initio full-
configuration-interaction (FIC) energies have been reported by
Cencek et al. (see Ref. [23]). The trimer configurations consist
of three equilateral triangles of sides l = 3.7042, 2.9634,
and 2.1167 Å, respectively. The interaction energies obtained
with the SK-E, SK-EF, and BM potentials (i.e., by using the
potential function Upot = V2 + V3) and considering the atomic
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FIG. 2. Phonon spectrum calculated with the DFT-D2 method
(dashed lines) and the V2 + V3(SK-F) interaction model (solid lines),
which was determined considering only the atomic forces in the
corresponding fit (see text), at P ∼ 160 GPa. We note that in the
present notation 1 THz is equal to 4.31566554 meV.

positions fixed are enclosed in Table II. As is appreciated
therein, the V3(SK-E) results are in closer agreement with the
FIC benchmarks in the two trimer configurations with larger
side lengths. In those two cases, the V3(SK-E) energies present
the largest discrepancies with respect to the reference results
although these are still reasonably small (i.e., ∼0.6%). In the
trimer configuration with the smallest side length, both the
SK-E and SK-EF potentials overestimate the corresponding
interaction energy by ∼20 K whereas the BM function
underestimates it by approximately the same quantity. This
last outcome is consistent with the results shown in Fig. 1 for
bulk solid helium. Unfortunately, we have not found in the
literature FIC or similar benchmark energy results for helium
trimers with interatomic distances as small as considered in
this work (that is, l ∼ 1.6 Å); hence a further comparative V3

analysis based on the interaction energy of few-body systems
is not possible at the moment.

IV. RESULTS AND DISCUSSION

A. Equation of state

Figure 3 shows the results of our calculations on the
equation of state, P (V ), of solid helium together with the

TABLE II. Interaction energy calculated in different trimer
configurations consisting of equilateral triangles (the corresponding
side lengths are indicated within parentheses). Energies are expressed
in kelvins.

Trimer 1 Trimer 2 Trimer 3
(3.7042 Å) (2.9634 Å) (2.1167 Å)

V3(BM) [12] −13.8298 −33.1717 804.95
V3(SK-E) −13.8642 −33.0898 842.05
V3(SK-EF) −13.8953 −33.2841 843.68
Exact [23] −13.8510 −33.1026 821.44

0

20

40

60

80

100

120

140

160

3 4 5 6 7 8 9 10 11 12 13

P
 (

G
P

a)

V (Å3/atom)

DFT−D2
V2(BC)

V2
V2+V3(BM)

V2+V3(SK−E)
V2+V3(SK−F)

V2+V3(SK−EF)
Experimental

20

40

60

80

4.0 4.5 5.0
20

40

60

80

4.0 4.5 5.0

FIG. 3. (Color online) Zero-temperature equation of state calcu-
lated in helium with the DFT-D2 and DMC methods. In the DMC
case, different pairwise and effective three-body interaction models
have been employed. Experimental data from Ref. [46] are shown
for comparison. Inset: The high-P region in the P (V ) curves are
magnified in order to appreciate better the differences.

experimental data found in Ref. [46]. The DFT-D2 series was
obtained with the ab initio methods described in Sec. II A,
including quantum zero-point energy corrections. The other
results were obtained with the diffusion Monte Carlo (DMC)
method by using several effective interaction models, as
explained in Sec. II B and elsewhere [6]. Labels “V2” and
“V2(BC)” stand respectively for the pairwise potential due
to Aziz [3] and a modified version of the former that we
have recently introduced in Ref. [6]. The DMC (DFT-D2)
calculations were performed at 12 (8) different volumes
spanned in the interval 3 � V � 16 Å3/atom. In each case,
the resulting total energies were fitted to a third-order Birch-
Murnaghan equation of the form [47,48]

E(V ) − E0

= 3

2
V0B0

[
− χ

2

(
V0

V

)2

+ 3

4
(1 + 2χ )

(
V0

V

)(4/3)

− 3

2
(1 + χ )

(
V0

V

)(2/3)

+ 1

2

(
χ + 3

2

)]
, (4)

where B0 = V0
d2E
dV 2 is the value of the bulk modulus at the

equilibrium volume V0, χ = 3
4 (4 − B

′
0) with B

′
0 = (dB0/dP ),

and all the derivatives are calculated at zero pressure. For
reproducibility purposes, we enclose the V0, B0, and B

′
0

parameters obtained in all our fits in Table III.
Very good agreement is obtained between our DFT-D2

results and experiments. This outcome justifies in part our
choice of the DFT-D2 results as reference data in modeling
of the many-body interactions. Likewise, the P (V ) curves
obtained with the V2(BC), V3(SK-E), and V3(SK-EF) poten-
tials are also very close to the observations. We notice that
the V2(BC) model introduced in Ref. [6] was constructed to
reproduce the equation of state calculated with the DFT-D2
method and that the good agreement displayed in Fig. 3 is
not a new result. Contrarily, the V2, V3(BM), and V3(SK-F)
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TABLE III. Parameters corresponding to the fit of our equation of
state results to Birch-Murnaghan functions, see Eq. (4), as obtained
with different computational approaches. In the DMC case, different
pairwise and effective three-body potentials have been considered for
the description of the interatomic forces.

V0 (Å3) B0 (eV/Å3) B
′
0

DFT − D2 12.23 0.0398 3.9648
V2(BC) 15.68 0.0166 4.1144
V2 16.61 0.0115 4.8829
V2 + V3(BM) 15.68 0.0181 3.6722
V2 + V3(SK-E) 15.84 0.0165 4.1854
V2 + V3(SK-F) 16.58 0.0130 4.6709
V2 + V3(SK-EF) 15.85 0.0158 4.2463

potentials provide a poor description of the variation of the
volume under pressure. In particular, we find that the V3(BM)
potential systematically underestimates V at pressures equal
to or larger than 20 GPa, in accordance with previous results
reported by other authors [15,16]. Meanwhile, the V2 and
V3(SK-F) interaction models significantly overestimate the
same quantity at pressures also close to or larger than 20 GPa.
In this latter case, we notice a surprising resemblance between
the two calculated P (V ) curves.

The main conclusion emerging from this part of our study
is that our V3(SK-E) and V3(SK-EF) effective three-body
potentials reproduce very accurately the equation of state
of solid helium up to a pressure of ∼60 GPa (and possibly
beyond). To the best of our knowledge, such a good agreement
between theory and experiments has not been reported before
for any known V3 potential in solid 4He (see Ref. [15]).

B. Kinetic energy

Our kinetic energy, Ek, results are shown in Fig. 4. In our
DFT-D2 calculations, the kinetic energy was estimated within
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FIG. 4. (Color online) Atomic kinetic energy calculated in 4He
with the DFT-D2 and DMC methods and expressed as a function of
pressure. In the DMC case, different pairwise and effective three-body
interaction models have been considered for the description of the
atomic interactions.

the quasiharmonic approximation through the expression

E
qh
k (V ) = 1

Nq

∑
qs

1

2
�ωqs(V ), (5)

where ωqs are the vibrational phonon frequencies in the crystal
calculated at wave vector q and phonon branch s, which
depend on the volume, and Nq the total number of wave
vectors used for integration within the first Brillouin zone (see
Sec. II A and Refs. [6,30]). E

qh
k usually is referred to as the

“zero-point energy” (ZPE) and in many computational studies
turns out to be crucial for predicting accurate solid-solid phase
transitions [31,32,48]. Regarding our DMC calculations, we
computed first the exact potential energy, Ep, by means of the
pure estimator technique [49,50] and subsequently obtained
the exact kinetic energy by subtracting Ep to the corresponding
total energy. In all the cases, spline interpolations were
applied to the calculated data points in order to obtain smooth
P -dependent energy curves (lines in Fig. 4).

As is appreciated in the figure, the DFT-D2 results differ
enormously from the rest of the Ek series obtained with
pairwise and effective three-body potentials in our DMC
simulations. At the highest analyzed pressure, for instance,
the DFT-D2 kinetic energy is a factor of 2 larger than the
obtained DMC value. Given the lack of experimental data in
the thermodynamic regime of interest, we cannot rigorously
conclude which type of calculation is providing the most
realistic description. Nevertheless, we think that the DFT-D2
results are overestimating Ek severely because they have
been obtained using the quasiharmonic approximation. In
fact, it has been already demonstrated that the quasiharmonic
approximation is not appropriate for studying crystals that
behave much more classically than solid helium, such as
molecular hydrogen [51–53], ammonia [54,55], and some
alkali metals [56,57]. It is worth noticing here that although
the quasiharmonic DFT-D2 approach can produce equations of
state that are in very good agreement with experiments (as has
been shown in Sec. IV A), the accompanying ZPE corrections
have a lot of margin for error since at high P these are always
several orders of magnitude smaller than the energy of the
perfect crystal lattice. We shall comment again on this point
in the next paragraph.

It is interesting to analyze the differences found between the
(full quantum) DMC results obtained with different pairwise
and effective three-body potential models. The V2(BC) curve
shows a plateau around 550 K at pressures equal to and
beyond ∼80 GPa. In a recent work [6] we identified such an
infinitesimal variation in the kinetic energy with the presence
of extreme quantum nuclear effects. However, calculations
performed with our set of effective three-body potentials
introduced in this work bring new light into our previous
interpretation of the V2(BC) results. As is observed in Fig. 4,
the V3(SK-E), V3(SK-F), and V3(SK-EF) curves consistently
display a small but steady increase in the kinetic energy
under compression. At pressures below ∼15 GPa the pairwise
and effective three-body interaction models roughly provide
equivalent Ek results; however at P = 160 GPa the differences
between them are as large as ∼300 K, with the V3 potentials
providing always the largest values. Several conclusions can be
drawn from these results. First, although attenuated pairwise
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potentials based on exponential prefactors [5] can fairly
reproduce experimental P (V ) data [6,7], they are likely to
introduce unwanted bias on the calculation of the kinetic
energy. And second, the large Ek discrepancies observed
between the DFT-D2 and V3 results do not seem to be
originated by the absence of four-, five-, and so on many-body
interactions in the DMC calculations. Actually, by comparing
the energy curves obtained in the V2 and V2 + V3 cases one
realizes that the effect of considering effective three-body
interactions on Ek is rather small [only in the V3(BM) case
are those effects not negligible, although certainly minor].
Therefore, it is reasonable to expect similar trends when
eventually one would add higher order many-body terms in
the description of the atomic interactions. In regard to this last
point, we notice that one of the main conclusions presented
in Ref. [6], namely that the quasiharmonic DFT approach
exceedingly overestimates Ek in dense 4He, appears to be
valid.

C. Structural properties

An analysis of the atomic structure in solid 4He at high
pressure will allow us to understand better the origins of
the discrepancies found so far between the V2(BC) and V3

potentials. Figure 5 shows the atomic density profiles, μ(r),
and Lindeman ratio, γ , calculated using the DMC method
and several atomic interaction models. The μ(r) results (see
top panel) were obtained at volume V = 3.0 Å3/atom and
subsequently were fitted to Gaussian functions (solid lines
in the figure). As is observed there, the V2(BC) curve is
noticeably broader than all the others, and its value at the
origin is about 50% of that calculated with the V3(BM)
potential. Meanwhile, the V3(SK-E) and V3(SK-EF) profiles
are practically indistinguishable and slightly higher near zero
than the one obtained in the V3(BM) case. Clearly, the V2(BC)
potential produces a much larger atomic delocalization than
the rest of interaction models, which is consistent with the
kinetic energy results explained in the previous section.

As for the Lindeman ratio γ (see bottom panel in Fig. 5),
we have estimated the corresponding dependence on pressure
for each analyzed potential. In the DFT-D2 case, γ was
computed within the quasiharmonic approximation using the
formula 9�

2/8mHeE
qh
k ; see Eq. (5) and Refs. [35,58]. The

results obtained in the V2(BC) case are already known: a
plateau around 0.10 appears at pressures larger than ∼80 GPa
[6]. However, all the other interaction models, including V2

and V3(BM), provide much smaller values of γ at similar
conditions. Moreover, the computed Lindeman ratio curves
get depleted when compression is raised [with the exception
of V3(BM), in which γ saturates around 0.08 at pressures
larger than ∼50 GPa]. This latter trend is also observed in
the DFT-D2 series, which systematically lies below the DMC
predictions.

The results presented in this section show that the V2(BC)
potential produces an unusually large delocalization of the
atoms, which is at odds with the trends realized in the rest of
the cases. Such a huge particle dispersion effect is responsible
for the flat kinetic energy curve appearing in Fig. 4, which is
likely to be an artifact deriving from the use of exponential
attenuation factors at short distances.
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FIG. 5. (Color online) Top: Atomic density profile around the
perfect lattice positions calculated with the DMC method considering
different pairwise and effective three-body interaction models (V =
3.0 Å3/atom). Solid lines correspond to Gaussian curves fitted to the
results. The corresponding tails are magnified in the inset in order to
better appreciate the differences. Bottom: Lindeman ratio calculated
in solid 4He with the DFT-D2 and DMC methods, expressed as a
function of pressure.

D. Elastic properties

In Figs. 6 and 7, we show the bulk and shear moduli,
B and C44, respectively, calculated in solid helium under
pressure. The bulk modulus was directly obtained from the
Birch-Murnaghan fits explained in Sec. IV A, and in the C44

case spline interpolations were applied to the calculated data
points in order to obtain smooth V -dependent curves.

Concerning the analysis of our B(V ) results, this is very
similar to the conclusions presented for the equation of state
in Sec. IV A. Essentially, the DFT-D2, V2(BC), V3(SK-E), and
V3(SK-EF) curves are in good agreement with experiments
whereas the V2, V3(SK-F), and V3(BM) curves are not. In this
latter case, both V2 and V3(SK-F) series are very similar and
significantly overestimate the bulk modulus at small volumes.
Likewise, the V3(BM) potential provides unrealistically small
values of B(V ) at large densities.

Let us now comment on the C44(V ) results shown in
Fig. 7. All the values have been obtained considering the
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FIG. 6. (Color online) Calculated bulk modulus in 4He using the
DFT-D2 and DMC methods and expressed as a function of volume. In
the DMC case, different pairwise and effective three-body interaction
models have been considered. Experimental data from work [11] are
shown for comparison. Inset: The high-P region in the B(P ) curves
is magnified in order to appreciate better the differences.

atoms fixed on their perfect lattice positions, that is, totally
neglecting likely quantum nuclear effects (hence the employed
superscript). This is done for the sake of comparison since it
is technically difficult to account for quantum nuclear effects
in the DFT-D2 calculations in an exact manner, that is, to
go beyond the quasiharmonic approximation. Nevertheless,
later in this section we will show that according to our DMC
simulations quantum nuclear effects become secondary on C44

at high pressure. As is observed in the figure, the DFT-D2 curve
is in overall good agreement with the ambient temperature
measurements performed by Zha and collaborators [11].
Again, these findings justify our choice of the benchmark
data for the modeling of effective three-body interactions.
Regarding the performance of the original three-body BM and
our SK potentials, we find that in general they reproduce quite
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FIG. 7. (Color online) Calculated shear modulus in 4He using
the DFT-D2 method and several force fields considering the atoms
immobile in the perfect lattice positions. Experimental data are from
work [11].

satisfactorily the experimental data obtained at volumes larger
than ∼5.5 Å3/atom (i.e., P � 25 GPa). This is especially
true in the V3(SK-F) case where, as expected (see Sec. III),
the calculated shear moduli follow closely those obtained
with the DFT-D2 method. However, at volumes smaller than
∼5.5 Å3/atom (i.e., P � 25 GPa) we find that the differences
between the SK curves [including the V3(SK-F) case], on one
side, and the DFT-D2 results and experiments, on the other,
become increasingly larger. We recall that the V3(SK-E) and
V3(SK-EF) potentials provide a very good description of the
equation of state and bulk modulus, whereas the V3(SK-F)
potential does not. This appreciation lets us to conclude that
is very difficult to provide simultaneously a good account of
the energy and elastic properties in solid helium by using
an effective three-body approach. Higher order many-body
contributions in the description of the atomic interactions
probably are necessary in order to attain an overall correct
description of solid helium at high pressure. As for the pairwise
potentials, V2 performs very similarly to the V3(SK-F) model,
as we have also noted in the total energy (see Sec. IV A) and
bulk modulus cases. The V2(BC) model, however, remarkably
fails in reproducing the variation of the shear modulus under
pressure. Moreover, it predicts the occurrence of unrealistic
mechanical instabilities (i.e., dC44/dV ≈ 0) [59,60] at small
volumes. Therefore, the use of the V2(BC) potential is strongly
not recommended for the simulation of solid helium at high
pressure.

In order to quantify the importance of quantum nuclear
effects on the calculation of the shear modulus, we carried
out additional quantum DMC calculations (see Sec. II B and
Refs. [39–41] for details). To our surprise, we found that the
quantum and classical shear moduli results are very similar.
For instance, in the V3(SK-F) case the Cclassical

44 − C
quantum
44

difference (where superscript “quantum” means calculated
with the DMC method) amounts only to 2 GPa at P ∼ 50 GPa.
Similar results were obtained also in the rest of the V2 and
V3 cases. We note that the sign of the differences is always
positive; thus the inclusion of quantum nuclear effects tends
to lower the classical C44 values, although in a small fraction
(i.e., 
5%). This last finding appears to be consistent with
conclusions presented in a recent quantum Monte Carlo study
by Borda et al. [61], in which the ideal shear strength on the
basal plane of hcp 4He was found to behave analogously to
that in classical solids.

V. CONCLUSIONS

In Table IV we summarize the performance of the analyzed
pairwise and effective three-body potentials in describing the
energy, elastic, and structural properties of solid 4He at high
pressure. A number of tips can be drawn from our results. First
of all, the use of pairwise potentials in general is not recom-
mended. These either fail to reproduce the equation of state and
bulk modulus, i.e., V2, or the kinetic energy and structural and
elastic features, i.e., V2(BC), in highly compressed quantum
crystals. In this context, we urge employing more versatile
many-body interaction models. This is the case, for instance,
with the effective three-body BM potentials introduced in
this work, which represent an improvement with respect to
previously reported similar models. Overall, we recommend
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TABLE IV. Summary of the performance of the pairwise and
effective three-body atomic interaction models analyzed in this
work in describing the energy, structural, and elastic properties
of solid 4He at high pressure. Symbol

√
(×) indicates correct

(incorrect) description of the considered quantity, whereas
√

/×
means quantitatively correct up to a certain pressure. Question mark
“?” denotes a certain hesitation due to lack of experimental data in
the high-pressure regime of interest.

P (V ) B(V ) C44(V ) Ek/γ General performance

V2 [3] × × √
/× √

(?) Not satisfactory
V2(BC) [6]

√ √ × × Not satisfactory
V2 + V3(BM) [12] × × √

/× √
(?) Not satisfactory

V2 + V3(SK-E)
√ √ √

/× √
(?) Overall good

V2 + V3(SK-F) × × √
/× √

(?) Not satisfactory
V2 + V3(SK-EF)

√ √ √
/× √

(?) Overall good

considering the V3(SK-E) and V3(SK-EF) parametrizations in
prospective simulation studies because they provide the most
satisfactory general description of dense solid 4He. Indeed,
these interaction models can be safely employed, for instance,
in atomistic high-P high-T simulations (either classical or
quantum), which are of relevance to planetary sciences.
Nevertheless, we must note that it remains a challenge to

attain a precise description of elasticity at high pressure by
using effective three-body potentials; thus in this latter case
consideration of higher order many-body terms appears to be
necessary.

Importantly, we have shown that the addition of effective
three-body forces corrects for the artificially large atomic
delocalization found with modified pairwise potentials based
on exponential attenuation factors. Nevertheless, given the lack
of structural and kinetic energy measurements performed at
high pressure, we have not been able to quantify the accuracy
of our γ and Ek DMC results obtained with the V3(SK-E)
and V3(SK-EF) potential models. In this regard, advanced
computational studies in which both the nuclear and electronic
degrees of freedom in the crystal are to be treated at the
quantum level are highly desirable.
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